Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate

Why It’s So Hard to Predict a Climate Tipping Point

There’s disagreement about when the Atlantic Ocean current will collapse.

The ocean.
Heatmap Illustration/Getty Images, Nature Communications

For a while now, something weird has been happening in the Atlantic Ocean.

The ocean’s circulatory current, a system called the Atlantic Meridional Overturning Circulation, or AMOC, seems to be slowing down. Scientists have long worried that what used to be a steady exchange of warm and cold water between the tropics and the North Atlantic is being disrupted by cold freshwater from melting Arctic ice, and could even shut down entirely, sending Northern Europe into a deep freeze and causing even more extreme heat to hit tropical regions.

What scientists haven’t agreed on, however, is when the AMOC might stop, though the latest report from the Intergovernmental Panel on Climate Change, or IPCC, predicted it should hold out through the end of the century. A new study, published Tuesday in Nature Communications, says otherwise: the AMOC, its authors say, will reach its “tipping point” by the middle of this century, and could collapse sometime between 2025 and 2095. If it does, it would bring rapid changes to the world’s climate of a type that haven’t been seen in over 12,000 years.

“When we first got these results, we didn't believe them ourselves,” said Susanne Ditlevsen, a mathematician at the University of Copenhagen and co-author, with her brother Peter Ditlevsen, of the new paper. “We were thinking that there's something wrong in what we're doing because we got estimates that are so off compared to the IPCC.”

It’s a striking study, and it can make us feel like catastrophe is not only looming but irreversible. But in many ways, this study is a microcosm of the many challenges that come with trying to predict — and speak definitively about — how our planet will change in the future.

“I personally think it’s very hard to say [a shutdown] is going to happen in the next 50 years,” said Zhengyu Liu, atmospheric sciences director at the Ohio State University. “There are lots of uncertainties.”

The IPCC report’s prediction, which it issued with “medium confidence,” is based on climate models that use supercomputers to simulate the physical processes that will change as the climate changes. Looking at those models, we see a gradual weakening of the AMOC over time rather than a sudden tipping point that leads to a collapse. But it’s possible, Liu said, that those models may present a world that is a little too stable. The influx of freshwater from melting glaciers is difficult to account for, and it’s possible the models used by the IPCC are too conservative.

To sidestep the issue of uncertainty over freshwater inflows (and, similarly, to avoid having to model for how the world responds to climate change over the next century) the Ditlevsen study instead used statistical modeling based on historic temperature records to study how the ocean’s temperature has fluctuated over time. They then predicted how those fluctuations might become increasingly unstable in the future. The bigger those fluctuations become, Ditlevsen said, the closer the AMOC gets to total collapse, and those fluctuations have recently been growing ever larger.

Temperature is a useful fingerprint when studying the AMOC, Liu said, but it’s just one fingerprint of a system that has only really been studied in earnest since 2004, when a network of sensors began collecting data on everything from temperature to salinity to ocean pressure. It’s difficult to say, with such limited data, whether extrapolating from just one fingerprint alone can truly predict a tipping point for the AMOC.

The big question, said Tom Delworth, a senior scientist at NOAA’s Geophysical Fluid Dynamics Laboratory, is the physics of how such a tipping point would work.

“Our models generally aren't showing these tipping points, and they’re based on our best physical understanding of the system,” Delworth told me. “So my question would be: what is missing from the models?”

Still, Delworth and Liu said, the Ditlevsen study is compelling, and it’s one of the first to attempt to put a timeline on the collapse of the AMOC. It’s also, as these studies tend to be, yet another reminder of the urgent need to reduce our dependence on fossil fuels and dramatically cut down on emissions.

The study’s authors intend to run their analysis again in five years, when they will have more data and should be able to come to a stronger conclusion on when exactly the AMOC could collapse. “We could have said, okay, let’s wait five years to publish this because maybe we are wrong, but I think we have the obligation to actually publish it now, because we believe that it’s correct.” Ditlevsen told me.

“I hope we are wrong,” she continued. “I hope we are wrong.”

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Spotlight

How a Giant Solar Farm Flopped in Rural Texas

Amarillo-area residents successfully beat back a $600 million project from Xcel Energy that would have provided useful tax revenue.

Texas and solar panels.
Heatmap Illustration/Getty Images

Power giant Xcel Energy just suffered a major public relations flap in the Texas Panhandle, scrubbing plans for a solar project amidst harsh backlash from local residents.

On Friday, Xcel Energy withdrew plans to build a $600 million solar project right outside of Rolling Hills, a small, relatively isolated residential neighborhood just north of the city of Amarillo, Texas. The project was part of several solar farms it had proposed to the Texas Public Utilities Commission to meet the load growth created by the state’s AI data center boom. As we’ve covered in The Fight, Texas should’ve been an easier place to do this, and there were few if any legal obstacles standing in the way of the project, dubbed Oneida 2. It was sited on private lands, and Texas counties lack the sort of authority to veto projects you’re used to seeing in, say, Ohio or California.

Keep reading...Show less
Yellow
Hotspots

A Data Center Is Dead, Long Live a Solar Farm

And more of the most important news about renewable projects fighting it out this week.

The United States.
Heatmap Illustration/Getty Images

1. Racine County, Wisconsin – Microsoft is scrapping plans for a data center after fierce opposition from a host community in Wisconsin.

  • The town of Caledonia was teed up to approve land rezoning for the facility, which would’ve been Microsoft’s third data center in the state. Dubbed “Project Nova,” the data center would have sat near an existing We Energies natural gas power plant.
  • After considerable pushback at community meetings, the tech giant announced Friday that it would either give up on the project or relocate it elsewhere to avoid more fervent opposition.
  • “While we have decided not to proceed with this particular site, we remain fully committed to investing in Southeast Wisconsin. We view this as a healthy step toward building a project that aligns with community priorities and supports shared goals,” Microsoft said in a statement published to its website, adding that it will attempt to “identify a site that supports both community priorities and our long-term development objectives.”
  • A review of the project opponents’ PR materials shows their campaign centered on three key themes: the risk of higher electricity bills, environmental impacts of construction and traffic, and a lack of clarity around how data centers could be a public good. Activists also frequently compared Project Nova to a now-infamous failed project in Wisconsin from the Chinese tech manufacturer Foxconn.

2. Rockingham County, Virginia – Another day, another chokepoint in Dominion Energy’s effort to build more solar energy to power surging load growth in the state, this time in the quaint town of Timberville.

Keep reading...Show less
Yellow
Q&A

How the AI Boom Could Come Back Around for Natural Gas

A conversation with Enchanted Rock’s Joel Yu.

The Fight Q & A subject.
Heatmap Illustration

This week’s chat was with Joel Yu, senior vice president for policy and external affairs at the data center micro-grid services company Enchanted Rock. Now, Enchanted Rock does work I usually don’t elevate in The Fight – gas-power tracking – but I wanted to talk to him about how conflicts over renewable energy are affecting his business, too. You see, when you talk to solar or wind developers about the potential downsides in this difficult economic environment, they’re willing to be candid … but only to a certain extent. As I expected, someone like Yu who is separated enough from the heartburn that is the Trump administration’s anti-renewables agenda was able to give me a sober truth: Land use and conflicts over siting are going to advantage fossil fuels in at least some cases.

The following conversation was lightly edited for clarity.

Keep reading...Show less
Yellow