You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
An interview with journalist and academic Christina Gerhardt, who maps the shifting geographies of islands in her new book Sea Change.

The scattered Pacific islands of Kiribati are famously at the frontlines of climate change.
Two of the nation’s islands disappeared underwater as early as 1999, and in the years since Kiribati’s residents have had to grapple with the likelihood that more will meet the same fate by mid-century. Already, one in seven moves there are due to the encroaching seas.
In an attempt to provide options, in 2012, the president of Kiribati bought 6,000 acres of land on Fiji, as an alternate home for his people. But Fiji itself — larger, more mountainous, but still vulnerable — also faces the need to relocate its own communities. As the world heats up, islanders have had to reorient their lives around fraught decisions and constant change.
Kiribati is just one of the 49 islands (or collections of islands) that environmental journalist and academic Christina Gerhardt details in her book, Sea Change: An Atlas of Islands in a Rising Ocean, out this month from University of California Press. Working with cartographer Molly Roy, Gerhardt paints portraits of what is at stake as each island watches the seas creep gradually higher, from decimated coral reefs to inundated farms.
Sea level rise is not just about a slowly moving line on a map, said Gerhardt when we spoke about the book. It is a dynamic phenomenon that changes everything from coastal erosion to storm surge, high winds to flooding.
“A livable life isn't about whether or not one is underwater,” Gerhardt said.
There’s a huge range in the population and political power of the islands highlighted, spanning Singapore to Pine Island in the Antarctic Ocean. But Sea Change is woven together by what each island has in common: A relationship to sea level rise that is more urgent and more nuanced than those of us on the continents often appreciate.
What follows is the rest of our conversation, edited for brevity and clarity.
There's no shortage of scientific data outlining the latest numbers with regard to sea level rise. And while that data is absolutely vital, my approach was to weave the science in with these other components.
What I'm really bringing to the forefront in Sea Change is an atlas that depicts the histories and the cultures, and the languages, and the flora, and the fauna of islands. How people will connect with and appreciate islands and islanders is through their history and cultures. You have to provide something to engage with, and that’s where the work of the environmental humanities is really important.
Every single island has a different cluster of issues. So for every island, I gave our cartographer, Molly Roy, different elements to focus on. For one island, it might be the fact that what’s imperiled by sea level rise is agriculture: If you have too much salt water in soil, the plants can’t take up the water they need to survive. For another, I had her focus on sea turtle nesting grounds, which can be inundated or destroyed by sea level rise.
Ultimately, sea level rise should not be thought of as a line, but rather as a zone of inundation. The Marshall Islands, for example, are on average six and a half feet above sea level, and three feet of sea level rise is expected by the end of the century. You may think “Oh, well, that’s not going to be an issue then.” But a livable life isn't about whether or not one is underwater. It's whether or not that home has been inundated enough that it's soggy and moldy and just not inhabitable anymore.
No, this was a huge challenge when we started. The inequities that frontline communities suffer also play out in the resources that are allocated for mapping.
We started the map of the East and the West Coasts of North America, from Deal Island in the Chesapeake Bay to islands off the western coast of Alaska. We have no problem finding data for these islands.
And then we moved into the Pacific. The islands that we had the easiest time getting data for are ones that have U.S. military bases on them, like Guam or the Marshall Islands. But when we were talking about independent nations that don't have this kind of relationship to the U.S., we had a really hard time finding the data. To track down this data I would contact ministers of environment, and other government agencies, and they often didn't have it themselves.
First of all, I have some issues with the tendency to frame islands as harbingers of what awaits people who are continental land dwellers. I think the situation facing islands should, in and of itself with no other qualifications, be of concern. Full-stop.
That said, we also have to think about the audience and how to cast a wide net and share stories from one geographic region with people who are predominantly of another geographic region, which happens to be the hegemonic one. It was really important to also underscore that this is not a situation that remains relevant only to people who are living on islands. Almost half of the U.S. population, about 40 percent, live in coastal states and cities. That's about 130 million people in the US that are going to be impacted. And so I think this is something that we really need to grapple with.
The question of how to get movement on a global stage is a really important one. One of the successes coming out of the UN meeting last year was the push for the establishment of a loss and damage fund. It basically lays the blame of creating the climate crisis squarely at the feet of nations in the Global North, and asks them to compensate frontline nations in the Global South for the damages that have been created. The details have yet to be worked out, but it took 30 years to get to that point. Tina Stege, who was climate envoy for the Marshall Islands, was one of the tenacious leaders who really worked intensely to get this across the finish lines.
The UN gets criticized all the time because it’s so slow — which is true — and because even if there is an agreement that comes out of the UN, it’s not legally binding — also true. But I think the UN is a really important vehicle because it’s the one forum in which 198 nations get together and nations in the Global North do have to listen to these speeches from members of nations in the Global South. Before the latter weighs in, they typically describe the situation in their home countries. And so if you go to the UN, you have a really visceral sense of what’s going on around the world — last year was the floods in Pakistan, and then it was the drought in the Horn of Africa. That sharing between nations happens every year, but I don’t see coverage of these issues. The papers don’t really seem motivated.
The first kind of island in Sea Change is low-lying islands or atolls — often just a couple of feet high, a couple yards across, a couple of miles long — which are the ones that are most at risk. And then there are the high islands, also known as volcanic islands, which often still have active volcanoes. Obviously, the atolls are the ones that are most at-risk, but I decided to include volcanic islands as well, which initially puzzled my cartographer and editor: “These aren’t going to be underwater,” they said. That’s right, but that doesn’t mean they aren’t at risk. On those islands, most people and infrastructure are clustered around the coastline, so they’re going to be at-risk from sea level rise.
In terms of solutions, I talk a lot about soft engineering, or nature-based solutions. This would include the preservation and restoration of coral and oyster reef, and of mangroves and wetlands. Coral reefs and oyster reefs buffer waves when they come toward the island, which is important because wave action is responsible for eroding the coastline. Mangroves also provide a buffer, as one of the only trees that can deal with that high salinity of soil. They also provide a really important marine habitat, where little tiny fish swim around their roots and big predator fish can’t get in. A lot of these things have been ripped from the coastlines to set up urban environments, like harbors or airports.
There’s also hard-engineering, like the great U they’re putting around the tip of Manhattan, or the sea walls in Venice. These are so expensive, and often by the time they’re in place sea level rise has increased to yet another level where they’re not enough to do the work they were originally intended to do.
When I was teaching at Princeton, my students were often so despondent because of all of the catastrophes and disasters unfolding. And I always said it's important to just pick your area and do what you can. You don’t need to solve every issue, everywhere. Just pick your thing. Some people love working in their communities; some people like working more at the international level; some people really like engaging with some of the sources of the catastrophe (meaning the fossil fuel industry and the politicians who are supportive of subsidies for fossil fuels); some people work on the shift to renewables, and consider becoming electricians. There’s no shortage of action points to pick.
I think the really important message for people who are in the Global North that I would love to see connected to Sea Change is that we are the source of the emissions. So even as we go about our busy lives, there are things we can do large and small to actually tip the scales and have a direct impact on people who are in frontline communities. And those inequities are not just global, they're also within our own nation. But action is better than inaction. And of course systemic change is more important than individual change, but I don't want to discount the latter.
Exactly.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Rob takes Jesse through our battery of questions.
Every year, Heatmap asks dozens of climate scientists, officials, and business leaders the same set of questions. It’s an act of temperature-taking we call our Insiders Survey — and our 2026 edition is live now.
In this week’s Shift Key episode, Rob puts Jesse through the survey wringer. What is the most exciting climate tech company? Are data centers slowing down decarbonization? And will a country attempt the global deployment of solar radiation management within the next decade? It’s a fun one! Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: Next question — you have to pick one, and then you’ll get a free response section. Do you think AI and data centers energy needs are significantly slowing down decarbonization, yes or no?
Jesse Jenkins: Significantly. Yeah, I guess significantly would … yes, I think so. I think in general, the challenge we have with decarbonization is we have to add new, clean supplies of energy faster than demand growth. And so, in order to make progress on existing emissions, you have to exceed the demand growth, meet all of that growth with clean resources, and then start to drive down emissions.
If you look at what we’ve talked about — are China’s emissions peaking, or global emissions peaking? I mean, that really is a game. It’s a race between how fast we can add clean supply and how fast demand for energy’s growing. And so in the power sector in particular, an area where we’ve made the most progress in recent years in cutting emissions, now having a large, and rapid growth in electricity demand for a whole new sector of the economy — and one that doesn’t directly contribute to decarbonization, like, say, in contrast to electric vehicles or electrifying heating —certainly makes things harder. It just makes that you have to run that race even faster.
I would say in the U.S. context in particular, in a combination of the Trump policy environment, we are not keeping pace, right? We are not going to be able to both meet the large demand growth and eat into the substantial remaining emissions that we have from coal and gas in our power sector. And in particular, I think we’re going to see a lot more coal generation over the next decade than we would’ve otherwise without both AI and without the repeal of the Biden-era EPA regulations, which were going to really drive the entire coal fleet into a moment of truth, right? Are they gonna retrofit for carbon capture? Are they going to retire? Was basically their option, by 2035.
And so without that, we still have on the order of 150 gigawatts of coal-fired power plants in the United States, and many of those were on the way out, and I think they’re getting a second lease on life because of the fact that demand for energy and particularly capacity are growing so rapidly that a lot of them are now saying, Hey, you know what, we can actually make quite a bit of money if we stick around for another 5, 10, 15 years. So yeah, I’d say that’s significantly harder.
That isn’t an indictment to say we shouldn’t do AI. It’s happening. It’s valuable, and we need to meet as much, if not all of that growth with clean energy. But then we still have to try to go faster, and that’s the key.
Mentioned:
This year’s Heatmap Insiders Survey
Last year’s Heatmap Insiders Survey
The best PDF Jesse read this year: Flexible Data Centers: A Faster, More Affordable Path to Power
The best PDF Rob read this year: George Marshall’s Guide to Merleau-Ponty's Phenomenology of Perception
This episode of Shift Key is sponsored by …
Heatmap Pro brings all of our research, reporting, and insights down to the local level. The software platform tracks all local opposition to clean energy and data centers, forecasts community sentiment, and guides data-driven engagement campaigns. Book a demo today to see the premier intelligence platform for project permitting and community engagement.
Music for Shift Key is by Adam Kromelow.
They still want to decarbonize, but they’re over the jargon.
Where does the fight to decarbonize the global economy go from here? The past 12 months, after all, have been bleak. Donald Trump has pulled the United States out of the Paris Agreement (again) and is trying to leave a precursor United Nations climate treaty, as well. He ripped out half the Inflation Reduction Act, sidetracked the Environmental Protection Administration, and rechristened the Energy Department’s in-house bank in the name of “energy dominance.” Even nonpartisan weather research — like that conducted by the National Center for Atmospheric Research — is getting shut down by Trump’s ideologues. And in the days before we went to press, Trump invaded Venezuela with the explicit goal (he claims) of taking its oil.
Abroad, the picture hardly seems rosier. China’s new climate pledge struck many observers as underwhelming. Mark Carney, who once led the effort to decarbonize global finance, won Canada’s premiership after promising to lift parts of that country’s carbon tax — then struck a “grand bargain” with fossiliferous Alberta. Even Europe seems to dither between its climate goals, its economic security, and the need for faster growth.
Now would be a good time, we thought, for an industry-wide check-in. So we called up 55 of the most discerning and often disputatious voices in climate and clean energy — the scientists, researchers, innovators, and reformers who are already shaping our climate future. Some of them led the Biden administration’s climate policy from within the White House; others are harsh or heterodox critics of mainstream environmentalism. And a few more are on the front lines right now, tasked with responding to Trump’s policies from the halls of Congress — or the ivory minarets of academia.
We asked them all the same questions, including: Which key decarbonization technology is not ready for primetime? Who in the Trump administration has been the worst for decarbonization? And how hot is the planet set to get in 2100, really? (Among other queries.) Their answers — as summarized and tabulated by my colleagues — are available in these pages.
You can see whether insiders think data centers are slowing down decarbonization and what folks have learned (or, at least, say they’ve learned) from the repeal of clean energy tax credits in the Inflation Reduction Act.
But from many different respondents, a mood emerged: a kind of exhaustion with “climate” as the right frame through which to understand the fractious mixture of electrification, pollution reduction, clean energy development, and other goals that people who care about climate change actually pursue. When we asked what piece of climate jargon people would most like to ban, we expected most answers to dwell on the various colors of hydrogen (green, blue, orange, chartreuse), perhaps, or the alphabet soup of acronyms around carbon removal (CDR, DAC, CCS, CCUS, MRV). Instead, we got:
“‘Climate.’ Literally the word climate, I would just get rid of it completely,” one venture capitalist told us. “I would love to see people not use 'climate change' as a predominant way to talk to people about a global challenge like this,” seconded a former Washington official. “And who knows what a ‘greenhouse gas emission’ is in the real world?” A lobbyist agreed: “Climate change, unfortunately, has become too politicized … I’d rather talk about decarbonization than climate change.”
Not everyone was as willing to shift to decarbonization, but most welcomed some form of specificity. “I’ve always tried to reframe climate change to be more personal and to recognize it is literally the biggest health challenge of our lives,” the former official said. The VC said we should “get back to the basics of, are you in the energy business? Are you in the agriculture business? Are you in transportation, logistics, manufacturing?”
“You're in a business,” they added, “there is no climate business.”
Not everyone hated “climate” quite as much — but others mentioned a phrase including the word. One think tanker wanted to nix “climate emergency.” Another scholar said: “I think the ‘climate justice’ term — not the idea — but I think the term got spread so widely that it became kind of difficult to understand what it was even referring to.” And one climate scientist didn’t have a problem with climate change, per se, but did say that people should pare back how they discuss it and back off “the notion that climate change will result in human extinction, or the sudden and imminent end to human civilization.”
There were other points of agreement. Four people wanted to ban “net zero” or “carbon neutrality.” One scientist said activists should back off fossil gas — “I know we’re always trying to try convince people of something, but, like, the entire world calls it ’natural gas’” — and another scientist said that they wished people would stop “micromanaging” language: “People continually changing jargon to try and find the magic words that make something different than it is — that annoys me.”
Two more academics added they wish to banish discussion of “overshoot”: “It’s not clear if it's referring to temperatures or emissions — I just don't think it's a helpful frame for thinking about the problem.”
“Unit economics,” “greenwashing,” and — yes — the whole spectrum of hydrogen colors came in for a lashing. But perhaps the most distinctive ban suggestion came from Todd Stern, the former chief U.S. climate diplomat, who negotiated the Kyoto Protocol and the Paris Agreement.
“I hate it when people say ’are you going to COP?’” he told me, referring to the United Nations’ annual climate summit, officially known as the Conference of the Parties. His issue wasn’t calling it “COP,” he clarified. It was dropping the definite article.
“The way I see it, no one has the right to suddenly become such intimate pals with ‘COP.’ You go to the ball game or the conference or what have you. And you go to ‘the COP,’” he said. “I am clearly losing this battle, but no one will ever hear me drop the ‘the.’”
Now, since I talked to Stern, the United States has moved to drop the COP entirely — with or without the “the” — because Trump took us out of the climate treaty under whose aegis the COP is held. But precision still counts, even in unfriendly times. And throughout the rest of this package, you’ll find insiders trying to find a path forward in thoughtful, insightful, and precise ways.
You’ll also find them remaining surprisingly upbeat — and even more optimistic, in some ways, than they were last year. Twelve months ago, 30% of our insider panel thought China would peak its emissions in the 2020s; this year, a plurality said the peak would come this decade. Roughly the same share of respondents this year as last year thought the U.S. would hit net zero in the 2060s. Trump might be setting back American climate action in the near term. But some of the most important long-term trends remain unchanged.
OUR PANEL INCLUDED… Gavin Schmidt, director of the NASA Goddard Institute for Space Studies | Ken Caldeira, senior scientist emeritus at the Carnegie Institution for Science and visiting scholar at Stanford University | Kate Marvel, research physicist at the NASA Goddard Institute for Space Studies | Holly Jean Buck, associate professor of environment and sustainability at the University at Buffalo | Kim Cobb, climate scientist and director of the Institute at Brown for Environment and Society | Jennifer Wilcox, chemical engineering professor at the University of Pennsylvania and former U.S. Assistant Secretary for Fossil Energy and Carbon Management | Michael Greenstone, economist and director of the Energy Policy Institute at the University of Chicago | Solomon Hsiang, professor of global environmental policy at Stanford University | Chris Bataille, global fellow at Columbia University’s Center on Global Energy Policy | Danny Cullenward, senior fellow at the Kleinman Center for Energy Policy at the University of Pennsylvania | J. Mijin Cha, environmental studies professor at UC Santa Cruz and fellow at Cornell University’s Climate Jobs Institute | Lynne Kiesling, director of the Institute for Regulatory Law and Economics at Northwestern University | Daniel Swain, climate scientist at the University of California Agriculture and Natural Resources | Emily Grubert, sustainable energy policy professor at the University of Notre Dame | Jon Norman, president of Hydrostor | Chris Creed, managing partner at Galvanize Climate Solutions | Amy Heart, senior vice president of public policy at Sunrun | Kate Brandt, chief sustainability officer at Google | Sophie Purdom, managing partner at Planeteer Capital and co-founder of CTVC | Lara Pierpoint, managing director at Trellis Climate | Andrew Beebe, managing director at Obvious Ventures | Gabriel Kra, managing director and co-founder of Prelude Ventures | Joe Goodman, managing partner and co-founder of VoLo Earth Ventures | Erika Reinhardt, executive director and co-founder of Spark Climate Solutions | Dawn Lippert, founder and CEO of Elemental Impact and general partner at Earthshot Ventures | Rajesh Swaminathan, partner at Khosla Ventures | Rob Davies, CEO of Sublime Systems | John Arnold, philanthropist and co-founder of Arnold Ventures | Gabe Kleinman, operating partner at Emerson Collective | Amy Duffuor, co-founder and general partner at Azolla Ventures | Amy Francetic, managing general partner and founder of Buoyant Ventures | Tom Chi, founding partner at At One Ventures | Francis O’Sullivan, managing director at S2G Investments | Cooper Rinzler, partner at Breakthrough Energy Ventures | Gina McCarthy, former administrator of the U.S. Environmental Protection Agency | Neil Chatterjee, former commissioner of the Federal Energy Regulatory Commission | Representative Scott Peters, member of the U.S. House of Representatives | Todd Stern, former U.S. special envoy for climate change | Representative Sean Casten, member of the U.S. House of Representatives | Representative Mike Levin, member of the U.S. House of Representatives | Zeke Hausfather, climate research lead at Stripe and research scientist at Berkeley Earth | Shuchi Talati, founder and executive director of the Alliance for Just Deliberation on Solar Geoengineering | Nat Bullard, co-founder of Halcyon | Bill McKibben, environmentalist and founder of 350.org | Ilaria Mazzocco, senior fellow at the Center for Strategic and International Studies | Leah Stokes, professor of environmental politics at UC Santa Barbara | Noah Kaufman, senior research scholar at Columbia University’s Center on Global Energy Policy | Arvind Ravikumar, energy systems professor at the University of Texas at Austin | Jessica Green, political scientist at the University of Toronto | Jonas Nahm, energy policy professor at Johns Hopkins SAIS | Armond Cohen, executive director of the Clean Air Task Force | Costa Samaras, director of the Scott Institute for Energy Innovation at Carnegie Mellon University | John Larsen, partner at Rhodium Group | Alex Trembath, executive director of the Breakthrough Institute | Alex Flint, executive director of the Alliance for Market Solutions
The Heatmap Insiders Survey of 55 invited expert respondents was conducted by Heatmap News reporters during November and December 2025. Responses were collected via phone interviews. All participants were given the opportunity to record responses anonymously. Not all respondents answered all questions.
Plus, which is the best hyperscaler on climate — and which is the worst?
The biggest story in energy right now is data centers.
After decades of slow load growth, forecasters are almost competing with each other to predict the most eye-popping figure for how much new electricity demand data centers will add to the grid. And with the existing electricity system with its backbone of natural gas, more data centers could mean higher emissions.
Hyperscalers with sustainability goals are already reporting higher emissions, and technology companies are telling investors that they plan to invest hundreds of billions, if not trillions of dollars, into new data centers, increasingly at gigawatt scale.
And yet when we asked our Heatmap survey participants “Do you think AI and data centers’ energy needs are significantly slowing down decarbonization?” only about 34% said they would, compared to 66% who said they wouldn’t.
There were some intriguing differences between different types of respondents. Among our “innovator” respondents — venture capitalists, founders, and executives working at climate tech startups — the overwhelming majority said that AI and data centers are not slowing down decarbonization. “I think it’s the inverse — I think we want to launch the next generation of technologies when there’s demand growth and opportunity to sell into a slightly higher priced, non-commoditized market,” Joe Goodman co-founder and managing partner at VoLo Earth Ventures, told us.
Not everyone in Silicon Valley is so optimistic, however. “I think in a different political environment, it may have been a true accelerant,” one VC told us. “But in this political environment, it’s a true albatross because it’s creating so many more emissions. It’s creating so much stress on the grid. We’re not deploying the kinds of solutions that would be effective."
Scientists were least in agreement on the question. While only 47% of scientists thought the growth of data centers would significantly slow down decarbonization, most of the pessimistic camp was in the social sciences. In total, over 62% of the physical scientists we surveyed thought data centers weren’t slowing down decarbonization, compared to a third of social scientists.
Michael Greenstone, a University of Chicago economist, told us he didn’t see data centers and artificial intelligence as any different from any other use of energy. “I also think air conditioning and lighting, computing, and 57,000 other uses of electricity are slowing down decarbonization,” he said. The real answer is the world is not trying to minimize climate change.”
Mijin Cha, an assistant professor of environment studies at the University of California Santa Cruz, was even more gloomy, telling us, “Not only do I think it’s slowing down decarbonization, I think it is permanently extending the life of fossil fuels, especially as it is now unmitigated growth.”
Some took issue with the premise of the question, expressing skepticism of the entire AI industry. “I’m actually of the opinion that most of the AI and data center plans are a massive bubble,” a scientist told us. “And so, are there plans that would be disruptive to emissions? Yes. Are they actually doing anything to emissions yet? Not obvious.”
We also asked respondents to name the “best” and “worst” hyperscalers, large technology companies pursuing the data center buildout. Many of these companies have some kind of renewables or sustainability goal, but there are meaningful differences among them. Google and Microsoft look to match their emissions with non-carbon-power generation in the same geographic area and at the same time. The approach used by Meta and Amazon, on the other hand, is to develop renewable projects that have the biggest “bang for the buck” on global emissions by siting them in areas with high emissions that the renewable generation can be said to displace.
Among our respondents, the 24/7 “time and place” approach is the clear winner.
Google was the “best” pick for 19 respondents, including six who said “Google and Microsoft.” By contrast, Amazon and Meta had just three votes combined.
As for the “worst,” there was no clear consensus, although two respondents from the social sciences picked “everyone besides Microsoft and Google” and “everyone but Google and Microsoft.” Another one told us, “The best is a tie between Microsoft and Google. Everyone else is in the bottom category.”
A third social scientist summed it up even more pungently. “Google is the best, Meta is the worst. Evil corporation” — though with more expletives than that.
The Heatmap Insiders Survey of 55 invited expert respondents was conducted by Heatmap News reporters during November and December 2025. Responses were collected via phone interviews. All participants were given the opportunity to record responses anonymously. Not all respondents answered all questions.