Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Technology

What Does Amazon Want With Nuclear?

The tech giant’s $650 million deal with Talen Energy has a lot to unpack.

A nuclear tower.
Heatmap Illustration/Getty Images

When Talen Energy, which owns a 90% interest in the Susquehanna nuclear power plant in Northeastern Pennsylvania, announced it was selling a data center site adjacent to its power plant to Amazon Web Services, it raised some eyebrows in the energy world. The surprise was not because a large tech company made a big deal with a carbon-free power provider, or even that a tech company made a deal to buy power generated by a nuclear power plant. It was because Amazon was making this deal.

Amazon is a massive buyer of renewable power — it claims to be the world’s largest and says it’s responsible for 28 gigawatts of clean energy capacity — signing contracts with new wind and solar projects all over the world.

But a divide has opened up among tech giants when it comes to energy, with Amazon on one side and Alphabet and Microsoft on the other. The difference hinges on how much it matters where and when the new carbon-free power a company buys in order to match its electricity use.

What’s odd about the Talen deal is that it fits awkwardly into either approach, especially Amazon’s. Amazon does not count nuclear towards its renewable power goals, and in any case, it’s not a “new” source of carbon-free power. Instead, it allows Amazon to siphon somewhere between 480 and 960 megawatts of capacity from the 2,500 megawatt plant.

“Amazon needs power, they’re getting it at cheap rates. They don’t even want to talk about it like a climate thing,” Mark Nelson, the founder of Radiant Energy Group, told me.

In the past decade or so, technology companies have gone on a clean-power buying spree, funding new wind and solar projects all over the world. But there has been a divergence in what is thought to be the best way to go about it.

In 2019, Amazon announced a goal to add enough renewable power to the grid to match its own emissions by 2030 (since moved up to 2025) and to reach net zero by 2040.

Google has been 100% renewable in terms of buying clean power in the same amounts that it consumes since 2017. So in 2020, it set a new goal: to “run on 24/7 carbon-free energy on every grid where we operate by 2030.” This would mean not just matching total renewable purchases with total emissions, as Amazon is seeking to do, but also trying to get every hour of data center operation “matched” with an hour of renewable generation on the same grid.

Microsoft has a similar goal, and as a result, both companies have shown much more interest in nuclear power of late than is typical in the technology world.

“A huge bottleneck for growth for Amazon, Google, Microsoft, Facebook is access to constant electricity,” Nelson told me. Nuclear is a carbon-free electricity resource that can run at a steady output 24 hours a day, whereas wind and solar are both inherently variable.

Microsoft signed a deal with Constellation to supply power to data centers in Virginia and hired an official from the Tennessee Valley Authority to be its director of nuclear and energy innovations, while Microsoft founder Bill Gates and Sam Altman, the head of Microsoft-backed OpenAI have both invested in nuclear startups, as has Google.

Amazon’s approach — which it shares with several other large companies, including Meta — is not to match 24 hours of its operations with clean power bought locally, but rather to develop and purchase new wind and solar at the same scale of the power it consumes, especially in areas with dirty grids, thus matching the emissions from its consumption with the emissions reductions of new renewables projects. While a 24/7 matching approach may be naturally complementary with nuclear power, Amazon’s strategy doesn’t require it.

“We believe a focus on emissions is the fastest, most cost-effective and scalable way to leverage corporate clean energy procurement to help decarbonize global power grids at the fastest pace,” an Amazon spokesperson told me. “This includes procuring renewable energy in locations and countries that still rely heavily on fossil fuels to power their grids, and where energy projects can have the biggest impact on carbon reduction.”

Contracting out new renewable energy projects can have more bang for your buck in dirty grids, according to proponents of the Amazon philosophy, known as carbon matching. The hypothesis is that a renewable project in a fossil fuel-heavy grid will displace more dirty power than one that’s located near a datacenter in an already relatively clean grid like California or Washington State.

Princeton researchers who examined the carbon matching (Amazon) and temporal matching (Google and Microsoft) strategies argued that the carbon matching approach does not necessarily lead to more renewables — or less fossil fuels — on the grid than would have occurred in the absence of the tech companies, and thus does not actually greatly lower emissions. The temporal approach, on the other hand, can meaningfully displace fossil fuel power that would otherwise have to be on the grid to meet demand.

Nuclear advocates are clear-eyed that this deal won’t cause a new generating unit to sprout up out of the Susquehanna Valley. But they still see it as the kind of deal that can help ensure nuclear plants’ continued survival. Amazon’s $650 million buys it a 10-year agreement to purchase power from the plant, as well as “additional revenue from AWS related to sales of carbon-free energy to the grid,” which an Amazon spokesperson explained as a reference to the deal “ensur[ing] that the nuclear plant has stable revenues to continue generating clean power to the grid for the foreseeable future.”

Nelson, a passionate advocate for nuclear power, lamented the mass shutdown of nuclear power plants in the 2010s thanks to cheap natural gas knocking them out of power markets that didn’t value reliability or carbon-free energy. But now, he says, things are different.

“Now nuclear is getting valued for its climate properties, reliability, and low cost. We’re seeing nuclear plants cash in,” Nelson told me. “Long term PPAs with cold hard cash help me sleep better at night.”

Blue

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Electric Vehicles

The New Electric Cars Are Boring

Give the people what they want — big, family-friendly EVs.

Boredom and EVs.
Heatmap Illustration/Getty Images, Apple

The star of this year’s Los Angeles Auto Show was the Hyundai Ioniq 9, a rounded-off colossus of an EV that puts Hyundai’s signature EV styling on a three-row SUV cavernous enough to carry seven.

I was reminded of two years ago, when Hyundai stole the L.A. show with a different EV: The reveal of Ioniq 6, its “streamliner” aerodynamic sedan that looked like nothing else on the market. By comparison, Ioniq 9 is a little more banal. It’s a crucial vehicle that will occupy the large end of Hyundai's excellent and growing lineup of electric cars, and one that may sell in impressive numbers to large families that want to go electric. Even with all the sleek touches, though, it’s not quite interesting. But it is big, and at this moment in electric vehicles, big is what’s in.

Keep reading...Show less
Green
Climate

AM Briefing: Hurricane Season Winds Down

On storm damages, EV tax credits, and Black Friday

The Huge Economic Toll of the 2024 Hurricane Season
Heatmap Illustration/Getty Images

Current conditions: Parts of southwest France that were freezing last week are now experiencing record high temperatures • Forecasters are monitoring a storm system that could become Australia’s first named tropical cyclone of this season • The Colorado Rockies could get several feet of snow today and tomorrow.

THE TOP FIVE

1. Damages from 2024 hurricane season estimated at $500 billion

This year’s Atlantic hurricane season caused an estimated $500 billion in damage and economic losses, according to AccuWeather. “For perspective, this would equate to nearly 2% of the nation’s gross domestic product,” said AccuWeather Chief Meteorologist Jon Porter. The figure accounts for long-term economic impacts including job losses, medical costs, drops in tourism, and recovery expenses. “The combination of extremely warm water temperatures, a shift toward a La Niña pattern and favorable conditions for development created the perfect storm for what AccuWeather experts called ‘a supercharged hurricane season,’” said AccuWeather lead hurricane expert Alex DaSilva. “This was an exceptionally powerful and destructive year for hurricanes in America, despite an unusual and historic lull during the climatological peak of the season.”

Keep reading...Show less
Yellow
Climate

First Comes the Hurricane. Then Comes the Fire.

How Hurricane Helene is still putting the Southeast at risk.

Hurricanes and wildfire.
Heatmap Illustration/Getty Images

Less than two months after Hurricane Helene cut a historically devastating course up into the southeastern U.S. from Florida’s Big Bend, drenching a wide swath of states with 20 trillion gallons of rainfall in just five days, experts are warning of another potential threat. The National Interagency Fire Center’s forecast of fire-risk conditions for the coming months has the footprint of Helene highlighted in red, with the heightened concern stretching into the new year.

While the flip from intense precipitation to wildfire warnings might seem strange, experts say it speaks to the weather whiplash we’re now seeing regularly. “What we expect from climate change is this layering of weather extremes creating really dangerous situations,” Robert Scheller, a professor of forestry and environmental resources at North Carolina State University, explained to me.

Keep reading...Show less
Blue