You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
How can we make better use of the areas environmental destruction has left behind?

There are some things money can’t buy, and it seems a clean power grid is one of them. Despite authorizing billions of dollars to subsidize renewable energy development through the Inflation Reduction Act and the Bipartisan Infrastructure Law, the Biden administration remains off track to reach its target of 100% clean electricity by 2035. Even after a banner year in which domestic investment hit $303 billion and the US added 32.3 gigawatts of new clean electricity capacity, the country is still building renewable energy at only half the rate that is needed.
Among the barriers holding up clean energy deployment, local opposition looms large. As developers seek out new sites on which to build wind and solar, they are repeatedly finding themselves at odds with neighbors who object to their projects on aesthetic, economic, or political grounds. Whether through formal laws or protracted permitting processes, these objections have begun to have a noticeable effect on the pace of renewable energy adoption. In a recent survey by the Lawrence Berkeley National Laboratory, wind and solar developers reported seeing roughly a third of their siting applications canceled over the five years prior, with two of the most common reasons being “community opposition” and “local ordinances or zoning.”
But what if the solution to this impasse has been hiding in plain sight — or more accurately, behind a chain link fence?
The U.S. has around 270 million acres of so-called “marginal land,” a designation that includes retired mines, closed landfills, former industrial facilities, brownfield sites, and depleted or unproductive farmland. That’s around twice the land area that would be required for a renewables-and-nuclear-only power grid, the most land-intensive net-zero scenario modeled by the National Renewable Energy Laboratory. These neglected properties are more than just an eyesore for neighbors — they also represent wasted prospects for economic development, and in many cases pose a contamination risk to the local environment. To law professors Alexandra Klass and Hannah Wiseman, however, they are an opportunity in disguise.
In their new paper, forthcoming in the Minnesota Law Review, Klass and Wiseman (of the University of Michigan and Penn State, respectively) propose directing the bulk of new clean energy development to these marginal lands. It’s a concept they call “repurposed energy,” and it offers a way to, in one fell swoop, avert local objections, reclaim unproductive land, and create new opportunities for economically dislocated communities.
It’s not a new concept — since 2008, the Environmental Protection Agency’s RE-Powering America’s Land Initiative has offered funding to developers looking to build renewable energy on potentially contaminated land.
What the new paper proposes, however, is a greater convergence of public benefits on this specific subset of projects, which Klass views as a down payment on societal acceptance. “If you can come up with a project that’s going to have community support, that means you can actually build it,” she told me. “And that’s worth paying a little extra money up front.”
Consider some of the most common objections to renewable energy siting: that it ruins the view, disrupts habitats, or occupies valuable farmland. Each would seem to carry less weight when applied to, say, an abandoned mine instead of a pristine coastline. Throw in low purchase prices, pre-existing transmission lines at retired coal or gas power plants, and the chance to direct jobs and revenue to low-income communities (where contaminated properties are disproportionately located), and you’ve got, in theory, an attractive site for a solar or wind farm.
In spite of these upsides, practical examples of repurposed energy remain few and far between. Only 0.7% of the renewable energy capacity installed in the United States since 1997 has been on reclaimed land, according to EPA data. That’s because, faced with the possibility of extravagant cleanup costs and liability for prior contamination, most developers prefer to take their chances with a greenfield.
Klass and Wiseman propose a set of policy changes that could, they hope, spur a renewable energy renaissance on marginal lands. First, there are some existing incentives for repurposed energy they propose expanding. Certain state funding programs – like Massachusetts’ SMART Program – and streamlined permitting processes – like New York’s Build-Ready Program – could offer a template for other states seeking to accelerate redevelopment of their own brownfields. Layering more such benefits on top of federal funding opportunities like the IRA’s Energy Infrastructure and Reinvestment Program, they contend, could help stimulate broader interest from developers.
Second, they offer a set of new, more ambitious reforms to entice clean energy companies onto marginal lands. Among them:
Klass sees the paper as a timely contribution at a critical juncture for the renewable energy industry. “We’re at an important moment in time where there’s a lot of federal funding available,” she told me. “But we are not on track to build the amount of clean energy we need to meet our targets.” By focusing support on repurposed energy, she thinks policymakers may be able to erode some of the sociopolitical barriers holding back the industry.
There is evidence to support this belief. A 2021 study found that objections to wind farms tended to fade when the infrastructure was sited in areas with fewer lakes, hills, or other features of aesthetic or recreational value, suggesting that plants sited on already-disturbed land might indeed arouse less opposition. “You start with these types of projects that we hope will engender less community opposition and provide more community benefits,” Klass said. “Maybe you scale it up later, maybe you don’t. But it allows a pathway through some of this local opposition.”
It’s a view that resonates in the industry, although that doesn’t make this kind of development easy. Jonathan Mancini is the senior vice president of solar project development at Ameresco, which has built solar on around 20 landfills across the United States. He told me that sites with soil contamination are capped with an impermeable barrier to prevent the hazardous material from spreading, and building a solar farm on top requires using bespoke racking systems that won’t penetrate that cap. On top of that, would-be developers have to employ third-party engineers to monitor the cap’s integrity and undergo additional reviews by state regulators to ensure that the weight of the solar system will not damage it. “Currently, the permitting timeline for such projects takes up to three years to complete,” he told me.
Dedicated state support in places like Massachusetts, Illinois, and Maryland has helped Ameresco alleviate some of the costs. “Utility programs or state administered programs do incentivize the use of these types of projects,” Mancini said. But he noted that more support would be helpful to overcome the barriers repurposed energy projects face. “Additional policy measures at the local and/or state level would make these projects move faster through permitting and approval.”
Michael Gerrard, the founder of Columbia University’s Sabin Center for Climate Change Law and one of the country’s foremost environmental lawyers, thinks the idea could accelerate clean energy deployment. “Local opposition is one of the most important impediments [to renewable energy],” he pointed out to me. By undercutting aesthetic and land use concerns, repurposed energy could “have a very positive impact finding ways to reduce that,” he said.
Gerrard also noted, however, that local opposition is not the only barrier to renewable energy development. In addition to more stringent permitting requirements, “transmission, interest rates, supply chains, local content restrictions, workforce shortages — all of those are impediments,” he said. Repurposed energy is no magic bullet, he added, but it doesn’t have to be. “We need a lot of magic buckshot,” he said, “and this article proposes quite a few pellets.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
How will America’s largest grid deal with the influx of electricity demand? It has until the end of the year to figure things out.
As America’s largest electricity market was deliberating over how to reform the interconnection of data centers, its independent market monitor threw a regulatory grenade into the mix. Just before the Thanksgiving holiday, the monitor filed a complaint with federal regulators saying that PJM Interconnection, which spans from Washington, D.C. to Ohio, should simply stop connecting new large data centers that it doesn’t have the capacity to serve reliably.
The complaint is just the latest development in a months-long debate involving the electricity market, power producers, utilities, elected officials, environmental activists, and consumer advocates over how to connect the deluge data centers in PJM’s 13-state territory without further increasing consumer electricity prices.
The system has been pushed into crisis by skyrocketing capacity auction prices, in which generators get paid to ensure they’re available when demand spikes. Those capacity auction prices have been fueled by high-octane demand projections, with PJM’s summer peak forecasted to jump from 154 gigawatts to 210 gigawatts in a decade. The 2034-35 forecast jumped 17% in just a year.
Over the past two two capacity auctions, actual and forecast data center growth has been responsible for over $16.6 billion in new costs, according to PJM’s independent market monitor; by contrast, the previous year’s auction generated a mere $2.2 billion. This has translated directly to higher retail electricity prices, including 20% increases in some parts of PJM’s territory, like New Jersey. It has also generated concerns about reliability of the whole system.
PJM wants to reform how data centers interconnect before the next capacity auction in June, but its members committee was unable to come to an agreement on a recommendation to PJM’s board during a November meeting. There were a dozen proposals, including one from the monitor; like all the others, it failed to garner the necessary two-thirds majority vote to be adopted formally.
So the monitor took its ideas straight to the top.
The market monitor’s complaint to the Federal Energy Regulatory Commission tracks closely with its plan at the November meeting. “PJM is currently proposing to allow the interconnection of large new data center loads that it cannot serve reliably and that will require load curtailments (black outs) of the data centers or of other customers at times. That result is not consistent with the basic responsibility of PJM to maintain a reliable grid and is therefore not just and reasonable,” the filing said. “Interconnecting large new data center loads when adequate capacity is not available is not providing reliable service.”
A PJM spokesperson told me, “We are still reviewing the complaint and will reserve comment at this time.”
But can its board still get a plan to FERC and avoid another blowout capacity auction?
“PJM is going to make a filing in December, no matter what. They have to get these rules in place to get to that next capacity auction in June,” Jon Gordon, policy director at Advanced Energy United, told me. “That’s what this has been about from the get-go. Nothing is going to stop PJM from filling something.”
The PJM spokesperson confirmed to me that “the board intends to act on large load additions to the system and is expected to provide an indication of its next steps over the next few weeks.” But especially after the membership’s failure to make a unified recommendation, what that proposal will be remains unclear. That has been a source of agita for the organizations’ many stakeholders.
“The absence of an affirmative advisory recommendation from the Members Committee creates uncertainty as to what reforms PJM’s Board of Managers may submit to the Federal Energy Regulatory Commission (FERC), and when stakeholders can expect that submission,” analysts at ClearView Energy Partners wrote in a note to clients. In spite of PJM’s commitments, they warned that the process could “slip into January,” which would give FERC just enough time to process the submission before the next capacity auction.
One idea did attract a majority vote from PJM’s membership: Southern Maryland Electric Cooperative’s, which largely echoed the PJM board’s own plan with some amendments. That suggestion called for a “Price Responsive Demand” system, in which electricity customers would agree to reduce their usage when wholesale prices spike. The system would be voluntary, unlike an earlier PJM proposal, which foresaw forcing large customers to curtail their power. “The load elects to not take on a capacity obligation, therefore does not pay for capacity, and is required to reduce demand during stressed system conditions,” PJM explained in an update. The Southern Maryland plan tweaks the PRD system to adjust its pricing mechanism. but largely aligns with what PJM’s staff put forward.
“There’s almost no real difference between the PJM proposal and that Southern Maryland proposal,” Gordon told me.
That might please restive stakeholders, or at least be something PJM’s board could go forward with knowing that the balance of its voting membership agreed with something similar.
“We maintain our view that a final proposal could resemble the proposed solution package from PJM staff,” the ClearView note said. “We also think the Board could propose reforms to PJM’s PRD program. Indeed, as noted above, SMECO’s revisions to the service gained majority support.”
The PJM plan also included relatively uncontroversial reforms to load forecasting to cut down on duplicated requests and better share information, and an “expedited interconnection track” on which new, large-scale generation could be fast-tracked if it were signed off on by a state government “to expedite consideration of permitting and siting.”
Gordon said that the market monitor’s complaint could be read as the organization “desperately trying to get FERC to weigh in” on its side, even if PJM is more likely to go with something like its own staff-authored submission.
“The key aspect of the market monitor’s proposal was that PJM should not allow a data center to interconnect until there was enough generation to supply them,” Gordon explained. During the meeting preceding the vote, “PJM said they didn’t think they had the authority to deny someone interconnection.”
This dispute over whether the electricity system has an obligation to serve all customers has been the existential question making the debate about how to serve data centers extra angsty.
But PJM looks to be trying to sidestep that big question and nibble around the edges of reform.
“Everybody is really conflicted here,” Gordon told me. “They’re all about protecting consumers. They don’t want to see any more increases, obviously, and they want to keep the lights on. Of course, they also want data center developers in their states. It’s really hard to have all three.”
Atomic Canyon is set to announce the deal with the International Atomic Energy Agency.
Two years ago, Trey Lauderdale asked not what nuclear power could do for artificial intelligence, but what artificial intelligence could do for nuclear power.
The value of atomic power stations to provide the constant, zero-carbon electricity many data centers demand was well understood. What large language models could do to make building and operating reactors easier was less obvious. His startup, Atomic Canyon, made a first attempt at answering that by creating a program that could make the mountains of paper documents at the Diablo Canyon nuclear plant, California’s only remaining station, searchable. But Lauderdale was thinking bigger.
In September, Atomic Canyon inked a deal with the Idaho National Laboratory to start devising industry standards to test the capacity of AI software for nuclear projects, in much the same way each update to ChatGPT or Perplexity is benchmarked by the program’s ability to complete bar exams or medical tests. Now, the company’s effort is going global.
On Wednesday, Atomic Canyon is set to announce a partnership with the United Nations International Atomic Energy Agency to begin cataloging the United Nations nuclear watchdog’s data and laying the groundwork for global standards of how AI software can be used in the industry.
“We’re going to start building proof of concepts and models together, and we’re going to build a framework of what the opportunities and use cases are for AI,” Lauderdale, Atomic Canyon’s chief executive, told me on a call from his hotel room in Vienna, Austria, where the IAEA is headquartered.
The memorandum of understanding between the company and the UN agency is at an early stage, so it’s as yet unclear what international standards or guidelines could look like.
In the U.S., Atomic Canyon began making inroads earlier this year with a project backed by the Institute of Nuclear Power Operators, the Nuclear Energy Institute, and the Electric Power Research Institute to create a virtual assistant for nuclear workers.
Atomic Canyon isn’t the only company applying AI to nuclear power. Last month, nuclear giant Westinghouse unveiled new software it’s designing with Google to calculate ways to bring down the cost of key components in reactors by millions of dollars. The Nuclear Company, a startup developer that’s aiming to build fleets of reactors based on existing designs, announced a deal with the software behemoth Palantir to craft the software equivalent of what the companies described as an “Iron Man suit,” able to swiftly pull up regulatory and blueprint details for the engineers tasked with building new atomic power stations.
Lauderdale doesn’t see that as competition.
“All of that, I view as complementary,” he said.
“There is so much wood to chop in the nuclear power space, the amount of work from an administrative perspective regarding every inch of the nuclear supply chain, from how we design reactors to how we license reactors, how we regulate to how we do environmental reviews, how we construct them to how we maintain,” he added. “Every aspect of the nuclear power life cycle is going to be transformed. There’s no way one company alone could come in and say, we have a magical approach. We’re going to need multiple players.”
That Atomic Canyon is making inroads at the IAEA has the potential to significantly broaden the company’s reach. Unlike other energy sources, nuclear power is uniquely subject to international oversight as part of global efforts to prevent civilian atomic energy from bleeding over into weapons production.
The IAEA’s bylaws award particular agenda-setting powers to whatever country has the largest fleet of nuclear reactors. In the nearly seven decades since the agency’s founding, that nation has been the U.S. As such, the 30 other countries with nuclear power have largely aligned their regulations and approaches to the ones standardized in Washington. When the U.S. artificially capped the enrichment levels of traditional reactor fuel at 5%, for example, the rest of the world followed.
That could soon change, however, as China’s breakneck deployment of new reactors looks poised to vault the country ahead of the U.S. sometime in the next decade. It wouldn’t just be a symbolic milestone. China’s emergence as the world’s preeminent nuclear-powered nation would likely come with Beijing’s increased influence over other countries’ atomic energy programs. As it is, China is preparing to start exporting its reactors overseas.
The role electricity demand from the data centers powering the AI boom has played in spurring calls for new reactors is undeniable. But if AI turns out to have as big an impact on nuclear operations as Lauderdale predicts, an American company helping to establish the global guidelines could help cement U.S. influence over a potentially major new factor in how the industry works for years, if not decades to come.
Current conditions: The Northeastern U.S. is bracing for 6 inches of snow, including potential showers in New York City today • A broad swath of the Mountain West, from Montana through Colorado down to New Mexico, is expecting up to six inches of snow • After routinely breaking temperature records for the past three years, Guyana shattered its December high with thermometers crossing 92 degrees Fahrenheit.
The Department of Energy gave a combined $800 million to two projects to build what could be the United States’ first commercial small modular reactors. The first $400 million went to the federally owned Tennessee Valley Authority to finance construction of the country’s first BWRX-300. The project, which Heatmap’s Matthew Zeitlin called the TVA’s “big swing at small nuclear,” is meant to follow on the debut deployment of GE-Hitachi Nuclear Energy’s 300-megawatt SMR at the Darlington nuclear plant in Ontario. The second $400 million grant backed Holtec International’s plan to expand the Palisades nuclear plant in Michigan where it’s currently working to restart with the company’s own 300-megawatt reactor. The funding came from a pot of money earmarked for third-generation reactors, the type that hew closely to the large light water reactors that make up nearly all the U.S. fleet of 94 commercial nuclear reactors. While their similarities with existing plants offer some benefits, the Trump administration has also heavily invested in incentives to spur construction of fourth-generation reactors that use coolants other than water. “Advanced light-water SMRs will give our nation the reliable, round-the-clock power we need to fuel the President’s manufacturing boom, support data centers and AI growth, and reinforce a stronger, more secure electric grid,” Secretary of Energy Chris Wright said in a statement. “These awards ensure we can deploy these reactors as soon as possible.”
You know who also wants to see more investment in SMRs? Arizona senator and rumored Democratic presidential hopeful Ruben Gallego, who released an energy plan Wednesday calling on the Energy Department to ease the “regulatory, scaling, and supply chain challenges” new reactors still face.
Since he first emerged on the political scene a decade ago, President Donald Trump has made the proverbial forgotten coal miner a central theme of his anti-establishment campaigns, vowing to correct for urbanite elites’ neglect by putting workers’ concerns at the forefront. Yet his administration is now considering overhauling black lung protections that miners lobbied federal agencies to enact and enforce. Secretary of Labor Lori Chavez-DeRemer will “reconsider and seek comments” on parts of the Biden-era silica rule that mining companies and trade groups are challenging in court, the agency told E&E News. It’s unclear how the Trump administration may seek to alter the regulation. But the rule, finalized last year, reduced exposure limits for miners to airborne silica crystals that lodge deep inside lung tissue to 50 micrograms from the previous 100 microgram limit. The rule also required companies to provide expanded medical tests to workers. Dozens of miners and medical advocates protested outside the agency’s headquarters in Washington in October to request that the rule, expected to prevent more than 1,000 deaths and 3,700 cases of black lung per year, be saved.
Rolling back some of the protections would be just the latest effort to gut Biden-era policy. On Wednesday, the White House invited automotive executives to attend what’s expected to be an announcement to shred fuel-efficiency standards for new vehicles, The New York Times reported late on Tuesday.
Sign up to receive Heatmap AM in your inbox every morning:

The average American spent a combined 11 hours without electricity last year as a result of extreme weather, worse outages than during any previous year going back a decade. That’s according to the latest analysis by the U.S. Energy Information Administration. Blackouts attributed to major events averaged nearly nine hours in 2025, compared to an average of roughly four hours per year in 2014 through 2023. Major hurricanes accounted for 80% of the hours without electricity in 2024.
The latest federal grants may be good news for third-generation SMRs, but one of the leading fourth-generation projects — the Bill Gates-owned TerraPower’s bid to build a molten salt-cooled reactor at a former coal plant in Wyoming — just cleared the final safety hurdle for its construction permit. Calling the approval a “momentous occasion for TerraPower,” CEO Chris Levesque said the “favorable safety evaluation from the U.S. Nuclear Regulatory Commission reflects years of rigorous evaluation, thoughtful collaboration with the NRC, and an unwavering commitment to both safety and innovation.”
TerraPower’s project in Kemmerer, Wyoming, is meant to demonstrate the company’s reactors, which are designed to store power when it’s needed — making them uniquely complementary to grids with large amounts of wind and solar — to avoid the possibility of a meltdown. Still, at a private lunch I attended in October, Gates warned that the U.S. is falling behind China on nuclear power. China is charging ahead on all energy fronts. On Tuesday, Bloomberg reported that the Chinese had started up a domestically-produced gas turbine for the first time as the country seeks to compete with the U.S. on even the fossil fuels American producers dominate.
It’s been a rough year for green hydrogen projects as the high cost of producing the zero-carbon fuel from renewable electricity and water makes finding customers difficult for projects. Blue hydrogen, the version of the fuel made with natural gas equipped with carbon capture equipment, isn’t doing much better. Last month, Exxon Mobil Corp. abandoned plans to build what would have been one of the world’s largest hydrogen production plants in Baytown, Texas. This week, BP withdrew from a blue hydrogen project in England. At issue are strict new standards in the European Union for how much carbon blue hydrogen plants would need to capture to qualify as clean.
You’re not the only one accidentally ingesting loads of microplastics. New research suggests crickets can’t tell the difference between tiny bits of plastics and natural food sources. Evidence shows that crickets can break down microplastics into smaller nanoplastics — which may be even worse in the environment since they’re more easily eaten or absorbed by other lifeforms.