You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The tech giant’s $650 million deal with Talen Energy has a lot to unpack.

When Talen Energy, which owns a 90% interest in the Susquehanna nuclear power plant in Northeastern Pennsylvania, announced it was selling a data center site adjacent to its power plant to Amazon Web Services, it raised some eyebrows in the energy world. The surprise was not because a large tech company made a big deal with a carbon-free power provider, or even that a tech company made a deal to buy power generated by a nuclear power plant. It was because Amazon was making this deal.
Amazon is a massive buyer of renewable power — it claims to be the world’s largest and says it’s responsible for 28 gigawatts of clean energy capacity — signing contracts with new wind and solar projects all over the world.
But a divide has opened up among tech giants when it comes to energy, with Amazon on one side and Alphabet and Microsoft on the other. The difference hinges on how much it matters where and when the new carbon-free power a company buys in order to match its electricity use.
What’s odd about the Talen deal is that it fits awkwardly into either approach, especially Amazon’s. Amazon does not count nuclear towards its renewable power goals, and in any case, it’s not a “new” source of carbon-free power. Instead, it allows Amazon to siphon somewhere between 480 and 960 megawatts of capacity from the 2,500 megawatt plant.
“Amazon needs power, they’re getting it at cheap rates. They don’t even want to talk about it like a climate thing,” Mark Nelson, the founder of Radiant Energy Group, told me.
In the past decade or so, technology companies have gone on a clean-power buying spree, funding new wind and solar projects all over the world. But there has been a divergence in what is thought to be the best way to go about it.
In 2019, Amazon announced a goal to add enough renewable power to the grid to match its own emissions by 2030 (since moved up to 2025) and to reach net zero by 2040.
Google has been 100% renewable in terms of buying clean power in the same amounts that it consumes since 2017. So in 2020, it set a new goal: to “run on 24/7 carbon-free energy on every grid where we operate by 2030.” This would mean not just matching total renewable purchases with total emissions, as Amazon is seeking to do, but also trying to get every hour of data center operation “matched” with an hour of renewable generation on the same grid.
Microsoft has a similar goal, and as a result, both companies have shown much more interest in nuclear power of late than is typical in the technology world.
“A huge bottleneck for growth for Amazon, Google, Microsoft, Facebook is access to constant electricity,” Nelson told me. Nuclear is a carbon-free electricity resource that can run at a steady output 24 hours a day, whereas wind and solar are both inherently variable.
Microsoft signed a deal with Constellation to supply power to data centers in Virginia and hired an official from the Tennessee Valley Authority to be its director of nuclear and energy innovations, while Microsoft founder Bill Gates and Sam Altman, the head of Microsoft-backed OpenAI have both invested in nuclear startups, as has Google.
Amazon’s approach — which it shares with several other large companies, including Meta — is not to match 24 hours of its operations with clean power bought locally, but rather to develop and purchase new wind and solar at the same scale of the power it consumes, especially in areas with dirty grids, thus matching the emissions from its consumption with the emissions reductions of new renewables projects. While a 24/7 matching approach may be naturally complementary with nuclear power, Amazon’s strategy doesn’t require it.
“We believe a focus on emissions is the fastest, most cost-effective and scalable way to leverage corporate clean energy procurement to help decarbonize global power grids at the fastest pace,” an Amazon spokesperson told me. “This includes procuring renewable energy in locations and countries that still rely heavily on fossil fuels to power their grids, and where energy projects can have the biggest impact on carbon reduction.”
Contracting out new renewable energy projects can have more bang for your buck in dirty grids, according to proponents of the Amazon philosophy, known as carbon matching. The hypothesis is that a renewable project in a fossil fuel-heavy grid will displace more dirty power than one that’s located near a datacenter in an already relatively clean grid like California or Washington State.
Princeton researchers who examined the carbon matching (Amazon) and temporal matching (Google and Microsoft) strategies argued that the carbon matching approach does not necessarily lead to more renewables — or less fossil fuels — on the grid than would have occurred in the absence of the tech companies, and thus does not actually greatly lower emissions. The temporal approach, on the other hand, can meaningfully displace fossil fuel power that would otherwise have to be on the grid to meet demand.
Nuclear advocates are clear-eyed that this deal won’t cause a new generating unit to sprout up out of the Susquehanna Valley. But they still see it as the kind of deal that can help ensure nuclear plants’ continued survival. Amazon’s $650 million buys it a 10-year agreement to purchase power from the plant, as well as “additional revenue from AWS related to sales of carbon-free energy to the grid,” which an Amazon spokesperson explained as a reference to the deal “ensur[ing] that the nuclear plant has stable revenues to continue generating clean power to the grid for the foreseeable future.”
Nelson, a passionate advocate for nuclear power, lamented the mass shutdown of nuclear power plants in the 2010s thanks to cheap natural gas knocking them out of power markets that didn’t value reliability or carbon-free energy. But now, he says, things are different.
“Now nuclear is getting valued for its climate properties, reliability, and low cost. We’re seeing nuclear plants cash in,” Nelson told me. “Long term PPAs with cold hard cash help me sleep better at night.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The president of the Clean Economy Project calls for a new approach to advocacy — or as she calls it, a “third front.”
Roughly 50,000 people are in Brazil this week for COP30, the annual United Nations climate summit. If history is any guide, they will return home feeling disappointed. After 30 years of negotiations, we have yet to see these summits deliver the kind of global economic transformation we need. Instead, they’ve devolved into rituals of hand-wringing and half measures.
The United States has shown considerable inertia and episodic hostility through each decade of climate talks. The core problem isn’t politics. It’s perspective. America has been treating climate as a moral challenge when the real stakes are economic prosperity.
I’ve spent my career advancing the moral case from inside the environmental movement. Over the decades we succeeded at rallying the faithful, but we failed to deliver change at the scale and speed required. We passed regulations only to watch them be repealed. We pledged to cut emissions and missed the mark, again and again.
People think of climate change as a crisis to contain when it’s really a competition to win. We need to build what’s next, not stop what’s bad. And what’s at stake isn’t just emissions; it’s whether America leads or lags in the next era of global economic growth.
That calls for a new approach to climate action — a third front.
In the early 1900s, the first front focused on conservation — protecting forests, nature, and wildlife. The second front, in the 1960s and 70s, tackled pollution — cleaning up our air and water, regulating toxins, and safeguarding public health. Both were about “stopping” harm. They worked because they aimed at industries where slowing down made sense.
But energy doesn’t fit that mold. International pledges and national regulations to “stop” carbon emissions are destined to fail without affordable and accessible fossil-fuel replacements. Why? Because low-cost energy makes people’s lives better. Longer life expectancies, better health care, lower infant mortality, and higher literacy follow in its wake. Energy is foundational for prosperity, powering nearly every part of our modern lives.
No high-income country has low energy consumption. Prosperity depends on abundant energy. Global energy demand will keep rising, as poor countries install more refrigerators and air conditioning, and rich countries build more data centers and advanced manufacturing. Today, fossil fuels provide 80% of primary energy because they are cheap and easy to move around. That’s why the tools of “stopping harm” that we used to protect rivers and forests will not win the race. Innovation, not limits, leads to progress.
The third front is not about blocking fossil fuels; it’s about beating them. Stopping fossil fuels doesn’t fix the electric grid or reinvent steelmaking. By contrast, lowering the cost of clean technologies will spur economic growth, create jobs in rural counties, and lower electricity bills for working families.
Yet clean energy projects in the U.S. are routinely delayed by red tape, outdated rules, and policy whiplash. A transmission line often takes more than a decade to plan, permit, and construct. Meanwhile, China has added more than 8,000 miles of ultra‑high‑voltage transmission in just four years, compared with fewer than 400 miles here at home. American entrepreneurs are ready to build but our systems and rules haven’t caught up.
And the urgency to fix the problem is mounting. Electricity prices and energy demand are surging, while terawatts of clean energy projects pile up in the interconnection queue. We are struggling to build a 21st century economy on 20th century infrastructure.
The third front of climate action starts with building faster and smarter. That responsibility lies with policymakers at every level. In the U.S., Congress and federal agencies must treat energy infrastructure as economic competitiveness, not just environmental policy. State and local regulators must expedite permitting. Regional grid operators must speed up interconnection and integration of new technologies.
But government’s role is to clear the path, not dictate the outcome. The private sector — entrepreneurs pioneering technologies from long-duration storage to advanced geothermal to next-generation nuclear — is ready to build. What they need is for policymakers to remove the obstacles. We can use public policy not to command markets, but rather to unlock them, reward innovation, and create certainty that encourages investment.
The same logic applies globally. The multilateral climate system has focused on negotiating emission limits, but we need a renewed effort toward lowering the cost of clean energy so it can outcompete fossil fuels in every market, from the richest economies to the poorest. Whether through the UN, the G-20, or the Clean Energy Ministerial, the international community must play a role in that shift — not through collating new pledges, but by taking action on cost reduction, technology deployment, and removing barriers to scale. Through economic cooperation and competition, both, domestic policies around the world need to align toward making clean energy win on economics, backed by private capital and innovation.
It’s time to measure progress not only by tons of carbon avoided, but also by how much new energy capacity we add, how quickly clean projects come online, and how much private capital moves into clean industries.
There is a cure for the fatigue induced from 30 years of climate summits and setbacks. It’s a new playbook built on economic growth and shared prosperity. The goal is not only to reduce emissions. We must build a system where clean energy is so affordable, abundant, and reliable that it becomes the obvious choice. Not because people are told to use it, but because it is better.
On Trump's global gas up, a Garden State wind flub, and Colorado coal
Current conditions: From Cleveland to Syracuse, cities on the Great Lakes are bracing for heavy snowfall • Rainfall in Northern California could top 6 inches today • Thousands evacuated in the last few hours in Taiwan as Typhoon Fung-wong makes landfall.
The bill that would fund the government through the end of the year and end the nation’s longest federal shutdown eliminates support for the Department of Agriculture’s climate hubs. The proposed compromise to reopen the government would slash funding for USDA’s 10 climate hubs, which E&E News described as producing “regional research and data on extreme weather, natural disasters and droughts to help farmers make informed decisions.”
There were, however, some green shoots. A $730 million line item in the military’s budget could go to microgrids, renewables, or nuclear reactors. The bill also contains millions of dollars for the cleanup of so-called forever chemicals, which had stalled under the Trump administration. Still, the damage from the shutdown was severe. As Heatmap reported throughout the record-breaking funding lapse, the administration slashed funding for a backup energy storage system at a children’s hospital, major infrastructure projects in New York City, and droves of grants for clean energy.

Call it American exceptionalism. The effects of President Donald Trump’s One Big Beautiful Bill Act and America’s world-leading artificial intelligence development “have meaningfully altered” the International Energy Agency’s forecasts of global fossil fuel usage and emissions, Heatmap’s Matthew Zeitlin wrote this morning. The trajectory of global temperature rise may be, as I have written in this newsletter, so far largely unaffected by the new American administration’s policies. But multiple scenarios outlined in the Paris-based IEA’s 2025 World Energy Outlook predict “gas demand continues growing into the 2030s, due mainly to changes in U.S. policies and lower gas prices.”
That stands in contrast to China, a comparison that was inevitable this week as the world gathers for the United Nations climate summit in Belém, Brazil — the first that Washington is all but ignoring as the Trump administration moves to withdraw the U.S. from the Paris Agreement. As I wrote here yesterday, China's emissions remained flat in the last quarter, extending a streak that began in March 2024.
Sign up to receive Heatmap AM in your inbox every morning:
Heatmap’s Jael Holzman had a big scoop last night: Yet another offshore wind project on the East Coast is kaput. The lawyers representing the Leading Light Wind offshore project filed a letter on November 7 to the New Jersey Board of Public Utilities informing the regulator it “no longer sees any way to complete construction and wants to pull the plug,” Jael wrote. “The Board is well aware that the offshore wind industry has experienced economic and regulatory conditions that have made the development of new offshore wind projects extremely difficult,” counsel Colleen Foley wrote in the letter, a copy of which Jael got her hands on. The project was meant to be built 35 miles off New Jersey’s coast, and was expected to provide about 2.4 gigawatts of electricity to the power-starved state.
It’s the latest casualty of Trump’s “total war on wind,” and comes as other projects in Maryland and New England are fighting to retain permits amid the administration’s multi-agency onslaught.
Xcel Energy proposed extending the life of its Comanche 2 coal-fired power plant for 12 months past its shutdown date in December. The utility giant, backed by state officials and consumer advocates, told the Colorado Public Utilities Commission on Monday that maintaining power production from the 50-year-old unit was important as the power plant scrambled to maintain enough power generation following the breakdown of the coal plant's third unit. The 335-megawatt Comanche 2 generator in Pueblo is expected to get approval to keep running. “We need it for resource adequacy and reliability, underlining that need for reliability and resource adequacy are central issues,” Robert Kenney, CEO of Xcel Energy’s Colorado subsidiary, told The Colorado Sun. The move comes as Trump’s Department of Energy is ordering coal plants in states such as Michigan to keep operating months past closure deadlines at the cost of millions of dollars per month to ratepayers, as I have previously written.
Pennsylvania, meanwhile, may be preparing to withdraw from the Regional Greenhouse Gas Initiative, the cap-and-trade market in which much of the Northeast’s biggest states partake. A state budget deal described by Spotlight PA reporter Stephen Caruso on X would remove the commonwealth from the market.
Germany and Spain vowed to give $100 million to the World Bank’s Climate Investment Funds, a $13 billion multilateral financing pool to help poor countries deal with the effects of climate change. The funding, announced Monday at an event at the U.N.’s Cop30 summit in Brazil, is “an opportunity too large to ignore,” Tariye Gbadegesin, chief executive officer of Climate Investment Funds, said in a statement. While mitigation work has long held priority in international lending, adaptation work to give some relief to the countries that contributed the least to climate change but pay the highest tolls from extreme weather has often received scant support. In his controversial memo calling for a sober, new direction for global funding, billionaire philanthropist Bill Gates called on countries to take adaptation more seriously. For more on what he said, read the rundown Heatmap’s Robinson Meyer wrote.
Right in time for the region’s most iconic season, when even celebrants in farflung parts of this country think of the old Puritan lands during Halloween and Thanksgiving, I bring to you what might be the most New England story ever. A blade broke off a wind turbine near Plymouth, Massachusetts, last week and landed in — get ready for it — a cranberry bog. The roughly 90-foot blade left behind debris, but “no one was hurt, and the turbine automatically shut itself down as designed,” the local fire chief said.
Rob and Jesse unpack one of the key questions of the global fight against climate change with the Centre for Research on Energy and Clean Air’s Lauri Myllyvirta.
Robinson Meyer and Jesse Jenkins are off this week. Please enjoy this selection from the Shift Key archive.
China’s greenhouse gas emissions were essentially flat in 2024 — or they recorded a tiny increase, according to a November report from the Centre for Research on Energy and Clean Air, or CREA. A third of experts surveyed by the report believe that its coal emissions have peaked. Has the world’s No. 1 emitter of carbon pollution now turned a corner on climate change?
Lauri Myllyvirta is the co-founder and lead analyst at CREA, an independent research organization focused on air pollution and headquartered in Finland. Myllyvirta has worked on climate policy, pollution, and energy issues in Asia for the past decade, and he lived in Beijing from 2015 to 2019.
On this week’s episode of Shift Key, Rob and Jesse talk with Lauri about whether China’s emissions have peaked, why the country is still building so much coal power (along with gobs of solar and wind), and the energy-intensive shift that its economy has taken in the past five years. Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: When we think about Chinese demand emissions going forward, it sounds like — somewhat to my surprise, perhaps — this is increasingly a power sector story, which is … is that wrong? Is it an industrial story? Is it a …
Lauri Myllyvirta: I want to emphasize the steel sector besides power. So if you simply look at what the China Steel Association is projecting, which is a gradual, gentle decline in total output and the increase in the availability of scrap. If you use that to replace coal-based with electricity-based steelmaking, you can achieve an about 40% reduction in steelmaking emissions over the next decade.
Of course, some of that is going to shift to electricity, so you need the clean electricity as well to realize it. But that’s at least as large an opportunity as there is on the power sector, so that’s what I’m telling everyone — that if you want to understand what China can accomplish over the next decade, it’s these two sectors, first and foremost.
Jesse Jenkins: Yeah. I mean, there’s some positive overall trends, right? If you look at the arc that we’re seeing in each sector, with renewables growth starting to outpace demand growth in electricity and eat into coal in absolute terms, not just market share, with the transition in the steel industry — which is sort of a story that we’ve seen in multiple countries as they move through different phases, right? As you’re building out your primary infrastructure, the first time you don’t have enough scrap, but as the infrastructure and rate of car recycling and things like that goes up, you now have a much larger supply. And that’s the case in the U.S., where the vast majority of our steel now comes from scrap.
And then, you know, the slowdown in the construction boom — China’s built an enormous amount of infrastructure and housing, and there’s only so much more that they need. And so the pace of that construction is likely to fall, as well. And then finally, the big shift to EVs in the transportation sector. So you’ve got your four largest-emitting sources on a very positive trajectory when it comes to greenhouse gas emissions.
Mentioned:
CREA’s reports on China’s emissions trajectory
Chinese EV companies beat their own targets in 2024
How China Created an EV Juggernaut
Jeremy Wallace: China Can’t Decide if It Wants to Be the World’s First ‘Electrostate’
This episode of Shift Key is sponsored by …
Hydrostor is building the future of energy with Advanced Compressed Air Energy Storage. Delivering clean, reliable power with 500-megawatt facilities sited on 100 acres, Hydrostor’s energy storage projects are transforming the grid and creating thousands of American jobs. Learn more at hydrostor.ca.
Uplight is a clean energy technology company that helps energy providers unlock grid capacity by activating energy customers and their connected devices to generate, shift, and save energy. The Uplight Demand Stack — which integrates energy efficiency, electrification, rates, and flexibility programs — improves grid resilience, reduces costs, and accelerates decarbonization for energy providers and their customers. Learn more at uplight.com/heatmap.
Music for Shift Key is by Adam Kromelow.