Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate

Build Clean Energy on Dirty Land, These Researchers Say

How can we make better use of the areas environmental destruction has left behind?

Solar panels on a brownfield.
Heatmap Illustration/Getty Images

There are some things money can’t buy, and it seems a clean power grid is one of them. Despite authorizing billions of dollars to subsidize renewable energy development through the Inflation Reduction Act and the Bipartisan Infrastructure Law, the Biden administration remains off track to reach its target of 100% clean electricity by 2035. Even after a banner year in which domestic investment hit $303 billion and the US added 32.3 gigawatts of new clean electricity capacity, the country is still building renewable energy at only half the rate that is needed.

Among the barriers holding up clean energy deployment, local opposition looms large. As developers seek out new sites on which to build wind and solar, they are repeatedly finding themselves at odds with neighbors who object to their projects on aesthetic, economic, or political grounds. Whether through formal laws or protracted permitting processes, these objections have begun to have a noticeable effect on the pace of renewable energy adoption. In a recent survey by the Lawrence Berkeley National Laboratory, wind and solar developers reported seeing roughly a third of their siting applications canceled over the five years prior, with two of the most common reasons being “community opposition” and “local ordinances or zoning.”

But what if the solution to this impasse has been hiding in plain sight — or more accurately, behind a chain link fence?

The U.S. has around 270 million acres of so-called “marginal land,” a designation that includes retired mines, closed landfills, former industrial facilities, brownfield sites, and depleted or unproductive farmland. That’s around twice the land area that would be required for a renewables-and-nuclear-only power grid, the most land-intensive net-zero scenario modeled by the National Renewable Energy Laboratory. These neglected properties are more than just an eyesore for neighbors — they also represent wasted prospects for economic development, and in many cases pose a contamination risk to the local environment. To law professors Alexandra Klass and Hannah Wiseman, however, they are an opportunity in disguise.

In their new paper, forthcoming in the Minnesota Law Review, Klass and Wiseman (of the University of Michigan and Penn State, respectively) propose directing the bulk of new clean energy development to these marginal lands. It’s a concept they call “repurposed energy,” and it offers a way to, in one fell swoop, avert local objections, reclaim unproductive land, and create new opportunities for economically dislocated communities.

It’s not a new concept — since 2008, the Environmental Protection Agency’s RE-Powering America’s Land Initiative has offered funding to developers looking to build renewable energy on potentially contaminated land.

What the new paper proposes, however, is a greater convergence of public benefits on this specific subset of projects, which Klass views as a down payment on societal acceptance. “If you can come up with a project that’s going to have community support, that means you can actually build it,” she told me. “And that’s worth paying a little extra money up front.”

Consider some of the most common objections to renewable energy siting: that it ruins the view, disrupts habitats, or occupies valuable farmland. Each would seem to carry less weight when applied to, say, an abandoned mine instead of a pristine coastline. Throw in low purchase prices, pre-existing transmission lines at retired coal or gas power plants, and the chance to direct jobs and revenue to low-income communities (where contaminated properties are disproportionately located), and you’ve got, in theory, an attractive site for a solar or wind farm.

In spite of these upsides, practical examples of repurposed energy remain few and far between. Only 0.7% of the renewable energy capacity installed in the United States since 1997 has been on reclaimed land, according to EPA data. That’s because, faced with the possibility of extravagant cleanup costs and liability for prior contamination, most developers prefer to take their chances with a greenfield.

Klass and Wiseman propose a set of policy changes that could, they hope, spur a renewable energy renaissance on marginal lands. First, there are some existing incentives for repurposed energy they propose expanding. Certain state funding programs – like Massachusetts’ SMART Program – and streamlined permitting processes – like New York’s Build-Ready Program – could offer a template for other states seeking to accelerate redevelopment of their own brownfields. Layering more such benefits on top of federal funding opportunities like the IRA’s Energy Infrastructure and Reinvestment Program, they contend, could help stimulate broader interest from developers.

Second, they offer a set of new, more ambitious reforms to entice clean energy companies onto marginal lands. Among them:

  • Giving the Department of Energy direct permitting authority over repurposed energy would require an act of Congress, but could accelerate approvals. Klass and Wiseman point out that many sites containing hazardous chemicals may already be in the federal regulatory sphere.
  • The Federal Energy Regulatory Commission could direct regional transmission organizations to grant repurposed energy projects priority in interconnection queues, bypassing a lengthy part of the development timeline.
  • State offices that oversee brownfield cleanup and development could establish separate divisions for repurposed energy, better equipping them to deal with and resolve clean energy developers’ unique needs.

Klass sees the paper as a timely contribution at a critical juncture for the renewable energy industry. “We’re at an important moment in time where there’s a lot of federal funding available,” she told me. “But we are not on track to build the amount of clean energy we need to meet our targets.” By focusing support on repurposed energy, she thinks policymakers may be able to erode some of the sociopolitical barriers holding back the industry.

There is evidence to support this belief. A 2021 study found that objections to wind farms tended to fade when the infrastructure was sited in areas with fewer lakes, hills, or other features of aesthetic or recreational value, suggesting that plants sited on already-disturbed land might indeed arouse less opposition. “You start with these types of projects that we hope will engender less community opposition and provide more community benefits,” Klass said. “Maybe you scale it up later, maybe you don’t. But it allows a pathway through some of this local opposition.”

It’s a view that resonates in the industry, although that doesn’t make this kind of development easy. Jonathan Mancini is the senior vice president of solar project development at Ameresco, which has built solar on around 20 landfills across the United States. He told me that sites with soil contamination are capped with an impermeable barrier to prevent the hazardous material from spreading, and building a solar farm on top requires using bespoke racking systems that won’t penetrate that cap. On top of that, would-be developers have to employ third-party engineers to monitor the cap’s integrity and undergo additional reviews by state regulators to ensure that the weight of the solar system will not damage it. “Currently, the permitting timeline for such projects takes up to three years to complete,” he told me.

Dedicated state support in places like Massachusetts, Illinois, and Maryland has helped Ameresco alleviate some of the costs. “Utility programs or state administered programs do incentivize the use of these types of projects,” Mancini said. But he noted that more support would be helpful to overcome the barriers repurposed energy projects face. “Additional policy measures at the local and/or state level would make these projects move faster through permitting and approval.”

Michael Gerrard, the founder of Columbia University’s Sabin Center for Climate Change Law and one of the country’s foremost environmental lawyers, thinks the idea could accelerate clean energy deployment. “Local opposition is one of the most important impediments [to renewable energy],” he pointed out to me. By undercutting aesthetic and land use concerns, repurposed energy could “have a very positive impact finding ways to reduce that,” he said.

Gerrard also noted, however, that local opposition is not the only barrier to renewable energy development. In addition to more stringent permitting requirements, “transmission, interest rates, supply chains, local content restrictions, workforce shortages — all of those are impediments,” he said. Repurposed energy is no magic bullet, he added, but it doesn’t have to be. “We need a lot of magic buckshot,” he said, “and this article proposes quite a few pellets.”

Blue

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Economy

California’s Big Electrification Experiment

What if, instead of maintaining old pipelines, gas utilities paid for homes to electrify?

Plugging into the PG&E logo.
Heatmap Illustration/Getty Images

California just hit a critical climate milestone: On September 1, Pacific Gas and Electric, the biggest utility in the state, raised natural gas rates by close to $6 due to shrinking gas demand.

I didn’t say it was a milestone worth celebrating. But experts have long warned that gas rates would go up as customers started to use less of the fossil fuel. PG&E is now forecasting enough of a drop in demand, whether because homeowners are making efficiency improvements or switching to electric appliances, that it needs to charge everyone a bit more to keep up with the cost of maintaining its pipelines.

Keep reading...Show less
Blue
Electric Vehicles

The Dream of Swappable EV Batteries Is Alive in Trucking

Revoy is already hitching its power packs to semis in one of America’s busiest shipping corridors.

Putting a battery into a truck.
Heatmap Illustration/Getty Images

Battery swaps used to be the future. To solve the unsolvable problem of long recharging times for electric vehicles, some innovators at the dawn of this EV age imagined roadside stops where drivers would trade their depleted battery for a fully charged one in a matter of minutes, then be on their merry way.

That vision didn’t work out for passenger EVs — the industry chose DC fast charging instead. If the startup Revoy has its way, however, this kind of idea might be exactly the thing that helps the trucking industry surmount its huge hurdles to using electric power.

Keep reading...Show less
Yellow
Climate

AM Briefing: Fixing the Grid

On the DOE’s transmission projects, Cybertruck recalls, and Antarctic greening

A Big Change Is Coming to the Texas Power Grid
Heatmap Illustration/Getty Images

Current conditions: Hurricane Kirk, now a Category 4 storm, could bring life-threatening surf and rip currents to the East Coast this weekend • The New Zealand city of Dunedin is flooded after its rainiest day in more than 100 years • Parts of the U.S. may be able to see the Northern Lights this weekend after the sun released its biggest solar flare since 2017.

THE TOP FIVE

1. DOE announces $1.5 billion investment in transmission projects

The Energy Department yesterday announced $1.5 billion in investments toward four grid transmission projects. The selected projects will “enable nearly 1,000 miles of new transmission development and 7,100 MW of new capacity throughout Louisiana, Maine, Mississippi, New Mexico, Oklahoma, and Texas, while creating nearly 9,000 good-paying jobs,” the DOE said in a statement. One of the projects, called Southern Spirit, will involve installing a 320-mile high-voltage direct current line across Texas, Louisiana, and Mississippi that connects Texas’ ERCOT grid to the larger U.S. grid for the first time. This “will enhance reliability and prevent outages during extreme weather events,” the DOE said. “This is a REALLY. BIG. DEAL,” wrote Michelle Lewis at Electrek.

Keep reading...Show less
Yellow