You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
There’s disagreement about when the Atlantic Ocean current will collapse.
For a while now, something weird has been happening in the Atlantic Ocean.
The ocean’s circulatory current, a system called the Atlantic Meridional Overturning Circulation, or AMOC, seems to be slowing down. Scientists have long worried that what used to be a steady exchange of warm and cold water between the tropics and the North Atlantic is being disrupted by cold freshwater from melting Arctic ice, and could even shut down entirely, sending Northern Europe into a deep freeze and causing even more extreme heat to hit tropical regions.
What scientists haven’t agreed on, however, is when the AMOC might stop, though the latest report from the Intergovernmental Panel on Climate Change, or IPCC, predicted it should hold out through the end of the century. A new study, published Tuesday in Nature Communications, says otherwise: the AMOC, its authors say, will reach its “tipping point” by the middle of this century, and could collapse sometime between 2025 and 2095. If it does, it would bring rapid changes to the world’s climate of a type that haven’t been seen in over 12,000 years.
“When we first got these results, we didn't believe them ourselves,” said Susanne Ditlevsen, a mathematician at the University of Copenhagen and co-author, with her brother Peter Ditlevsen, of the new paper. “We were thinking that there's something wrong in what we're doing because we got estimates that are so off compared to the IPCC.”
It’s a striking study, and it can make us feel like catastrophe is not only looming but irreversible. But in many ways, this study is a microcosm of the many challenges that come with trying to predict — and speak definitively about — how our planet will change in the future.
“I personally think it’s very hard to say [a shutdown] is going to happen in the next 50 years,” said Zhengyu Liu, atmospheric sciences director at the Ohio State University. “There are lots of uncertainties.”
The IPCC report’s prediction, which it issued with “medium confidence,” is based on climate models that use supercomputers to simulate the physical processes that will change as the climate changes. Looking at those models, we see a gradual weakening of the AMOC over time rather than a sudden tipping point that leads to a collapse. But it’s possible, Liu said, that those models may present a world that is a little too stable. The influx of freshwater from melting glaciers is difficult to account for, and it’s possible the models used by the IPCC are too conservative.
To sidestep the issue of uncertainty over freshwater inflows (and, similarly, to avoid having to model for how the world responds to climate change over the next century) the Ditlevsen study instead used statistical modeling based on historic temperature records to study how the ocean’s temperature has fluctuated over time. They then predicted how those fluctuations might become increasingly unstable in the future. The bigger those fluctuations become, Ditlevsen said, the closer the AMOC gets to total collapse, and those fluctuations have recently been growing ever larger.
Temperature is a useful fingerprint when studying the AMOC, Liu said, but it’s just one fingerprint of a system that has only really been studied in earnest since 2004, when a network of sensors began collecting data on everything from temperature to salinity to ocean pressure. It’s difficult to say, with such limited data, whether extrapolating from just one fingerprint alone can truly predict a tipping point for the AMOC.
The big question, said Tom Delworth, a senior scientist at NOAA’s Geophysical Fluid Dynamics Laboratory, is the physics of how such a tipping point would work.
“Our models generally aren't showing these tipping points, and they’re based on our best physical understanding of the system,” Delworth told me. “So my question would be: what is missing from the models?”
Still, Delworth and Liu said, the Ditlevsen study is compelling, and it’s one of the first to attempt to put a timeline on the collapse of the AMOC. It’s also, as these studies tend to be, yet another reminder of the urgent need to reduce our dependence on fossil fuels and dramatically cut down on emissions.
The study’s authors intend to run their analysis again in five years, when they will have more data and should be able to come to a stronger conclusion on when exactly the AMOC could collapse. “We could have said, okay, let’s wait five years to publish this because maybe we are wrong, but I think we have the obligation to actually publish it now, because we believe that it’s correct.” Ditlevsen told me.
“I hope we are wrong,” she continued. “I hope we are wrong.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Inside a wild race sparked by a solar farm in Knox County, Ohio.
The most important climate election you’ve never heard of? Your local county commissioner.
County commissioners are usually the most powerful governing individuals in a county government. As officials closer to community-level planning than, say a sitting senator, commissioners wind up on the frontlines of grassroots opposition to renewables. And increasingly, property owners that may be personally impacted by solar or wind farms in their backyards are gunning for county commissioner positions on explicitly anti-development platforms.
Take the case of newly-elected Ohio county commissioner – and Christian social media lifestyle influencer – Drenda Keesee.
In March, Keesee beat fellow Republican Thom Collier in a primary to become a GOP nominee for a commissioner seat in Knox County, Ohio. Knox, a ruby red area with very few Democratic voters, is one of the hottest battlegrounds in the war over solar energy on prime farmland and one of the riskiest counties in the country for developers, according to Heatmap Pro’s database. But Collier had expressed openness to allowing new solar to be built on a case-by-case basis, while Keesee ran on a platform focused almost exclusively on blocking solar development. Collier ultimately placed third in the primary, behind Keesee and another anti-solar candidate placing second.
Fighting solar is a personal issue for Keesee (pronounced keh-see, like “messy”). She has aggressively fought Frasier Solar – a 120 megawatt solar project in the country proposed by Open Road Renewables – getting involved in organizing against the project and regularly attending state regulator hearings. Filings she submitted to the Ohio Power Siting Board state she owns a property at least somewhat adjacent to the proposed solar farm. Based on the sheer volume of those filings this is clearly her passion project – alongside preaching and comparing gay people to Hitler.
Yesterday I spoke to Collier who told me the Frasier Solar project motivated Keesee’s candidacy. He remembered first encountering her at a community meeting – “she verbally accosted me” – and that she “decided she’d run against me because [the solar farm] was going to be next to her house.” In his view, he lost the race because excitement and money combined to produce high anti-solar turnout in a kind of local government primary that ordinarily has low campaign spending and is quite quiet. Some of that funding and activity has been well documented.
“She did it right: tons of ground troops, people from her church, people she’s close with went door-to-door, and they put out lots of propaganda. She got them stirred up that we were going to take all the farmland and turn it into solar,” he said.
Collier’s takeaway from the race was that local commissioner races are particularly vulnerable to the sorts of disinformation, campaign spending and political attacks we’re used to seeing more often in races for higher offices at the state and federal level.
“Unfortunately it has become this,” he bemoaned, “fueled by people who have little to no knowledge of what we do or how we do it. If you stir up enough stuff and you cry out loud enough and put up enough misinformation, people will start to believe it.”
Races like these are happening elsewhere in Ohio and in other states like Georgia, where opposition to a battery plant mobilized Republican primaries. As the climate world digests the federal election results and tries to work backwards from there, perhaps at least some attention will refocus on local campaigns like these.
And more of the week’s most important conflicts around renewable energy.
1. Madison County, Missouri – A giant battery material recycling plant owned by Critical Mineral Recovery exploded and became engulfed in flames last week, creating a potential Vineyard Wind-level PR headache for energy storage.
2. Benton County, Washington State – Governor Jay Inslee finally got state approvals finished for Scout Clean Energy’s massive Horse Heaven wind farm after a prolonged battle over project siting, cultural heritage management, and bird habitat.
3. Fulton County, Georgia – A large NextEra battery storage facility outside of Atlanta is facing a lawsuit that commingles usual conflicts over building these properties with environmental justice concerns, I’ve learned.
Here’s what else I’m watching…
In Colorado, Weld County commissioners approved part of one of the largest solar projects in the nation proposed by Balanced Rock Power.
In New Mexico, a large solar farm in Sandoval County proposed by a subsidiary of U.S. PCR Investments on land typically used for cattle is facing consternation.
In Pennsylvania, Schuylkill County commissioners are thinking about new solar zoning restrictions.
In Kentucky, Lost City Renewables is still wrestling with local concerns surrounding a 1,300-acre solar farm in rural Muhlenberg County.
In Minnesota, Ranger Power’s Gopher State solar project is starting to go through the public hearing process.
In Texas, Trina Solar – a company media reports have linked to China – announced it sold a large battery plant the day after the election. It was acquired by Norwegian company FREYR.What happened this week in climate and energy policy, beyond the federal election results.
1. It’s the election, stupid – We don’t need to retread who won the presidential election this week (or what it means for the Inflation Reduction Act). But there were also big local control votes worth watching closely.
2. Michigan lawsuit watch – Michigan has a serious lawsuit brewing over its law taking some control of renewable energy siting decisions away from municipalities.