You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
An interview with journalist and academic Christina Gerhardt, who maps the shifting geographies of islands in her new book Sea Change.
The scattered Pacific islands of Kiribati are famously at the frontlines of climate change.
Two of the nation’s islands disappeared underwater as early as 1999, and in the years since Kiribati’s residents have had to grapple with the likelihood that more will meet the same fate by mid-century. Already, one in seven moves there are due to the encroaching seas.
In an attempt to provide options, in 2012, the president of Kiribati bought 6,000 acres of land on Fiji, as an alternate home for his people. But Fiji itself — larger, more mountainous, but still vulnerable — also faces the need to relocate its own communities. As the world heats up, islanders have had to reorient their lives around fraught decisions and constant change.
Kiribati is just one of the 49 islands (or collections of islands) that environmental journalist and academic Christina Gerhardt details in her book, Sea Change: An Atlas of Islands in a Rising Ocean, out this month from University of California Press. Working with cartographer Molly Roy, Gerhardt paints portraits of what is at stake as each island watches the seas creep gradually higher, from decimated coral reefs to inundated farms.
Sea level rise is not just about a slowly moving line on a map, said Gerhardt when we spoke about the book. It is a dynamic phenomenon that changes everything from coastal erosion to storm surge, high winds to flooding.
“A livable life isn't about whether or not one is underwater,” Gerhardt said.
There’s a huge range in the population and political power of the islands highlighted, spanning Singapore to Pine Island in the Antarctic Ocean. But Sea Change is woven together by what each island has in common: A relationship to sea level rise that is more urgent and more nuanced than those of us on the continents often appreciate.
What follows is the rest of our conversation, edited for brevity and clarity.
There's no shortage of scientific data outlining the latest numbers with regard to sea level rise. And while that data is absolutely vital, my approach was to weave the science in with these other components.
What I'm really bringing to the forefront in Sea Change is an atlas that depicts the histories and the cultures, and the languages, and the flora, and the fauna of islands. How people will connect with and appreciate islands and islanders is through their history and cultures. You have to provide something to engage with, and that’s where the work of the environmental humanities is really important.
Every single island has a different cluster of issues. So for every island, I gave our cartographer, Molly Roy, different elements to focus on. For one island, it might be the fact that what’s imperiled by sea level rise is agriculture: If you have too much salt water in soil, the plants can’t take up the water they need to survive. For another, I had her focus on sea turtle nesting grounds, which can be inundated or destroyed by sea level rise.
Ultimately, sea level rise should not be thought of as a line, but rather as a zone of inundation. The Marshall Islands, for example, are on average six and a half feet above sea level, and three feet of sea level rise is expected by the end of the century. You may think “Oh, well, that’s not going to be an issue then.” But a livable life isn't about whether or not one is underwater. It's whether or not that home has been inundated enough that it's soggy and moldy and just not inhabitable anymore.
No, this was a huge challenge when we started. The inequities that frontline communities suffer also play out in the resources that are allocated for mapping.
We started the map of the East and the West Coasts of North America, from Deal Island in the Chesapeake Bay to islands off the western coast of Alaska. We have no problem finding data for these islands.
And then we moved into the Pacific. The islands that we had the easiest time getting data for are ones that have U.S. military bases on them, like Guam or the Marshall Islands. But when we were talking about independent nations that don't have this kind of relationship to the U.S., we had a really hard time finding the data. To track down this data I would contact ministers of environment, and other government agencies, and they often didn't have it themselves.
First of all, I have some issues with the tendency to frame islands as harbingers of what awaits people who are continental land dwellers. I think the situation facing islands should, in and of itself with no other qualifications, be of concern. Full-stop.
That said, we also have to think about the audience and how to cast a wide net and share stories from one geographic region with people who are predominantly of another geographic region, which happens to be the hegemonic one. It was really important to also underscore that this is not a situation that remains relevant only to people who are living on islands. Almost half of the U.S. population, about 40 percent, live in coastal states and cities. That's about 130 million people in the US that are going to be impacted. And so I think this is something that we really need to grapple with.
The question of how to get movement on a global stage is a really important one. One of the successes coming out of the UN meeting last year was the push for the establishment of a loss and damage fund. It basically lays the blame of creating the climate crisis squarely at the feet of nations in the Global North, and asks them to compensate frontline nations in the Global South for the damages that have been created. The details have yet to be worked out, but it took 30 years to get to that point. Tina Stege, who was climate envoy for the Marshall Islands, was one of the tenacious leaders who really worked intensely to get this across the finish lines.
The UN gets criticized all the time because it’s so slow — which is true — and because even if there is an agreement that comes out of the UN, it’s not legally binding — also true. But I think the UN is a really important vehicle because it’s the one forum in which 198 nations get together and nations in the Global North do have to listen to these speeches from members of nations in the Global South. Before the latter weighs in, they typically describe the situation in their home countries. And so if you go to the UN, you have a really visceral sense of what’s going on around the world — last year was the floods in Pakistan, and then it was the drought in the Horn of Africa. That sharing between nations happens every year, but I don’t see coverage of these issues. The papers don’t really seem motivated.
The first kind of island in Sea Change is low-lying islands or atolls — often just a couple of feet high, a couple yards across, a couple of miles long — which are the ones that are most at risk. And then there are the high islands, also known as volcanic islands, which often still have active volcanoes. Obviously, the atolls are the ones that are most at-risk, but I decided to include volcanic islands as well, which initially puzzled my cartographer and editor: “These aren’t going to be underwater,” they said. That’s right, but that doesn’t mean they aren’t at risk. On those islands, most people and infrastructure are clustered around the coastline, so they’re going to be at-risk from sea level rise.
In terms of solutions, I talk a lot about soft engineering, or nature-based solutions. This would include the preservation and restoration of coral and oyster reef, and of mangroves and wetlands. Coral reefs and oyster reefs buffer waves when they come toward the island, which is important because wave action is responsible for eroding the coastline. Mangroves also provide a buffer, as one of the only trees that can deal with that high salinity of soil. They also provide a really important marine habitat, where little tiny fish swim around their roots and big predator fish can’t get in. A lot of these things have been ripped from the coastlines to set up urban environments, like harbors or airports.
There’s also hard-engineering, like the great U they’re putting around the tip of Manhattan, or the sea walls in Venice. These are so expensive, and often by the time they’re in place sea level rise has increased to yet another level where they’re not enough to do the work they were originally intended to do.
When I was teaching at Princeton, my students were often so despondent because of all of the catastrophes and disasters unfolding. And I always said it's important to just pick your area and do what you can. You don’t need to solve every issue, everywhere. Just pick your thing. Some people love working in their communities; some people like working more at the international level; some people really like engaging with some of the sources of the catastrophe (meaning the fossil fuel industry and the politicians who are supportive of subsidies for fossil fuels); some people work on the shift to renewables, and consider becoming electricians. There’s no shortage of action points to pick.
I think the really important message for people who are in the Global North that I would love to see connected to Sea Change is that we are the source of the emissions. So even as we go about our busy lives, there are things we can do large and small to actually tip the scales and have a direct impact on people who are in frontline communities. And those inequities are not just global, they're also within our own nation. But action is better than inaction. And of course systemic change is more important than individual change, but I don't want to discount the latter.
Exactly.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
It would have delivered a gargantuan 6.2 gigawatts of power.
The Bureau of Land Management says the largest solar project in Nevada has been canceled amidst the Trump administration’s federal permitting freeze.
Esmeralda 7 was supposed to produce a gargantuan 6.2 gigawatts of power – equal to nearly all the power supplied to southern Nevada by the state’s primary public utility. It would do so with a sprawling web of solar panels and batteries across the western Nevada desert. Backed by NextEra Energy, Invenergy, ConnectGen and other renewables developers, the project was moving forward at a relatively smooth pace under the Biden administration, albeit with significant concerns raised by environmentalists about its impacts on wildlife and fauna. And Esmeralda 7 even received a rare procedural win in the early days of the Trump administration when the Bureau of Land Management released the draft environmental impact statement for the project.
When Esmeralda 7’s environmental review was released, BLM said the record of decision would arrive in July. But that never happened. Instead, Donald Trump issued an executive order as part of a deal with conservative hardliners in Congress to pass his tax megabill, which also effectively repealed the Inflation Reduction Act’s renewable electricity tax credits. This led to subsequent actions by Interior Secretary Doug Burgum to freeze all federal permitting decisions for solar energy.
Flash forward to today, when BLM quietly updated its website for Esmeralda 7 permitting to explicitly say the project’s status is “cancelled.” Normally when the agency says this, it means developers pulled the plug.
I’ve reached out to some of the companies behind Esmeralda 7 but was unable to reach them in time for publication. If I hear from them confirming the project is canceled – or that BLM is wrong in some way – I will let you know.
It’s not perfect, but pretty soon, it’ll be available for under $30,000.
Here’s what you need to know about the rejuvenated Chevrolet Bolt: It’s back, it’s better, and it starts at under $30,000.
Although the revived 2027 Bolt doesn’t officially hit the market until January 2026, GM revealed the new version of the iconic affordable EV at a Wednesday evening event at the Universal Studios backlot in Los Angeles. The assembled Bolt owners and media members drove the new cars past Amity Island from Jaws and around the Old West and New York sets that have served as the backdrops of so many television shows and movies. It was star treatment for a car that, like its predecessor, isn’t the fanciest EV around. But given the giveaway patches that read “Chevy Bolt: Back by popular demand,” it’s clear that GM heard the cries of people who missed having the plucky electric hatchback on the market.
The Bolt died at the height of its powers. The original Bolt EV and Bolt EUV sold in big numbers in the late 2010s and early 2020s, powered by a surprisingly affordable price compared to competitor EVs and an interior that didn’t feel cramped despite its size as a smallish hatchback. In 2023, the year Chevy stopped selling it, the Bolt was the third-best-selling EV in America after Tesla’s top two models.
Yet the original had a few major deficiencies that reflected the previous era of EVs. The most egregious of which was its charging speed that topped out at around 50 kilowatts. Given that today’s high-speed chargers can reach 250 to 350 kilowatts — and an even faster future could be on the way — the Bolt’s pit stops on a road trip were a slog that didn’t live up to its peppy name.
Thankfully, Chevy fixed it. Charging speed now reaches 150 kilowatts. While that figure isn’t anywhere near the 350 kilowatts that’s possible in something like the Hyundai Ioniq 9, it’s a threefold improvement for the Bolt that lets it go from 10% to 80% charged in a respectable 26 minutes. The engineers said they drove a quartet of the new cars down old Route 66 from the Kansas City area, where the Bolt is made, to Los Angeles to demonstrate that the EV was finally ready for such an adventure.
From the outside, the 2027 Bolt is virtually indistinguishable from the old car, but what’s inside is a welcome leap forward. New Bolt has a lithium-ion-phosphate, or LFP battery that holds 65 kilowatt-hours of energy, but still delivers 255 miles of max range because of the EV’s relatively light weight. Whereas older EVs encourage drivers to stop refueling at around 80%, the LFP battery can be charged to 100% regularly without the worry of long-term damage to the battery.
The Bolt is GM’s first EV with the NACS charging standard, the former Tesla proprietary plug, which would allow the little Chevy to visit Tesla Superchargers without an adapter (though its port placement on the front of the driver’s side is backwards from the way older Supercharger stations are built). Now built on GM’s Ultium platform, the Bolt shares its 210-horsepower electric motor with the Chevy Equinox EV and gets vehicle-to-load capability, meaning you’ll be able to tap into its battery energy for other uses such as powering your home.
But it’s the price that’s the real wow factor. Bolt will launch with an RS version that gets the fancier visual accents and starts at $32,000. The Bolt LT that will be available a little later will eventually start as low as $28,995, a figure that includes the destination charge that’s typically slapped on top of a car’s price, to the tune of an extra $1,000 to $2,000 on delivery. Perhaps it’s no surprise that GM revealed this car just a week after the end of the $7,500 federal tax credit for EV purchases (and just a day after Tesla announced its budget versions of the Model Y and Model 3). Bringing in a pretty decent EV at under $30,000 without the help of a big tax break is a pretty big deal.
The car is not without compromises. Plenty of Bolt fans are aghast that Chevy abandoned the Apple CarPlay and Android Auto integrations that worked with the first Bolt in favor of GM’s own built-in infotainment system as the only option. Although the new Bolt was based on the longer, “EUV” version of the original, this is still a pretty compact car without a ton of storage space behind the back seats. Still, for those who truly need a bigger vehicle, there’s the Chevy Equinox EV.
For as much time as I’ve spent clamoring for truly affordable EVs that could compete with entry-level gas cars on prices, the Bolt’s faults are minor. At $29,000 for an electric vehicle in the U.S., there is practically zero competition until the new Nissan Leaf arrives. The biggest threats to the Bolt are America’s aversion to small cars and the rapid rates of depreciation that could allow someone to buy a much larger, gently used EV for the price of the new Chevy. But the original Bolt found a steady footing among drivers who wanted that somewhat counter-cultural car — and this one is a lot better.
“Old economy” companies like Caterpillar and Williams are cashing in by selling smaller, less-efficient turbines to impatient developers.
From the perspective of the stock market, you’re either in the AI business or you’re not. If you build the large language models pushing out the frontiers of artificial intelligence, investors love it. If you rent out the chips the large language models train on, investors love it. If you supply the servers that go in the data centers that power the large language models, investors love it. And, of course, if you design the chips themselves, investors love it.
But companies far from the software and semiconductor industry are profiting from this boom as well. One example that’s caught the market’s fancy is Caterpillar, better known for its scale-defying mining and construction equipment, which has become a “secular winner” in the AI boom, writes Bloomberg’s Joe Weisenthal.
Typically construction businesses do well when the overall economy is doing well — that is, they don’t typically take off with a major technological shift like AI. Now, however, Caterpillar has joined the ranks of the “picks and shovels” businesses capitalizing on the AI boom thanks to its gas turbine business, which is helping power OpenAI’s Stargate data center project in Abilene, Texas.
Just one link up the chain is another classic “old economy” business: Williams Companies, the natural gas infrastructure company that controls or has an interest in over 33,000 miles of pipeline and has been around in some form or another since the early 20th century.
Gas pipeline companies are not supposed to be particularly exciting, either. They build large-scale infrastructure. Their ratemaking is overseen by federal regulators. They pay dividends. The last gas pipeline company that got really into digital technology, well, uh, it was Enron.
But Williams’ shares are up around 28% in the past year — more than Caterpillar. That’s in part, due to its investing billions in powering data centers with behind the meter natural gas.
Last week, Williams announced that it would funnel over $3 billion into two data center projects, bringing its total investments in powering AI to $5 billion. This latest bet, the company said, is “to continue to deliver speed-to-market solutions in grid-constrained markets.”
If we stipulate that the turbines made by Caterpillar are powering the AI boom in a way analogous to the chips designed by Nvidia or AMD and fabricated by TSMC, then Williams, by developing behind the meter gas-fired power plants, is something more like a cloud computing provider or data center developer like CoreWeave, except that its facilities house gas turbines, not semiconductors.
The company has “seen the rapid emergence of the need for speed with respect to energy,” Williams Chief Executive Chad Zamarin said on an August earnings call.
And while Williams is not a traditional power plant developer or utility, it knows its way around natural gas. “We understand pipeline capacity,” Zamarin said on a May earnings call. “We obviously build a lot of pipeline and turbine facilities. And so, bringing all the different pieces together into a solution that is ready-made for a customer, I think, has been truly a differentiator.”
Williams is already behind the Socrates project for Meta in Ohio, described in a securities filing as a $1.6 billion project that will provide 400 megawatts of gas-fired power. That project has been “upsized” to $2 billion and 750 megawatts, according to Morgan Stanley analysts.
Meta CEO Mark Zuckerberg has said that “energy constraints” are a more pressing issue for artificial intelligence development than whether the marginal dollar invested is worth it. In other words, Zuckerberg expects to run out of energy before he runs out of projects that are worth pursuing.
That’s great news for anyone in the business of providing power to data centers quickly. The fact that developers seem to have found their answer in the Williamses and Caterpillars of the world, however, calls into question a key pillar of the renewable industry’s case for itself in a time of energy scarcity — that the fastest and cheapest way to get power for data centers is a mix of solar and batteries.
Just about every renewable developer or clean energy expert I’ve spoken to in the past year has pointed to renewables’ fast timeline and low cost to deploy compared to building new gas-fired, grid-scale generation as a reason why utilities and data centers should prefer them, even absent any concerns around greenhouse gas emissions.
“Renewables and battery storage are the lowest-cost form of power generation and capacity,” Next Era chief executive John Ketchum said on an April earnings call. “We can build these projects and get new electrons on the grid in 12 to 18 months.” Ketchum also said that the price of a gas-fired power plant had tripled, meanwhile lead times for turbines are stretching to the early 2030s.
The gas turbine shortage, however, is most severe for large turbines that are built into combined cycle systems for new power plants that serve the grid.
GE Vernova is discussing delivering turbines in 2029 and 2030. While one manufacturer of gas turbines, Mitsubishi Heavy Industries, has announced that it plans to expand its capacity, the industry overall remains capacity constrained.
But according to Morgan Stanley, Williams can set up behind the meter power plants in 18 months. xAI’s Colossus data center in Memphis, which was initially powered by on-site gas turbines, went from signing a lease to training a large language model in about six months.
These behind the meter plants often rely on cheaper, smaller, simple cycle turbines, which generate electricity just from the burning of natural gas, compared to combined cycle systems, which use the waste heat from the gas turbines to run steam turbines and generate more energy. The GE Vernova 7HA combined cycle turbines that utility Duke Energy buys, for instance, range in output from 290 to 430 megawatts. The simple cycle turbines being placed in Ohio for the Meta data center range in output from about 14 megawatts to 23 megawatts.
Simple cycle turbines also tend to be less efficient than the large combined cycle system used for grid-scale natural gas, according to energy analysts at BloombergNEF. The BNEF analysts put the emissions difference at almost 1,400 pounds of carbon per megawatt-hour for the single turbines, compared to just over 800 pounds for combined cycle.
Overall, Williams is under contract to install 6 gigawatts of behind-the-meter power, to be completed by the first half of 2027, Morgan Stanley analysts write. By comparison, a joint venture between GE Vernova, the independent power producer NRG, and the construction company Kiewit to develop combined cycle gas-fired power plants has a timeline that could stretch into 2032.
The Williams projects will pencil out on their own, the company says, but they have an obvious auxiliary benefit: more demand for natural gas.
Williams’ former chief executive, Alan Armstrong, told investors in a May earnings call that he was “encouraged” by the “indirect business we are seeing on our gas transmission systems,” i.e. how increased natural gas consumption benefits the company’s traditional pipeline business.
Wall Street has duly rewarded Williams for its aggressive moves.
Morgan Stanley analysts boosted their price target for the stock from $70 to $83 after last week’s $3 billion announcement, saying in a note to clients that the company has “shifted from an underappreciated value (impaired terminal value of existing assets) to underappreciated growth (accelerating project pipeline) story.” Mizuho Securities also boosted its price target from $67 to $72, with analyst Gabriel Moreen telling clients that Williams “continues to raise the bar on the scope and potential benefits.”
But at the same time, Moreen notes, “the announcement also likely enhances some investor skepticism around WMB pushing further into direct power generation and, to a lesser extent, prioritizing growth (and growth capex) at the expense of near-term free cash flow and balance sheet.”
In other words, the pipeline business is just like everyone else — torn between prudence in a time of vertiginous economic shifts and wanting to go all-in on the AI boom.
Williams seems to have decided on the latter. “We will be a big beneficiary of the fast rising data center power load,” Armstrong said.