Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate

Why It’s So Hard to Predict a Climate Tipping Point

There’s disagreement about when the Atlantic Ocean current will collapse.

The ocean.
Heatmap Illustration/Getty Images, Nature Communications

For a while now, something weird has been happening in the Atlantic Ocean.

The ocean’s circulatory current, a system called the Atlantic Meridional Overturning Circulation, or AMOC, seems to be slowing down. Scientists have long worried that what used to be a steady exchange of warm and cold water between the tropics and the North Atlantic is being disrupted by cold freshwater from melting Arctic ice, and could even shut down entirely, sending Northern Europe into a deep freeze and causing even more extreme heat to hit tropical regions.

What scientists haven’t agreed on, however, is when the AMOC might stop, though the latest report from the Intergovernmental Panel on Climate Change, or IPCC, predicted it should hold out through the end of the century. A new study, published Tuesday in Nature Communications, says otherwise: the AMOC, its authors say, will reach its “tipping point” by the middle of this century, and could collapse sometime between 2025 and 2095. If it does, it would bring rapid changes to the world’s climate of a type that haven’t been seen in over 12,000 years.

“When we first got these results, we didn't believe them ourselves,” said Susanne Ditlevsen, a mathematician at the University of Copenhagen and co-author, with her brother Peter Ditlevsen, of the new paper. “We were thinking that there's something wrong in what we're doing because we got estimates that are so off compared to the IPCC.”

It’s a striking study, and it can make us feel like catastrophe is not only looming but irreversible. But in many ways, this study is a microcosm of the many challenges that come with trying to predict — and speak definitively about — how our planet will change in the future.

“I personally think it’s very hard to say [a shutdown] is going to happen in the next 50 years,” said Zhengyu Liu, atmospheric sciences director at the Ohio State University. “There are lots of uncertainties.”

The IPCC report’s prediction, which it issued with “medium confidence,” is based on climate models that use supercomputers to simulate the physical processes that will change as the climate changes. Looking at those models, we see a gradual weakening of the AMOC over time rather than a sudden tipping point that leads to a collapse. But it’s possible, Liu said, that those models may present a world that is a little too stable. The influx of freshwater from melting glaciers is difficult to account for, and it’s possible the models used by the IPCC are too conservative.

To sidestep the issue of uncertainty over freshwater inflows (and, similarly, to avoid having to model for how the world responds to climate change over the next century) the Ditlevsen study instead used statistical modeling based on historic temperature records to study how the ocean’s temperature has fluctuated over time. They then predicted how those fluctuations might become increasingly unstable in the future. The bigger those fluctuations become, Ditlevsen said, the closer the AMOC gets to total collapse, and those fluctuations have recently been growing ever larger.

Temperature is a useful fingerprint when studying the AMOC, Liu said, but it’s just one fingerprint of a system that has only really been studied in earnest since 2004, when a network of sensors began collecting data on everything from temperature to salinity to ocean pressure. It’s difficult to say, with such limited data, whether extrapolating from just one fingerprint alone can truly predict a tipping point for the AMOC.

The big question, said Tom Delworth, a senior scientist at NOAA’s Geophysical Fluid Dynamics Laboratory, is the physics of how such a tipping point would work.

“Our models generally aren't showing these tipping points, and they’re based on our best physical understanding of the system,” Delworth told me. “So my question would be: what is missing from the models?”

Still, Delworth and Liu said, the Ditlevsen study is compelling, and it’s one of the first to attempt to put a timeline on the collapse of the AMOC. It’s also, as these studies tend to be, yet another reminder of the urgent need to reduce our dependence on fossil fuels and dramatically cut down on emissions.

The study’s authors intend to run their analysis again in five years, when they will have more data and should be able to come to a stronger conclusion on when exactly the AMOC could collapse. “We could have said, okay, let’s wait five years to publish this because maybe we are wrong, but I think we have the obligation to actually publish it now, because we believe that it’s correct.” Ditlevsen told me.

“I hope we are wrong,” she continued. “I hope we are wrong.”

Neel Dhanesha

Neel is a founding staff writer at Heatmap. Prior to Heatmap, he was a science and climate reporter at Vox, an editorial fellow at Audubon magazine, and an assistant producer at Radiolab, where he helped produce The Other Latif, a series about one detainee's journey to Guantanamo Bay. He is a graduate of the Literary Reportage program at NYU, which helped him turn incoherent scribbles into readable stories, and he grew up (mostly) in Bangalore. He tweets sporadically at @neel_dhan. Read More

Read More
Climate

A Big Week for Batteries

Texas and California offered intriguing, opposing examples of what batteries can do for the grid.

A battery.
Heatmap Illustration/Getty Images

While cold winters in the south and hot summers across the country are the most dramatic times for electricity usage — with air conditioners blasting as weary workers return home or inefficient electric heaters strain to keep toes warm from Chattanooga to El Paso before the sun is up — it may be early spring that gives us the most insight into the lower-emitting grid of the future.

In California, America’s longtime leader in clean energy deployment, the combination of mild temperatures and longer days means that solar power can do most of the heavy lifting. And in Texas — whose uniquely isolated, market-based and permissive grid is fast becoming the source of much of the country’s clean power growth — regulators allow the state’s vast fleet of natural gas power (and some coal) power plants to shut down for maintenance during the mild weather, giving renewables time to shine.

Keep reading...Show less
Electric Vehicles

The Cybertruck Recall Is Different

Tesla has dealt with quality control issues before — but never with a robotaxi on the horizon.

The Tesla logo.
Heatmap Illustration/Getty Images

You have to give TikTok user el.chapito1985 credit for not panicking. In a video posted a few days ago, he explained how the cover on his Tesla Cybertruck accelerator pedal came loose and then wedged itself in just the right spot to leave the pedal stuck in floor-it position.

The poster said he managed to stop the truck by slamming the brake, which overrode the accelerator, and putting the vehicle in park. But his experience certainly explains Tesla’s newest predicament: It will recall all the Cybertrucks currently on the road to fix the sticky accelerator issue.

Keep reading...Show less
Blue
Offshore wind.
Heatmap Illustration/Getty Images

Things are looking down again for New York’s embattled offshore wind industry.

The state is abandoning all three of the offshore wind projects it awarded conditional contracts to last October, after failing to secure final agreements with any of the developers, Politico reported Friday.

Keep reading...Show less
Blue