Podcast
How China’s Power Grid Really Works
Rob and Jesse break down China’s electricity generation with UC San Diego’s Michael Davidson.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Rob and Jesse break down China’s electricity generation with UC San Diego’s Michael Davidson.
Rob debriefs with colleagues on the latest climate news.
In a special episode of Shift Key, Rob interviews Representative Sean Casten about his new energy price bill, plus Emerald AI’s Arushi Sharma Frank.
Rob and Jesse talk to Ember’s Kingsmill Bond about how electricity is reshaping global geopolitics.
Rob and Jesse riff on the state of utility regulation in America — and how to fix it.
Rob talks to Peter Brannen, author of the new book The Story of CO2 Is the Story of Everything.
Rob and Jesse revisit the basics of the ultra-clogged electricity interconnection queue.
Shift Key is off for Labor Day, so we’re running this classic episode.
The power grid is straining as new data centers, factories, and electric vehicles come online. For the first time in 15 years, American electricity demand is rising again.
The easiest option is to meet that new demand with new supply — new power plants. But in many parts of the country, it can take years to hook up new wind, solar, and batteries to the grid. The reason why is a clogged and broken system called the interconnection queue.
On this week’s episode of Shift Key, which first aired in 2024, Jesse and Rob speak with two experts about how to understand — and how to fix — what is perhaps the biggest obstacle to deploying more renewables on the U.S. power grid.
Tyler Norris is a doctoral student at Duke University’s Nicholas School of the Environment. He was formerly vice president of development at Cypress Creek Renewables, and he served on North Carolina Governor Roy Cooper’s Carbon Policy Working Group. Claire Wayner is a senior associate at RMI’s carbon-free electricity program, where she works on the clean and competitive grids team.
Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, YouTube, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: So, Tyler, you’ve been proposing on Twitter — or on X, I suppose — kind of one weird trick that would improve the interconnection process and make us deploy a lot more clean energy faster and save people the billions of dollars we were just talking about.
What is it? Please enlighten us.
Tyler Norris: So as mentioned, Texas is adding clean electricity much faster than every other market — and not just clean electricity, every form of generation capacity you can imagine. And the reason they’re able to do that is because they’re not subjecting those generators to all those severe conditions that I mentioned earlier and then allocating the cost of upgrading the grid to those generators upfront.
Instead, they’re attempting to proactively plan the system in response to generators that show up and send that market signal regarding where there may be opportunities to upgrade the grid. And it works, of course, because Texas is an energy-only electricity market, so they’re not studying the projects for their capacity value, so there’s some simplifications that make it more viable.
That said, even outside ERCOT, there’s a lot we could do to make this what we call energy-only interconnection option more viable for generators, and I think it could offer a lot of benefits. It’s much lower cost. It’s much faster to get projects online. It can contribute to production cost savings. It also provides a reserve of generators that can be upgraded to capacity resources if and when network capacity becomes available. And it can actually contribute to reliability and reduce the risk of shedding load during reliability events, even though they’re not formally qualified as what we call capacity resources
Meyer: Can you give us an example of what you mean? What is ERCOT actually doing here?
Norris: So it means that the Texas grid operator is willing to curtail generators as necessary to avoid any reliability impacts on the system. And so they’re basically, they’re managing the system in real time. And this does lead to a higher rate of curtailment on average for especially some of these renewable generators. And so that’s an important dimension of it. But there’s a lot of nuance there, too. Even the capacity resources outside of Texas can be curtailed during congestion events.
So they’re not assigning grid upgrades to the projects upfront. They’re instead looking at where the generators show up and connect to the system and then identifying the most valuable grid upgrades from a cost and a reliability standpoint and prioritizing those.
Mentioned:
Tyler’s study on “energy only” interconnection rules
Matthew Zeitlin on the big problems with PJM — and on Tyler’s research into flexible loads
FERC Order 2023 on Improvements to Generator Interconnection Procedures and Agreements
Advanced Energy United report on “Unlocking America's Energy: How to Efficiently Connect New Generation to the Grid
NRDC: “PJM’s Capacity Auction: The Real Story”
Rob’s downshift; Jesse’s upshift.
This episode of Shift Key is sponsored by …
Accelerate your clean energy career with Yale’s online certificate programs. Gain real-world skills, build strong networks, and keep working while you learn. Explore the year-long Financing and Deploying Clean Energy program or the 5-month Clean and Equitable Energy Development program. Learn more here.
Join clean energy leaders at RE+ 25, September 8–11 in Las Vegas. Explore opportunities to meet rising energy demand with the latest in solar, storage, EVs, and more at North America’s largest energy event. Save 20% with code HEATMAP20 at re-plus.com.
Music for Shift Key is by Adam Kromelow.
Rob and Jesse quiz Mark Rothleder, chief operations officer at the California Independent System Operator.
So far on Shift Key Summer School we’ve covered how electricity gets made and how it gets sold. But none of that matters without the grid, which is how that electricity gets to you, the consumer. Who actually keeps the grid running? And what decisions did they make an hour ago, a day ago, a week ago, five years ago to make sure that it would still be running right this second?
This week on Shift Key, Rob and Jesse chat with Mark Rothleder, senior vice president and chief operating officer of the California Independent System Operator, which manages about 80% of the state’s electricity flow. As the longest-serving employee at CAISO , he’s full of institutional knowledge. How does he manage the resource mix throughout the day? What happens in a blackout? And how do you pronounce CAISO in the first place?
Shift Key is hosted by Jesse Jenkins, a professor of energy systems engineering at Princeton University, and Robinson Meyer, Heatmap’s executive editor.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, YouTube, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Jesse Jenkins: To make this a little bit more concrete, walk through how you’re orchestrating the generation fleet. What is the typical mix of resources that you’re calling on at different times of day, on a typical California day. Let’s start at 8:00 a.m. and, you know, move through the day.
Mark Rothleder: So if it’s like today, it’s a moderate summer day, there would be in the. There would be some thermal resources, gas resources that would already be on, probably near their minimum load, which is probably about 30%, 40% of their full operating capability. And they would be sitting there waiting for dispatch instructions as the load increased.
And I talk about the morning because people start turning lights on. This is when the load starts to increase, in that morning hour. So to balance the system as that load increases relatively quickly, you’re going to have a combination of probably solar starting to come up and produce, naturally, because the sun is coming out. You may have a little bit of wind production starting to increase because the wind’s starting to blow because the temperatures and the system are driving that wind. If that’s not enough energy, we’re dispatching probably thermal resources, probably doing some exchanges through the Western Energy Imbalance Market with the neighbors.
And then you get to about probably 9 o’clock, 10 o’clock ,and things stabilize. And then what ends up happening, at least in our system, is you start to see solar production continue to go up, but the load is not increasing. It’s kind of flattened out. We start to probably see some backing off of thermal resources that were brought up during that morning load pull. And now we’re starting to back off on those, and maybe even getting to the point where surplus energy in the middle of the day — we’re exchanging and maybe exporting some of our energy to our neighbors because we have surplus. We’re probably starting to see batteries charge up in the middle of the day because now we’ve got this cheap energy. And this is going to probably go on until about 4 o’clock, 5 o’clock in the afternoon, when the traditional peak of the day is, and this is when the highest gross load is.
And then we start to see another dynamic happen, and that is, at least in our system, the sun starts to set and then the solar production starts to decrease. What’s interesting about that is, as the solar production decreases, it happens over about a three-, four-hour period, and it’s a relatively fast ramp out of those solar resources. The load is not dropping. And in fact, if you think about —
Jenkins: It’s rising often, right?
Rothleder: It’s actually still rising because some of the load that was previously served by behind the meter rooftop solar, that load is also coming back on the system because the solar production is decreasing. So again, to rebalance the system and keep that balanced and straight, we have to start ramping up a couple things. We start to turn, maybe, what was exports around, and we start importing energy from our neighbors. We start discharging the batteries that we just charged up earlier. And to the extent we still need other energy, we probably have a combination of thermal gas resources that we’re bringing them off their minimum load, dispatching them up during the day, and probably some hydro resources that are able to be dispatched during the day.
Between 6 p.m. and 7 p.m. we hit what we call our net peak. We call it net peak because it’s the gross load minus wind and solar production. And that tends to be the most critical time when we need — since the ramp out of wind and solar, more solar, that kind of is the highest where we need other resources to be available and dispatched. And so once we get through that net peak, come around 6:30, 7 o’clock, things just start to gradually turn around. And then we’re ramping out over the rest of the day the thermal resources, the interchange, and the hydro resources that we previously dispatched up to get to that net peak. And this all starts over again the next morning.
Mentioned:
Jesse’s slides on long-run equilibrium and electricity markets
Shift Key Summer School episodes 1, 2, 3, and 4
Also on Shift Key: Spain’s Blackout and the Miracle of the Modern Power Grid
This episode of Shift Key is sponsored by …
Accelerate your clean energy career with Yale’s online certificate programs. Gain real-world skills, build strong networks, and keep working while you learn. Explore the year-long Financing and Deploying Clean Energy program or the 5-month Clean and Equitable Energy Development program. Learn more here.
Join clean energy leaders at RE+ 25, September 8–11 in Las Vegas. Explore opportunities to meet rising energy demand with the latest in solar, storage, EVs, and more at North America’s largest energy event. Save 20% with code HEATMAP20 at re-plus.com.
Music for Shift Key is by Adam Kromelow.