Electric Vehicles
Increase EV Range with 1 Weird Trick
Those 21-inch rims — and America’s opulent car culture — are doing more harm than good.
Those 21-inch rims — and America’s opulent car culture — are doing more harm than good.
Earnings calls by rooftop solar companies reveal that the battery business is booming.
Thanks to the Supreme Court, it is a very difficult proposal to talk about.
People without air conditioning fare better during blackouts. Here’s why.
Inside California’s audacious plan to stash more than a trillion gallons of water underground
The world is slowly but surely running out of groundwater. A resource that for centuries has seemed unending is being lapped up faster than nature can replenish it.
“Globally speaking, there’s a groundwater crisis,” said Michael Kiparsky, director of the Wheeler Water Institute at UC Berkeley’s Center for Law, Energy, and the Environment. “We have treated groundwater as a free and limitless source of water in effect, even as we have learned that it’s not that.”
Aquifers are the porous, sponge-like bodies of rock underground that store groundwater; they can be tapped by wells and discharge naturally at springs or wetlands. Especially in places that have already been hard-hit by climate change, many aquifers have become so depleted that humans need to step in; the Arabian Aquifer in Saudi Arabia and the Murzuk-Djado Basin in North Africa, per a 2015 study, are particularly stressed and have little hope of recharging. In the U.S., aquifers are depleting fast from the Pacific Northwest to the Gulf, but drought-stricken California is the poster-child of both water stress and efforts to undo the damage.
In March, the state approved plans to actively replenish its groundwater after months of being inundated by unexpected levels of rainfall. While this move is not brand-new — the state’s Water Resources Control Board has been structuring water restrictions to encourage enhanced aquifer recharge since 2015 in the brief windows when California has water to spare — the scale of this year’s effort is unprecedented.
But just how will all that flood water get back underground? California’s approach, which promotes flooding certain fields and letting the water seep down slowly through soil and rocks to the aquifers below, represents just one potential technique. There are others, from injecting water straight into wells to developing pits and basins designed specifically for infiltration. It’s a plumbing challenge on an unprecedented scale.
The act of putting water back into aquifers has a number of unglamorous names — enhanced aquifer recharge, water banking, artificial groundwater recharge, and aquifer storage and recovery, among others — with some nuanced differences between them. But they all mean roughly the same thing: increasing the amount of water that infiltrates into the ground and ultimately into aquifers.
This can have the overall effect of smoothing the high peaks and deep valleys of water supply in places dealing with extreme weather fluctuations. The idea is to capture the extra water that floods during periods of intense rainfall, and bank it for use during droughts. (While aquifers can also be recharged using any old freshwater, water rights are so complicated in the West that floodwater often represents “the only surface water that’s not spoken for,” Thomas Harter, a groundwater hydrology professor at U.C. Davis, told local television outlet KCRA.)
Recharge has the potential added benefit of protecting groundwater from saltwater intrusion. As water is pumped from a coastal aquifer, water from the ocean can seep in to fill the empty space, potentially poisoning the well for future use for agriculture or drinking water. It’s a risk that will only get bigger as the climate warms and sea levels rise.
Get the best of Heatmap in your inbox every day:
According to the Environmental Protection Agency, aquifer recharge is most often used in places where groundwater demand is high and increasing even as supply remains limited. These tend to be places with lots of people and lots of farms; the San Joaquin Valley, which is the focus of California’s current plan, checks all of those boxes. Aquifers are the source of nearly 40% of water used by farms and cities in California, per the Public Policy Institute of California, and more in dry years. And, until 2023, most recent years have been dry.
In response to this year’s sudden reversal of California’s water fortunes, the state’s Water Board — which regulates water rights — allowed local contractors of the U.S. Bureau of Reclamation to move up to 600,000 acre-feet of water, or well over a trillion gallons, to places that normally would be off-limits this time of year. Those contractors, who are largely farmers and other major landowners, have until July 30 to take advantage.
“California is essentially the pilot project for how we want to do this in the future,” said Erik Ekdahl, deputy director for the Water Board’s water rights division. It won’t be until the end of the year that the state will know exactly how much water was successfully banked, but Ekdahl said anecdotally that some contractors have already taken steps to put the spare water underground.
This comes as California’s enormous snowpack begins to melt: a potential boon for the aquifers that could also mean problematic and dangerous floods for the communities downstream of the runoff.
How does enhanced aquifer recharge actually happen? It’s not as if the vast underground stretches of rock and sediment have faucets or even obvious holes leading to their watery depths. People aiming to reverse the centuries-long trend of drawing up water without actively replacing it have a range of artificial recharge options, which either speed along the natural seepage process or direct water straight to the aquifer below.
In the former cases, one option is to allow water to flood fields left fallow, a process known as “surface spreading,” as is beginning to happen in the San Joaquin Valley.
Heatmap Illustration/Getty Images
Water can also be directed to dedicated recharge basins and canals. In both cases, excess water is absorbed by fast-draining soil, which encourages it to pass below ground. Aside from the technical challenge of redirecting water from typical flood patterns, these approaches tend to be low-tech.
Heatmap Illustration/Getty Images
But in cases of aquifer depletion where those approaches are impractical — such as when the aquifer is under impermeable rock — injection wells represent a direct connection to the groundwater. These are either deep pits that drain into sedimentary layers above an underground drinking water source (like a traditional well functioning in reverse), or else webs of tubes and casing that blast water straight into the source.
Heatmap Illustration/Getty Images
Cities are also experimenting with aquifer recharge on a smaller scale. For urban stormwater, the EPA promotes certain “green infrastructure” approaches that mold the built environment to mimic natural hydrology. For instance, shallow channels lined with vegetation, known as bioswales, redirect stormwater while encouraging it to seep through the ground. Permeable pavement — in use in several Northeastern states — works much the same way. Meanwhile, rain gardens designed to prevent flooding have the added benefit of replenishing groundwater.
Determining when and where to use different approaches to aquifer recharge, though, can be unclear. We are still a long way from widespread or coordinated adoption of these techniques, but researchers are working on weighing their costs and benefits.
Supported by a $2 million EPA grant, Kiparsky is part of a U.C. Berkeley team looking at how to make California-esque recharge work on a national scale. , including by developing a cost-benefit tool for water managers. Some of the geochemical and physical considerations are relatively simple to measure: Is the soil in question porous? Are there gravel-filled “paleo valleys” that could allow water to rapidly seep to the aquifers below, as one 2022 study found?
More complicated, potentially immeasurable, but no less important are the legal and regulatory considerations around water rights. It is, as Kiparsky put it, one of the quintessential modern examples of the tragedy of the commons. Whether the government will be able to entice individuals to use their own little corner of Earth to fill an aquifer for the benefit of the many is an open question.
But Kiparsky is fairly optimistic that recharge will take hold in years where there is water to spare, as the West recognizes that future drought must be prepared for, especially when it’s raining.
“Is recharge going to become a bigger part of water management? I would say absolutely,” he said. “I’m not usually in the game of making predictions, but I would predict the answer is yes. When we can figure out how to do it.”
Get the best of Heatmap in your inbox every day:
I spoke to experts about why the nascent industry is nothing like other climate solutions.
Is hydrogen really that different from an electric vehicle or a heat pump?
This is the provocative question raised by a letter sent to the U.S. Treasury Department last week by a hydrogen industry group, the latest salvo in an ongoing debate over the rules for a new tax credit for clean hydrogen that was created by the Inflation Reduction Act.
I’ve been covering this debate since December, when the public comment period for the rules first closed, and it has only grown fiercer as everyone awaits the Department’s decision. Clean hydrogen is essential to reduce emissions from fertilizer production, and likely a number of other industries, such as aviation, shipping, and steelmaking. But climate advocates and clean energy experts warn that producing hydrogen using electricity, a method incentivized by the tax credit, could actually increase greenhouse gas emissions unless the electricity comes from new wind, solar, or other carbon-free generators.
Industry groups say the opposite is true. Last week’s letter, penned by the Fuel Cell & Hydrogen Energy Association argued that this so-called “additionality” rule would “stifle the clean hydrogen market by adding unreasonable costs and delays,” thereby hurting the United States’ climate goals. The letter was signed by more than 50 companies and organizations, including Plug Power, Constellation Energy, Baker Hughes, the Chamber of Commerce, and General Motors,
When the government hands out subsidies for electric vehicles and heat pumps, it doesn’t require recipients to erect solar arrays, the letter points out. “It would be arbitrary and unfounded to presume hydrogen to have any more detrimental impact to the efforts to decarbonize than any other electric load,” it says.
On the surface, the comparison is compelling. But when I ran it by proponents of additionality, the logic broke down very quickly. And it’s worth talking about why hydrogen plants are, for a number of reasons, nothing like those other climate solutions, because the answers get to the heart of some of the risks and trade-offs of scaling up this new industry.
The Inflation Reduction Act explicitly says that hydrogen companies must meet certain emission thresholds to qualify for the tax credit, taking into account the “lifecycle greenhouse gas emissions” of production. It does not say that for electric vehicles or heat pumps.
The law establishes a tiered system, where hydrogen producers can earn more money depending on how low their emissions are. But researchers like Jesse Jenkins, a macro-scale energy systems engineer at Princeton University, have calculated that without additionality, electrolysis, an electricity-intensive method of making clean hydrogen, will induce so much new carbon pollution that it won’t even meet the minimum threshold to qualify for the credit.
That’s because when you add demand to the grid without adding any new energy supply, it’s almost guaranteed to cause a natural gas or coal plant to run more. Those are the only power plants we have right now that are capable of increasing their output to meet demand — especially at times of day when wind and solar are not available.
If companies are allowed to sign contracts with existing wind farms or nuclear power plants to qualify for the tax credit, this would simply rearrange the paperwork about who “owns” these resources. It wouldn’t change the outcome in the real world, where more coal would be shoveled into a power plant, spewing more carbon into the atmosphere. Jenkins’ lab modeled the long-term effects on energy markets and found that coal and natural gas plants that might have otherwise closed could even be kept open longer because of the increased demand for power.
“The letter does not even attempt to argue that a lack of additionality would be compatible with the emissions thresholds established by the law,” he said in an email.
Jenkins added that the law references a section of the Clean Air Act which defines “lifecycle greenhouse gas emissions” as “including direct emissions and significant indirect emissions.” (Emphasis added by Jenkins.) “This is simply the letter of the law,” he said. “Take it up with Congress!”
There’s a good reason Congress made this distinction.
Yes, the new electric load from EV charging and heat pumps will also often be met by firing up more fossil fuel power plants in the near term. However, electric vehicles and heat pumps are so much more efficient than the combustion engines and natural gas furnaces they replace, that they almost always reduce emissions regardless of where the electricity comes from.
The Department of Energy estimates that in Wyoming, for example, where more than 75% of electricity comes from coal, an electric vehicle’s annual carbon footprint would be less than half that of a gas-powered vehicle. And homeowners who replace their gas furnaces with heat pumps would reduce their emissions in at least 46 states, according to a 2020 study by the clean energy research organization RMI.
Electrolysis, on the other hand, is not more efficient than the reformation of natural gas, which is the carbon-intensive way most hydrogen is made today. Jenkins and others estimate that hydrogen plants would produce twice as many emissions as that process if they just plug into the grid, without bringing any new, clean electricity online.
Additionality proponents argue that it would be a huge mistake to subsidize the production of a fuel that does not have lower emissions than what it replaces. “If that is the final outcome,” said Jenkins, “the hydrogen subsidy will go down in history as a costly policy disaster, and the whole concept of ‘green hydrogen’ will become a farce.”
Conceptually, producing hydrogen is totally different from buying an electric car. “An electrolyser is not an end use appliance like an EV or a heat pump – it’s an intermediate step in the energy supply chain,” said Morgan Rote, director of U.S. climate policy at the Environmental Defense Fund.
Reaching this intermediate step requires so much energy that the benefits of producing hydrogen depend as much on what we use it for as how it’s made. Rote said that using hydrogen as a fuel for home heating or road transportation would require three to seven times more energy than switching to heat pumps and EVs. Many climate advocates argue that it should be reserved for applications that can’t otherwise run directly on electricity.
Danny Cullenward, a climate economist and research fellow at American University, said concerns about how hydrogen is made and used are “all the more pronounced given the extremely generous subsidy levels” in the tax credit. “Basically, [the tax credit] points a giant funnel of money at a technology that has a critical role, but one that must be carefully tailored to produce short- and long-term benefits.”
Cullenward suggested another reason the government should hold hydrogen producers to a higher standard than EV and heat pump buyers when doling out subsidies: Because it can.
“It's not unreasonable or infeasible to ask projects at the $100 million or $1 billion scale to procure clean energy,” he said. “In contrast, it would be administratively infeasible to ask homeowners to procure clean energy.”
He pointed to a recent analysis by the nonprofit Energy Innovation, which found that subjecting hydrogen producers to tight standards, like an additionality requirement, would not result in “unreasonable costs and delays” as the industry claims. By contrast, the report found that the tax credit is so generous that even with stringent emissions accounting rules like additionality, projects in many parts of the country will be able to sell their hydrogen at or below $1 per kilogram, outcompeting conventional hydrogen.
There are a lot of uncertainties about what it will take to successfully scale up clean hydrogen in the U.S., and disagreement about what the biggest near-term priorities should be.
But one thing that is clear: Clean hydrogen is a unique climate solution with specific risks and tradeoffs that can’t be ignored.
© 2023 Heatmap News Inc. All Rights Reserved. Use of this site constitutes acceptance of our Terms of Service, Privacy Policy
(Your California Privacy Rights) and Do Not Sell My Personal Information.
Heatmap News Inc. may receive compensation for some links to products and services on this website. Offers may be subject to change without notice.