Ideas
Now We Decide the Future of U.S. Climate Policy
On the third anniversary of the signing of the Inflation Reduction Act, Heatmap contributor Advait Arun mourns what’s been lost — but more importantly, charts a path toward what comes next.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
On the third anniversary of the signing of the Inflation Reduction Act, Heatmap contributor Advait Arun mourns what’s been lost — but more importantly, charts a path toward what comes next.
A longtime climate messaging strategist is tired of seeing the industry punch below its weight.
Two former Department of Energy staffers argue from experience that severe foreign entity restrictions aren’t the way to reshore America’s clean energy supply chain.
In defense of “everything bagel” policymaking.
The U.S. is too enmeshed in the global financial system for the rest of the world to solve climate change without us.
And coal communities and fracking villages and all the rest.
The founder of Galvanize Climate Solutions and a 2020 presidential candidate does some math on how smart climate policy could help the U.S. in a trade war.
We’re now four months into a worldwide trade war, and the economic data confirms it’s Americans who are paying the price. A growing body of surveys and forecasts indicate that inflation will be a persistent, wallet-draining reality for U.S. households. Voters now expect inflation to hit 7.3% next year, and as of March, the Organisation for Economic Co-operation and Development projects that tariffs and trade tensions could help drive U.S. inflation up by 0.3 percentage points in 2025.
But there are solutions for whipping inflation. One is unleashing an abundance of clean energy.
Clean energy can have a powerful deflationary ripple effect, lowering prices across the economy. Solar has for years been the cheapest form of new energy around the world, and recent research from Goldman Sachs shows that prices of clean technologies like large-scale solar power and battery storage are falling. These lower costs are helping to keep electricity prices more stable, even as demand rises due to the growing number of data centers, the return of U.S. manufacturing, and the electrification of transport and heating.
As a thought experiment, my team gathered data on the U.S. energy market to estimate the potential deflationary effect that accelerating clean energy development could have on the American economy. At the end of our analysis, we found that accelerating renewable energy development nationwide could reduce inflation by 0.58 percentage points — meaning that if inflation were running at 4%, widespread clean energy would bring it down to 3.42%. This would save the average American family approximately $441 each year, or nearly three months’ worth of electricity bills.
While our model doesn’t completely capture all of America’s regional complexities regarding energy policy or resource availability, it shows what’s possible. Call it the “Clean Energy Dividend” — a measurable financial return Americans receive when renewable deployment expands.
These numbers are based on something that’s already happening in Texas, where building new clean energy projects is relatively easy. Since 2019, Texas has expanded its solar capacity by 729% and wind power by 49%, faster than any other state in the nation. These developments have added approximately 39,000 gigawatt-hours of solar, 41,000 gigawatt-hours of wind to the Texas grid. In that same time, Texas has also added 9,300 megawatts of battery capacity — a 8,941% increase.
To match Texas’ success, the rest of America would need to significantly ramp up its clean energy production. According to our analysis, the other 49 states combined would need to produce nearly 73% more renewable electricity than currently planned for 2025. That means that instead of adding 66,300 gigawatt-hours of clean power to the grid this year as projected, they’d need to add 114,700 gigawatt-hours. It’s an ambitious target, but one that would help keep costs down for consumers and businesses.
The deflationary impact would hit in two ways: from direct reductions in electricity bills and from lower costs for goods and services.
First, on direct reductions: The Electric Reliability Council of Texas market, otherwise known as ERCOT, is projected to experience a 12% decrease in wholesale electricity prices from 2024 to 2025; the rest of the United States, meanwhile, is expected to see a 3% increase in retail electricity prices during the same period. This creates a 15% gap between Texas and the national average.
The average American household uses about 10,791 kilowatt-hours of electricity annually, which currently costs approximately $1,779 per year. With a projected 3% national increase, this would rise to $1,828 in 2025. If prices fell by 12% as in Texas, however, the cost would decrease to $1,571, resulting in a direct savings of about $258 per household.
Second, beyond direct savings: Our analysis found that electricity costs constitute about 2.4% of all business expenses in the economy. When businesses pay less for electricity, they typically pass about 70% of those savings to consumers through lower prices. This translates to an additional $183 in annual savings per household on everyday goods and services.
Combining these figures, the total benefit per household would be $441 annually. In terms of inflation, the direct effect on electricity bills contributes 0.34%, and the indirect effect through price decreases on other goods contributes 0.24%. Together, they account for a 0.58% reduction in inflation.
Far more than the U.S. would like to admit, its economy remains highly susceptible to oil shocks. Nearly every economic recession in the U.S. since the 1940s has been preceded by a large increase in the price of fossil fuels. Similarly, all but three oil shocks have been followed by a recession. And while the price of oil is low now, this doesn’t guarantee it will be in the future. When energy costs rise sharply — whether from conflicts, production cuts, or supply chain disruptions — the effects cascade through every sector of our economy.
Renewable energy serves as a powerful buffer against these inflationary pressures. That said, expanding renewable energy faces challenges. Some communities oppose projects such as wind and solar farms due to concerns about land use, aesthetics, and environmental impacts, leading to delays or cancellations. At the national level, the Trump administration is doing everything it can to hinder investment and slow the growth of renewable energy infrastructure. These obstacles can impede progress toward a more stable and affordable energy future — even in Texas.
There, Republican lawmakers have introduced a wave of legislation aimed at imposing new fees and regulatory hurdles on renewable energy projects, restricting further development, and mandating costly backup power requirements. These measures could raise wholesale electricity prices by 14%, according to an analysis by Aurora Energy Research. Just as the rest of America should be emulating Texas’ success, Texas is busy unraveling it to resemble the rest of America.
Still, there are several factors that can speed renewable deployment nationwide: streamlining permitting processes, developing competitive electricity markets, ensuring sufficient transmission infrastructure, and passing supportive regulatory frameworks. While geography will always affect which resources are viable, every region has significant untapped potential — from geothermal in the West to solar in the South.
No matter where you stand on decarbonization and the fight against climate change, we should pay attention to any idea that can fight inflation, put money back in Americans pockets, create jobs, make our energy more secure, and help the environment all at once. The Clean Energy Dividend may not solve everything—but it’s about as close to a win-win-win as we’re going to find.
Direct air capture isn’t doing everything its advocates promised — yet. That doesn’t make it a scam.
Two events last week thrust direct air capture carbon removal into the spotlight — one promising, though controversial for some, the other mendacious and ill-informed.
On Friday, Occidental announced a potential $500 million joint venture investment from Adnoc’s XRG, the lower-carbon investment wing for the United Arab Emirates state-run oil company in Oxy’s South Texas DAC Hub project. The facility is part of the $3.5 billion federal DAC hubs program created through the Infrastructure Investment and Jobs Act. Although the DAC hubs program has strong bipartisan support, it has faced relative uncertainty under the new administration, calling into question American leadership on the future of the industry.
Earlier in the week, Climeworks, another major DAC hubs award winner, announced a reduction in force, due in part to “pending clarity for our next plant in the U.S.” Coupled with this news, a sensationalized exposé by Icelandic news outlet Heimildin detailed challenges with the first two Climeworks facilities, including commentary that called both the company and the technology a “scam” and the “Theranos of the energy industry.”
DAC has never been entirely welcome among climate advocates. To a certain extent, its critics are right: The process of pulling carbon directly out of the ambient air and storing it permanently underground is both energy- and capital-intensive, and it has obvious utility for the oil and gas industry, which has seized on DAC’s potential to erase past emissions as a way to argue that the transition away from fossil energy isn’t actually necessary.
But these critics start to lose the thread when they call the technology a “fig leaf” for oil and gas or an “expensive, dangerous distraction,” and most egregiously when they point to the lack of actual carbon dioxide removed using the technology as an argument against future deployments.
There is a scientific consensus behind the need for carbon dioxide removal that these critiques dance around. As the United Nations Intergovernmental Panel on Climate Change lays out in its most recent scientific report, “CDR is required to limit warming to 1.5 [degrees Celsius],” and is “part of all modeled scenarios that limit warming to 2 [degrees] by 2100.” Even when critics recognize the need for permanent CDR, they frequently fail to provide any plausible pathway to gigaton scale. The fact is that DAC doesn’t have an established, liquid market, like electricity, steel, cement, or any other commodity. That any one DAC business is struggling as it attempts to scale is not an indictment of the company, but rather an illustration of the challenge it is taking on to commercialize a first-of-a-kind technologies that naturally has first-of-a-kind issues while also building a brand new market for the crucial climate service it provides. Don’t hate the player, hate the game.
The commercial model for the nascent CDR industry is largely the sale of carbon removal credits for delivery in future years. This isn’t unique to CDR — it’s even analogous to the power purchase agreements that scaled renewable energy. Futures contracts are standard practice, and certainly not indicative of a “scam.”
DAC’s high energy needs are frequently cited as a reason for concern among skeptics. As the Princeton Net Zero America study notes, however, the total energy needed to reduce emissions in a net-zero system without DAC increases because we would need more power to produce e-fuels. (Jesse Jenkins, one of the leaders of the Net Zero America study, is also a co-host of Heatmap’s Shift Key podcast.) This criticism also fails to take into account the reduction in energy intensity that companies are already achieving by various means. That group includes Climeworks, which has introduced more efficient sorbents; Heirloom, which is working on deploying passive mineralization; and Holocene, which was recently acquired by Oxy and employs the low regeneration temperature solvents.
The costs and efficiency of DAC today, just like the cost and efficiency of solar 20 years ago, are likely to improve significantly in the future as the technology and market become more efficient and reliable. Early DAC deployments may have a relatively high cost now, but even today, DAC is cost-competitive with emissions mitigation in aviation.
The industry currently stands at a precipice. Will DAC cross the chasm from pilot facilities to meaningful deployment? Or fall off the hype wagon into the dustbin of cool ideas that were always 10 years away? Beneath the innuendo and false claims, the reporting from Reykjavik shows what everyone in DAC knew — that it has a messy, non-linear path to scale. That does not disprove the argument that it is also a necessary technology that is not only valuable to remove emissions, but also is drawing billions in investment, and driving local economic development.
And there is plenty of good news. The XRG joint venture with Adnoc shows that a sophisticated strategic investor views American DAC as promising. (The local South Texas community is excited, too.) The Oxy Stratos facility in West Texas has already brought thousands of new construction jobs, and will bring hundreds of more permanent jobs to the heart of oil country — a new industry to make use of their unique and valuable skill sets. Project Bantam, a multi-modal operation that was the largest in the U.S. when it launched last summer, is operating in Oklahoma.
The Heimildin story was written to be a salacious takedown, and DAC opponents wasted no time in saying, “We told you so.” The issue with that reaction is the story isn’t unique to Climeworks, or even to DAC. The same story could have been written 20 years ago about solar and batteries. It could be written tomorrow about advanced geothermal or long-duration energy storage. It is the boring, mundane outcome of trying to build a difficult technology with the policy and business hand we are dealt.
The road to DAC at scale will be scattered with bumps, failed projects, and folded companies. We should be cheering these folks on, not taking shots from the cheap, increasingly warm seats.