Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate Tech

Exclusive: Climate Tech Leaders Form New Coalition to Map Out the Future of Decarbonization

Elemental Impact, Breakthrough Energy, Speed & Scale, Stanford, Energy Innovation, and McKinsey are all partnering to form the “Climate Tech Atlas.”

Energy and housing.
Heatmap Illustration/Getty Images, Climeworks

The federal government has become an increasingly unreliable partner to climate tech innovators. Now venture capitalists, nonprofits, and academics are embracing a new plan to survive.

On Thursday, an interdisciplinary coalition — including Breakthrough Energy, McKinsey, and Stanford University’s Doerr School of Sustainability — unveiled the Climate Tech Atlas, a new plan to map out opportunities in the sector and define innovation imperatives critical to the energy transition.

The goal is to serve as a resource for stakeholders across the industry, drawing their focus toward the technological frontiers the alliance sees as the most viable pathways to economy-wide decarbonization. The idea is not to eliminate potential solutions, but rather “to enable the next generation of innovators, entrepreneurs, researchers, policymakers, and investors to really focus on where we felt there was the largest opportunity for exploration and for innovation to impact our path to net zero through the lens of technology,” Cooper Rinzler, a key collaborator on the initiative and a partner at the venture capital firm Breakthrough Energy Ventures, told me.

Other core contributors include the nonprofit investor Elemental Impact, John Doerr’s climate initiative Speed & Scale, and the policy think tank Energy Innovation. The Atlas has been a year in the making, Ryan Panchadsaram of Speed & Scale told me. “We’ve had maybe close to 20 to 30 working sessions with 80 different contributors, all focused on the big question of what innovations are needed to decarbonize our economy.”

The website, which launched today, lays out 24 opportunity areas across buildings, manufacturing, transportation, food, agriculture and nature, electricity, and greenhouse gas removal. Diving into “buildings,” for example, one can then drill down into an opportunity area such as “sustainable construction and design,” which lists three innovation imperatives: creating new design tools to improve materials efficiency and carbon intensity, improving building insulation and self-cooling, and industrializing construction to make it faster and more modular.

Then there are the moonshots — 39 in total, and two for this opportunity in particular. The first is developing carbon-negative building coatings and surface materials, and the second is inventing low-carbon building materials that can outperform steel and cement. It’s these types of moonshots, Rinzler told me, where much of the “residual uncertainty” and thus “opportunity for surprise” lies.

Each core collaborator, Panchadsaram said, naturally came into this exercise with their own internal lists and ideas about what types of tech and basic research were needed most. The idea, he told me, was to share “an open source version of what we each had.”

As Dawn Lippert, founder and CEO of Elemental Impact, put it to me, the Atlas “can help accelerate any conversation.” Her firm meets with over 1,000 entrepreneurs per year, she explained, on top of numerous philanthropists trying to figure out where to direct their capital. The Atlas can serve as a one-stop-shop to help them channel their efforts — and dollars — into the most investable and salient opportunities.

The same can be said for research priorities among university faculty, Charlotte Pera, the executive director of Stanford’s Sustainability Accelerator, told me. That then trickles down to help determine what classes, internships, and career paths students interested in the intersection of sustainability and technology ultimately choose.

The coalition members — and the project itself — speak to the prudence of this type of industry-wide level-setting amidst a chaotic political and economic environment. Referencing the accelerants Speed & Scale identifies as critical to achieving net-zero emissions — policy, grassroots and global movements, innovation, and investment — Panchadsaram told me that “when one is not performing in the way that you want, you have to lean in more into the others.”

These days, of course, it’s U.S. policy that’s falling short. “In this moment in time, at least domestically, innovation and investment is one that can start to fill in that gap,” he said.

This isn’t the first effort to meticulously map out where climate funding, innovation, and research efforts should be directed. Biden’s Department of Energy launched the Earthshots Initiative, which laid out innovation goals and pathways to scale for emergent technologies such as clean hydrogen, long-duration energy storage, and floating offshore wind. But while it’s safe to say that Trump isn’t pursuing the coordinated funding and research that Earthshots intended to catalyze, the private sector has a long and enthusiastic history with strategic mapping.

Breakthrough Energy, for example, had already pinpointed what it calls the “Five Grand Challenges” in reaching net-zero emissions: electricity, transportation, manufacturing, buildings, and agriculture. It then measures the “green premium” of specific technologies — that is, the added cost of doing a thing cleanly — to pinpoint what to prioritize for near-term deployment and where more research and development funding should be directed. Breakthrough's grand challenges closely mirror the sectors identified in the Atlas, which ultimately goes into far greater depth regarding specific subcategories.

Perhaps the pioneer of climate tech mapping is Kleiner Perkins, the storied venture capital firm, where Doerr was a longtime leader and currently serves as chairman; Panchadsaram is also an advisor there. During what investors often refer to as Clean Tech 1.0 — a boom-and-bust cycle that unfolded from roughly 2006 to 2012 — the firm created a “map of grand challenges.” While it appears to have no internet footprint today, in 2009, Bloomberg described it as a “chart of multicolored squares” tracking the firm’s investment across key climate technologies, with blank spots for tech with the potential to be viable — and investable — in the future.

Many of these opportunities failed to pay off, however. The 2008 financial crisis, the U.S. oil and natural gas boom, and slow development timelines for clean tech contributed to a number of high-profile failures, causing investors to sour on clean tech — a precedent the Atlas coalition would like to avoid.

These days, investors tend to tell me that Clean Tech 1.0 taught them to be realistic about long commercialization timelines for climate tech. Breakthrough Energy Ventures, for example, has funds with lengthy 20-year investment horizons. In a follow-up email, Rinzler also noted that even considering the current political landscape, “there’s a far more robust capital, corporate, and policy environment for climate tech than there was in the 2000s.” Now, he said, investors are more likely to consider the broader landscape across tech, finance, and policy when gauging whether a company can compete in the marketplace. And that often translates to a decreased reliance on government support.

“There are quite a few solutions that are embodied here that really don’t have an obligate dependence on policy in any way,” Rinzler told me. “You don’t have to care about climate to think that this is an amazing opportunity for an entrepreneur to come in and tackle a trillion-dollar industry with a pure profit incentive.”

The Atlas also seeks to offer a realistic perspective on its targets’ commercial maturity via a “Tech Category Index.” For example, the Atlas identifies seven technology categories relevant to the buildings sector: deconstruction, disposal and reuse, green materials, appliances, heating and cooling, smart buildings, and construction. While the first three are deemed “pilot” stage, the rest are “commercial.” More nascent technologies such as fusion, as well as many carbon dioxide removal methods are categorized as “lab” stage.

But the Atlas isn’t yet complete, its creators emphasized. Even now they’re contemplating ways to expand, based on what will provide the most value to the sector. “Is it more details on commercial status? Is it the companies that are working on it? Is it the researchers that are doing this in their lab?” Panchadsaram mused. “We are asking those questions right now.”

There’s even a form where citizen contributors can suggest new innovation imperatives and moonshots, or provide feedback on existing ones. “We do really hope that people, when they see this, collaborate on it, build on it, duplicate it, replicate it,” Panchadsaram told me. “This is truly a starting point.”

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Climate Tech

Climate Tech Pivots to Europe

With policy chaos and disappearing subsidies in the U.S., suddenly the continent is looking like a great place to build.

A suitcase full of clean energy.
Heatmap Illustration/Getty Images

Europe has long outpaced the U.S. in setting ambitious climate targets. Since the late 2000s, EU member states have enacted both a continent-wide carbon pricing scheme as well as legally binding renewable energy goals — measures that have grown increasingly ambitious over time and now extend across most sectors of the economy.

So of course domestic climate tech companies facing funding and regulatory struggles are now looking to the EU to deploy some of their first projects. “This is about money,” Po Bronson, a managing director at the deep tech venture firm SOSV told me. “This is about lifelines. It’s about where you can build.” Last year, Bronson launched a new Ireland-based fund to support advanced biomanufacturing and decarbonization startups open to co-locating in the country as they scale into the European market. Thus far, the fund has invested in companies working to make emissions-free fertilizers, sustainable aviation fuel, and biofuel for heavy industry.

Keep reading...Show less
Green
AM Briefing

Belém Begins

On New York’s gas, Southwest power lines, and a solar bankruptcy

COP30.
Heatmap Illustration/Getty Images

Current conditions: The Philippines is facing yet another deadly cyclone as Super Typhoon Fung-wong makes landfall just days after Typhoon Kalmaegi • Northern Great Lakes states are preparing for as much as six inches of snow • Heavy rainfall is triggering flash floods in Uganda.


THE TOP FIVE

1. UN climate talks officially kick off

The United Nations’ annual climate conference officially started in Belém, Brazil, just a few hours ago. The 30th Conference of the Parties to the UN Framework Convention on Climate Change comes days after the close of the Leaders Summit, which I reported on last week, and takes place against the backdrop of the United States’ withdrawal from the Paris Agreement and a general pullback of worldwide ambitions for decarbonization. It will be the first COP in years to take place without a significant American presence, although more than 100 U.S. officials — including the governor of Wisconsin and the mayor of Phoenix — are traveling to Brazil for the event. But the Trump administration opted against sending a high-level official delegation.

Keep reading...Show less
Blue
Climate Tech

Quino Raises $10 Million to Build Flow Batteries in India

The company is betting its unique vanadium-free electrolyte will make it cost-competitive with lithium-ion.

An Indian flag and a battery.
Heatmap Illustration/Getty Images

In a year marked by the rise and fall of battery companies in the U.S., one Bay Area startup thinks it can break through with a twist on a well-established technology: flow batteries. Unlike lithium-ion cells, flow batteries store liquid electrolytes in external tanks. While the system is bulkier and traditionally costlier than lithium-ion, it also offers significantly longer cycle life, the ability for long-duration energy storage, and a virtually impeccable safety profile.

Now this startup, Quino Energy, says it’s developed an electrolyte chemistry that will allow it to compete with lithium-ion on cost while retaining all the typical benefits of flow batteries. While flow batteries have already achieved relatively widespread adoption in the Chinese market, Quino is looking to India for its initial deployments. Today, the company announced that it’s raised $10 million from the Hyderabad-based sustainable energy company Atri Energy Transitions to demonstrate and scale its tech in the country.

Keep reading...Show less
Green