You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Implementing the new rules could mean reshaping the entire U.S. energy system.

The most generous, lucrative, and all-around lavish subsidy in President Joe Biden’s climate law, the Inflation Reduction Act, is the new tax credit for clean hydrogen production. Under the policy, a company can get a bounty of up to $3 for each kilogram of hydrogen made with clean electricity that it produces and sells. There are few legal limits to what a company can earn.
So it figures, then, that this subsidy has been the subject of maybe the most acrimonious, dramatic, hair-tearing fight over the law so far, one that saw snoozy lobbyists and power plant operators take out Spotify spots and full-page New York Times ads in order to make their point.
On Friday, the first phase of that battle ended — and the side supported by most environmental groups claimed a provisional victory. The Biden administration proposed strict rules governing the tax credit, designed to ensure that only zero-carbon electricity meeting rigorous standards can be used to make subsidized hydrogen. The rules, which some industry groups allege could stunt the field in its infancy, will have far-reaching consequences not only for hydrogen itself, but for how America’s power grid prepares for an age of abundant, zero-carbon electricity. It will create a system for organizing clean electricity that could soon determine how companies, consumers, and the federal government buy and sell that electricity — even when it has nothing to do with hydrogen.
But all of that is in the future. Now, to get the highest value of the tax credit, companies must — like other subsidies in the law — demonstrate that they paid a prevailing wage and took advantage of local apprenticeship programs.
They also must demonstrate that they used clean, zero-carbon electricity to power their electrolyzers, the energy-hungry machines that pull hydrogen out of water or other molecules. And defining clean electricity has proven to be an enormous challenge. However the Biden administration chose to define it, someone was going to be left out — or let in.
Consider just one hypothetical. Pretend you own a fancy new electrolyzer. If you buy power for it from a wind farm that’s already hooked up to the grid, then another power plant will have to replace the electrons that you’re now using. That marginal electricity will probably have to come from a coal or natural gas power plant, meaning that it will need to burn extra fuel, meaning it will release extra carbon pollution. Does that mean that the electricity that you bought is actually clean? And if not, do you still get the tax credit?
Earlier this year, climate groups proposed that any clean electricity used to make hydrogen had to meet three requirements: It had to come from a truly new source of power on the grid; it had to generate power at the same time that it was used; and it had to be produced on essentially the same grid where it was used. The Biden administration largely adopted those requirements in Friday’s proposal. On a briefing call with reporters ahead of the rule's release, Deputy Secretary of the Treasury Wally Adeyemo was effusive about the new rule’s benefits. “We’ve developed a structure that will drive innovation and create good-paying jobs in this emerging industry while strengthening our energy security and reducing emissions in hard-to-transition sectors of the economy,” he said.
Not everyone feels that way. Senator Joe Manchin, who provided a key vote for the IRA, told Bloomberg that the draft is “horrible” and promised that “we are fighting it.”
“It doesn’t do anything the bill does. They basically made it 10 times more stringent for hydrogen,” he said. The trade group for the nuclear industry has also expressed its “disappointment,” arguing, more or less correctly, that the proposal “effectively eliminates all existing clean energy from qualifying” for the credit.
But debate about the proposal has not quite run on green vs. industry lines. Air Products, the world’s largest hydrogen producer, has backed the administration’s approach, as have half a dozen other hydrogen companies. So has Synergetic, a hydrogen developer that recently left the trade group the American Clean Power Association to protest its laxer stance. “Consumer groups are behind these rules, and environmental justice has also come out to express support,” Rachel Fakhry, a policy director at the Natural Resource Defense Council, told me.
The excessive focus on the hydrogen tax credit has been, in one sense, surprising. If you care most about cutting carbon pollution in the near-term, the hydrogen tax credit is unlikely to be the most important part of the IRA. Other policies — such as the clean electricity tax credit, which could add vast amounts of new wind and solar to the grid, or new subsidies for electric vehicles — will likely reduce greenhouse gas pollution by far more in the next decade.
But a clean hydrogen industry could soon be crucial to the climate fight. Hydrogen could eventually be used to fuel medium- and heavy-duty trucks, which are responsible for roughly a quarter of the country’s transportation emissions.
It could also decarbonize the production of steel, chemicals, and fertilizer, all of which require fossil fuels today. These are a looming climate problem: By the middle of this decade, heavy industry will pollute the climate more than any other sector of the American economy, according to the Rhodium Group, an independent research firm.
Yet this does not explain why the hydrogen tax credit attracted so much attention. It became a big fight, in short, because it stood the biggest chance of backfiring. Because the tax credit is so generous, incentivizing hydrogen companies to use more and more power, it risked gobbling up too much electricity and distorting the country’s power markets. In the disaster-movie scenario, the tax credit could wind up like the federal government’s ethanol subsidies, which have cost billions while doing nothing to help the climate.
The hydrogen tax credit “has been the most challenging piece of policy that we’ve had to contend with,” John Podesta, the White House adviser in charge of implementing the IRA, told me on the sidelines of COP28 in Dubai earlier this month.
He described the administration as balancing between two extremes. On the one hand, overly strict rules could cause companies to invest more in so-called “blue hydrogen,” which is produced by separating natural gas and capturing the resulting carbon. Yet overly loose rules could cause emissions to balloon and power prices to soar.
“We could kind of blow it in either direction, I think,” he said.
This hasn’t always been seen as a problem. Since the IRA passed last year, the clean hydrogen tax credit has stood out for its extreme generosity, which goes far beyond what is contemplated by other tax credits in the law.
Once the Treasury Department decides that a hydrogen project qualifies for the tax credit, for instance, then that project can receive credits for the next 10 years. For five of those years, it can even get that money as a direct payment from the government, rather than as a tax cut. What’s more, projects can qualify for the tax credit as long as they begin construction by 2033. That means the tax credit will still be used well into the 2040s, even if Congress does not extend it.
Almost no other policy in the law spends federal dollars so lavishly or directly. Manchin, who negotiated the final text of the IRA with Senate Majority Leader Chuck Schumer, has long championed the hydrogen industry and seen it as a way to use fossil-fuel assets, such as pipelines, in the energy transition.
Soon after the IRA passed, however, climate advocates realized that this generosity could pose risks to the rest of the law. In the summer of 2022, Wilson Ricks, an engineering Ph.D. student at Princeton, was interning for the Department of Energy, studying how to measure the climate impact of hydrogen produced by electrolysis.
Ricks had already concluded that the “lifecycle” of the electricity used to make hydrogen mattered: If electricity from a nuclear power plant was sent to an electrolyzer instead of the power grid, thereby forcing a natural-gas plant to turn on and send power to the grid instead, then so-called “clean hydrogen” could actually result in more climate pollution than the traditional approach of using natural gas to make hydrogen.
Then the IRA passed, and “potentially hundreds of billions of dollars hinged on that question,” he told me. In January, Ricks and his colleagues at Princeton’s ZERO Lab published a study urging the Biden administration to adopt stringent guidelines for the tax credit. Without hourly matching, they concluded, the subsidy could wreak havoc in the country’s electricity markets.
Ricks wasn’t the only expert suddenly worried about what a giant new hydrogen subsidy could do to electricity markets. Nearly a year earlier, Taylor Sloane, an energy developer for the utility and power company AES, virtually predicted the hydrogen fight in a Medium post.
“The reason it matters that we get these rules right is that we don’t want to have an environmental backlash against green hydrogen in a few years demonstrating how it actually increases emissions,” he wrote. “Getting the rules right from the start will ensure more stable long-term growth of green hydrogen.”
Ultimately, the administration decided that nearly all clean electricity used to produce hydrogen must meet three requirements — largely inherited from the climate groups’ proposals. They also mirror hydrogen regulations already adopted in the European Union.
First, the electricity must come from a relatively new source of zero-carbon power, such as a wind or nuclear plant: You can’t use electrons that once would have powered homes or cars to power an electrolyzer.
Second, the electricity must be produced at roughly the same time that it is used to make hydrogen: You can’t buy cheap solar power at noon and claim that you’re using it to make hydrogen at midnight.
Finally, the electricity must have been made on the same power grid that the electrolyzer itself is using: You can’t buy wind power in Iowa and claim that you’re using it to make hydrogen in Massachusetts.
Today, no power company in the country has a way of certifying that its electricity meets all three requirements of the new hydrogen rule — and none has any way of selling it, either. So the rules also require local power grids to set up and sell “energy attribute certificates,” or EACs, which certify that a given kilowatt-hour of electricity was produced on a certain grid, at a certain time, and using a certain source of clean energy.
Utilities and grid managers have until 2028 to launch this new system; until then, hydrogen companies can keep using the existing system of renewable energy credits, or RECs, which certify only that zero-carbon electricity was generated during a certain year.
Although this new system of EACs may sound like so much bureaucratic legerdemain, it could eventually become more important than the hydrogen tax credit itself, because it could all but reshape how the country’s electricity systems work.
Right now, even though the availability of clean energy rises and falls throughout the day — solar panels make more power at noon than at midnight, for instance — there is no way to buy or sell claims to that power. By creating a systematic way to describe and sell an hour of clean electricity, EACs could actually create a market for 24/7 clean electricity.
The existence of that system could alter corporate sustainability pledges, climate-friendly government orders, and even how companies measure their own progress toward meeting their Paris Agreement goals. Even though hundreds of American companies say that they buy their electricity from zero-carbon sources, only Google, Microsoft, and a few other companies have committed to buying 24/7 clean electricity.
“I know the administration faced absurd amounts of pressure given how lucrative this is,” Ricks told me. “But it seems like they pretty much held firm and went with the science.”
That said, the proposal kicks two issues down the road. It asks companies whether it should allow any exceptions to the general rule requiring that clean electricity come from clean sources. Some nuclear power plant operators, for instance, have argued that electricity from a nuclear plant should count toward the credit if the plant would otherwise be slated to shut down.
That decision could shape other administration priorities. Two of the government’s seven proposed “hydrogen hubs,” new industrial facilities funded by the bipartisan infrastructure law, are planning to use nuclear power to generate clean hydrogen. Under the current rules, these hubs may not qualify for the generous hydrogen tax credit, even though they could still earn billions in other subsidies.
The proposal also asks for advice about how to count so-called renewable natural gas, which is captured methane released from cows or landfills. Some environmentalists worry that the rules for this technology, if poorly drafted, could allow companies to engage in aggressive carbon accounting that does not align with reality. But so far, the Biden administration seems to have little appetite for that approach.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The Trump administration has started to weaken the rules requiring cars and trucks to get more fuel-efficient every year,
In a press event on Wednesday in the Oval Office, flanked by advisors and some of the country’s top auto executives, President Trump declared that the old rules “forced automakers to build cars using expensive technologies that drove up costs, drove up prices, and made the car much worse.”
He said that the rules were part of the “green new scam” and that ditching them would save consumers some $1,000 every year. That framed the rollback as part of the president’s seeming pivot to affordability, which has happened since Democrats trounced Republicans in the November off-cycle elections.
That pivot remains belated and at least a little half-hearted: On Wednesday, Trump made no mention of dropping the auto tariffs that are raising imported car prices by perhaps $5,000 per vehicle, according to Cox Automotive. Ditching the fuel economy rules, too, could increase demand for gasoline and thus raise prices at the pump — although they remain fairly low right now, with the national average below $3 a gallon.
What’s more interesting — and worrying — is that the rules fit into the administration’s broader war on innovation in the American car and light-duty truck sector. The United States essentially has two ways to regulate pollution from cars and light trucks: It can limit greenhouse gas emissions from new cars and trucks, and it can require the fuel economy from new vehicles to get a little better every year.
Trump is pulling screws and wires out of both of these systems. In the first category, he’s begun to unwind the Environmental Protection Agency’s limits on carbon pollution from cars and light duty trucks, which he termed an “EV mandate.” (The Biden-era rules sought to require about half of new car sales be electric by 2030, although hybrids could help meet that standard.) Trump is also trying to keep the EPA from ever regulating anything to do with carbon pollution again by going after the agency’s “Endangerment Finding” — a scientific assessment that greenhouse gases are dangerous to human wellbeing.
That’s only half of the president’s war on air pollution rules, though. Since the oil crises of the 1970s, the National Highway Traffic Safety Administration has regulated fuel economy for new vehicles under the Corporate Average Fuel Economy, or CAFE, standards. When these rules are binding, the agency can require new cars and trucks sold in the U.S. to get a little more fuel-efficient every year. The idea is that these rules help limit the country’s gasoline consumption, thus keeping a lid on oil prices and letting the whole economy run more efficiently.
President Trump’s signature tax law, the One Big Beautiful Bill Act, already eliminated the fines that automakers have to pay when they fail to meet the standard. That change, pushed by Senator Ted Cruz of Texas, effectively rendered the regulation toothless. But now Trump is weakening the rules just for good measure. (At the press conference on Wednesday, Cruz stood behind the president — and next to Jim Farley, the CEO of Ford.)
Under the new Trump proposal, automakers would need to achieve only an average of 34.5 miles per gallon in 2031. Under Biden’s proposal, they needed to hit 50 miles per gallon that year.
Those numbers, I should add, are somewhat deceptive — because of how CAFE standards are calculated, the headline number is 20% to 30% stricter than a real-world fuel economy number. In essence, that means the new Trump era rules will come out to a real-world mile-per-gallon number in the mid-to-high 20s. That will give automakers ample regulatory room to sell more inefficient and gas-guzzling sport utility vehicles and pickups, which remain more profitable than electric vehicles.
Which is not ideal for air pollution or the energy transition. But the real risk for the American automaking industry is not that Ford might churn out a few extra Escapes over the next several years. It’s that the Trump proposal would eliminate the ability for automakers to trade compliance credits to meet the rules. These credit markets — which allow manufacturers of gas guzzlers to redeem themselves by buying credits generated by cleaner cars — have been a valuable revenue source for new vehicle companies like Tesla, Lucid, and Rivian. The Trump proposal would cut off that revenue — and with it, one of the few remaining ways that automakers are cross-subsidizing EV innovation in the United States.
During his campaign, President Trump said that he wanted the “cleanest air.” That promise is looking as incorrect as his pledge to cut electricity costs in half within a year.
How will America’s largest grid deal with the influx of electricity demand? It has until the end of the year to figure things out.
As America’s largest electricity market was deliberating over how to reform the interconnection of data centers, its independent market monitor threw a regulatory grenade into the mix. Just before the Thanksgiving holiday, the monitor filed a complaint with federal regulators saying that PJM Interconnection, which spans from Washington, D.C. to Ohio, should simply stop connecting new large data centers that it doesn’t have the capacity to serve reliably.
The complaint is just the latest development in a months-long debate involving the electricity market, power producers, utilities, elected officials, environmental activists, and consumer advocates over how to connect the deluge data centers in PJM’s 13-state territory without further increasing consumer electricity prices.
The system has been pushed into crisis by skyrocketing capacity auction prices, in which generators get paid to ensure they’re available when demand spikes. Those capacity auction prices have been fueled by high-octane demand projections, with PJM’s summer peak forecasted to jump from 154 gigawatts to 210 gigawatts in a decade. The 2034-35 forecast jumped 17% in just a year.
Over the past two two capacity auctions, actual and forecast data center growth has been responsible for over $16.6 billion in new costs, according to PJM’s independent market monitor; by contrast, the previous year’s auction generated a mere $2.2 billion. This has translated directly to higher retail electricity prices, including 20% increases in some parts of PJM’s territory, like New Jersey. It has also generated concerns about reliability of the whole system.
PJM wants to reform how data centers interconnect before the next capacity auction in June, but its members committee was unable to come to an agreement on a recommendation to PJM’s board during a November meeting. There were a dozen proposals, including one from the monitor; like all the others, it failed to garner the necessary two-thirds majority vote to be adopted formally.
So the monitor took its ideas straight to the top.
The market monitor’s complaint to the Federal Energy Regulatory Commission tracks closely with its plan at the November meeting. “PJM is currently proposing to allow the interconnection of large new data center loads that it cannot serve reliably and that will require load curtailments (black outs) of the data centers or of other customers at times. That result is not consistent with the basic responsibility of PJM to maintain a reliable grid and is therefore not just and reasonable,” the filing said. “Interconnecting large new data center loads when adequate capacity is not available is not providing reliable service.”
A PJM spokesperson told me, “We are still reviewing the complaint and will reserve comment at this time.”
But can its board still get a plan to FERC and avoid another blowout capacity auction?
“PJM is going to make a filing in December, no matter what. They have to get these rules in place to get to that next capacity auction in June,” Jon Gordon, policy director at Advanced Energy United, told me. “That’s what this has been about from the get-go. Nothing is going to stop PJM from filling something.”
The PJM spokesperson confirmed to me that “the board intends to act on large load additions to the system and is expected to provide an indication of its next steps over the next few weeks.” But especially after the membership’s failure to make a unified recommendation, what that proposal will be remains unclear. That has been a source of agita for the organizations’ many stakeholders.
“The absence of an affirmative advisory recommendation from the Members Committee creates uncertainty as to what reforms PJM’s Board of Managers may submit to the Federal Energy Regulatory Commission (FERC), and when stakeholders can expect that submission,” analysts at ClearView Energy Partners wrote in a note to clients. In spite of PJM’s commitments, they warned that the process could “slip into January,” which would give FERC just enough time to process the submission before the next capacity auction.
One idea did attract a majority vote from PJM’s membership: Southern Maryland Electric Cooperative’s, which largely echoed the PJM board’s own plan with some amendments. That suggestion called for a “Price Responsive Demand” system, in which electricity customers would agree to reduce their usage when wholesale prices spike. The system would be voluntary, unlike an earlier PJM proposal, which foresaw forcing large customers to curtail their power. “The load elects to not take on a capacity obligation, therefore does not pay for capacity, and is required to reduce demand during stressed system conditions,” PJM explained in an update. The Southern Maryland plan tweaks the PRD system to adjust its pricing mechanism. but largely aligns with what PJM’s staff put forward.
“There’s almost no real difference between the PJM proposal and that Southern Maryland proposal,” Gordon told me.
That might please restive stakeholders, or at least be something PJM’s board could go forward with knowing that the balance of its voting membership agreed with something similar.
“We maintain our view that a final proposal could resemble the proposed solution package from PJM staff,” the ClearView note said. “We also think the Board could propose reforms to PJM’s PRD program. Indeed, as noted above, SMECO’s revisions to the service gained majority support.”
The PJM plan also included relatively uncontroversial reforms to load forecasting to cut down on duplicated requests and better share information, and an “expedited interconnection track” on which new, large-scale generation could be fast-tracked if it were signed off on by a state government “to expedite consideration of permitting and siting.”
Gordon said that the market monitor’s complaint could be read as the organization “desperately trying to get FERC to weigh in” on its side, even if PJM is more likely to go with something like its own staff-authored submission.
“The key aspect of the market monitor’s proposal was that PJM should not allow a data center to interconnect until there was enough generation to supply them,” Gordon explained. During the meeting preceding the vote, “PJM said they didn’t think they had the authority to deny someone interconnection.”
This dispute over whether the electricity system has an obligation to serve all customers has been the existential question making the debate about how to serve data centers extra angsty.
But PJM looks to be trying to sidestep that big question and nibble around the edges of reform.
“Everybody is really conflicted here,” Gordon told me. “They’re all about protecting consumers. They don’t want to see any more increases, obviously, and they want to keep the lights on. Of course, they also want data center developers in their states. It’s really hard to have all three.”
Atomic Canyon is set to announce the deal with the International Atomic Energy Agency.
Two years ago, Trey Lauderdale asked not what nuclear power could do for artificial intelligence, but what artificial intelligence could do for nuclear power.
The value of atomic power stations to provide the constant, zero-carbon electricity many data centers demand was well understood. What large language models could do to make building and operating reactors easier was less obvious. His startup, Atomic Canyon, made a first attempt at answering that by creating a program that could make the mountains of paper documents at the Diablo Canyon nuclear plant, California’s only remaining station, searchable. But Lauderdale was thinking bigger.
In September, Atomic Canyon inked a deal with the Idaho National Laboratory to start devising industry standards to test the capacity of AI software for nuclear projects, in much the same way each update to ChatGPT or Perplexity is benchmarked by the program’s ability to complete bar exams or medical tests. Now, the company’s effort is going global.
On Wednesday, Atomic Canyon is set to announce a partnership with the United Nations International Atomic Energy Agency to begin cataloging the United Nations nuclear watchdog’s data and laying the groundwork for global standards of how AI software can be used in the industry.
“We’re going to start building proof of concepts and models together, and we’re going to build a framework of what the opportunities and use cases are for AI,” Lauderdale, Atomic Canyon’s chief executive, told me on a call from his hotel room in Vienna, Austria, where the IAEA is headquartered.
The memorandum of understanding between the company and the UN agency is at an early stage, so it’s as yet unclear what international standards or guidelines could look like.
In the U.S., Atomic Canyon began making inroads earlier this year with a project backed by the Institute of Nuclear Power Operators, the Nuclear Energy Institute, and the Electric Power Research Institute to create a virtual assistant for nuclear workers.
Atomic Canyon isn’t the only company applying AI to nuclear power. Last month, nuclear giant Westinghouse unveiled new software it’s designing with Google to calculate ways to bring down the cost of key components in reactors by millions of dollars. The Nuclear Company, a startup developer that’s aiming to build fleets of reactors based on existing designs, announced a deal with the software behemoth Palantir to craft the software equivalent of what the companies described as an “Iron Man suit,” able to swiftly pull up regulatory and blueprint details for the engineers tasked with building new atomic power stations.
Lauderdale doesn’t see that as competition.
“All of that, I view as complementary,” he said.
“There is so much wood to chop in the nuclear power space, the amount of work from an administrative perspective regarding every inch of the nuclear supply chain, from how we design reactors to how we license reactors, how we regulate to how we do environmental reviews, how we construct them to how we maintain,” he added. “Every aspect of the nuclear power life cycle is going to be transformed. There’s no way one company alone could come in and say, we have a magical approach. We’re going to need multiple players.”
That Atomic Canyon is making inroads at the IAEA has the potential to significantly broaden the company’s reach. Unlike other energy sources, nuclear power is uniquely subject to international oversight as part of global efforts to prevent civilian atomic energy from bleeding over into weapons production.
The IAEA’s bylaws award particular agenda-setting powers to whatever country has the largest fleet of nuclear reactors. In the nearly seven decades since the agency’s founding, that nation has been the U.S. As such, the 30 other countries with nuclear power have largely aligned their regulations and approaches to the ones standardized in Washington. When the U.S. artificially capped the enrichment levels of traditional reactor fuel at 5%, for example, the rest of the world followed.
That could soon change, however, as China’s breakneck deployment of new reactors looks poised to vault the country ahead of the U.S. sometime in the next decade. It wouldn’t just be a symbolic milestone. China’s emergence as the world’s preeminent nuclear-powered nation would likely come with Beijing’s increased influence over other countries’ atomic energy programs. As it is, China is preparing to start exporting its reactors overseas.
The role electricity demand from the data centers powering the AI boom has played in spurring calls for new reactors is undeniable. But if AI turns out to have as big an impact on nuclear operations as Lauderdale predicts, an American company helping to establish the global guidelines could help cement U.S. influence over a potentially major new factor in how the industry works for years, if not decades to come.