You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
New Zealand and Australia are at two very different stages in the energy transition.
I’ll drop any notion of journalistic objectivity for a moment: I would really, really like to see the United States win the Women’s World Cup.
Abby Wambach’s miracle goal in 2011, Carli Lloyd’s 2015 hat trick in the final, and Megan Rapinoe’s dominant 2019 tournament are all ineffable memories in my journey of soccer fandom. This year, as Alyssa Thompson, Sophia Smith, and Trinity Rodman take the baton for a new generation, I’ll be watching the tournament intently as it takes place in New Zealand and Australia.
But it’s also not lost on me that major sporting events like this are also often major emitting events. While all 10 host stadiums are LEED or Green Star certified (no new stadiums were purpose-built for the tournament), these tournaments are a test of every piece of a country’s infrastructure — and a barometer for nearly every element of their respective energy transition. Stadiums need electricity to keep floodlights on and beer refrigerators cold; fans fly from around the world for the tournament; cities construct new stadiums or retrofit old ones; countless tchotchkes are produced; and public transit systems snap into high gear.
Hosting the World Cup completely sustainably is probably impossible right now, in spite of what FIFA falsely claimed about its tournament in Qatar last fall, according to Swiss regulators. What this World Cup does offer, though, is a case study in two very different stages of paths towards decarbonization.
Get one great climate story in your inbox everyday:
Earlier this month, my colleague Robinson Meyer made a point about the diminishing marginal returns towards the end of the energy transition. As challenging as it is to get shovels in the ground, incentivizing new solar arrays and wind farms is in some ways easier than solving wicked problems: Cross-country travel, transitioning heavy duty vehicles away from fossil fuels, catalyzing a clean steel industry.
New Zealand is in the enviable — and somewhat unusual — position of starting its work on decarbonization in the world of wicked problems.
World Cups have had sustainably powered hosts before — France (Women’s World Cup 2019) boasts a nearly decarbonized grid in large part due to nuclear, and Canada’s electricity is primarily powered by hydropower and nuclear. Other hosts have had more mixed climate impacts. The 2014 host Brazil has an electricity sector dominated by hydropower, but it also built a brand new stadium in the middle of the rainforest that was effectively abandoned the moment the tournament ended.
New Zealand can make a case as one of the most climate-friendly hosts of a World Cup ever. (This requires a key caveat from the outset: You need to consider hydropower an environmentally friendly renewable. Right now, most people in the energy world do — though researchers have raised questions about methane emissions from reservoirs and the broader impacts of disrupting an ecosystem.)
The country’s electricity sector is overwhelmingly supplied by hydropower. Renewables in total generated 81% of the country’s electricity in 2021. Hydropower has made up a significant piece of New Zealand’s electric generation for more than a century — and while installing new facilities requires significant investment, the cost of generation itself is low. By one analysis, “business as usual” would still mean that 98% of the country’s generation will come from renewables by 2030, in large part driven by wind and solar.
The country has also made significant climate pledges, albeit ones that have raised questions about their enforcement — including an emissions budget for 2022-2025 and net zero by 2050 (excluding biogenic methane). And its carbon credits have spurred the transformation of farmland to forestry.
That leaves questions about energy and other emissions that most other countries have yet to act on. Watching a game in New Zealand is a reminder of the questions that remain: How can fans get between host cities without flights? How fast can the country kick its reliance on fossil fuels for heating and industry? And perhaps most importantly, how can New Zealand slash emissions from its extensive agriculture sector — especially when levying a tax on methane emissions from cows has proven a third rail among farmers?
Still, if New Zealand has moved to the most challenging part of decarbonization, Australia is at the outset of its process — the easy part, in some ways. Prime Minister Anthony Albanese has expressed the goal of the country becoming a “renewable energy superpower,” but that process is just starting.
The country has made some progress: 29% of electricity generation came from renewables in 2021, largely driven by solar and wind, better than the United States’ 21% but a far cry from New Zealand, much less France. Australia, thanks to friendly government policy, easy permitting and speedy grid connections, has also enjoyed a particularly robust deployment of rooftop solar. And recently, the country established its own emission reduction commitments (43% by 2030) that leave room for more action in later years — their most recent try at comprehensive climate policy, following the passage and repeal of a carbon tax in the 2010s.
Australia, though, does not only rely on fossil fuels: It is also the world’s second-largest producer of coal, significantly ahead of any other country save for Indonesia. Coal dominates their energy use, with oil and natural gas making up the other major sources. And while Australia has signaled that they will transition away rapidly from coal, that transition could prove bumpy for both the grid and workers.
While New Zealand is a climate leader with caveats to sort out, games hosted in Australia will take place in a country that has fallen well behind its neighbor and most other high-income countries in addressing climate change. On the other hand, Sam Kerr is likely to be so dominant that fans will have little time to think about anything else.
Practically, what does this mean for the World Cup? In truth: Not much. As long as the lights stay on and the TV cameras work, we almost certainly won’t hear about the electric grid — and given that it’s winter in the southern hemisphere, the topic of climate change might not come up at all save for player-led activism. But as tournaments take place, they’ll offer a chance to check in on a given host country’s decarbonization efforts.
The next World Cup after this? The 2026 men’s tournament — in Mexico, Canada, and the United States.
Read more about climate and sports:
Home Runs Are One Way Climate Change Affects Baseball. Here Are 11 More.
__
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The Loan Programs Office is good for more than just nuclear funding.
That China has a whip hand over the rare earths mining and refining industry is one of the few things Washington can agree on.
That’s why Alex Jacquez, who worked on industrial policy for Joe Biden’s National Economic Council, found it “astounding”when he read in the Washington Post this week that the White House was trying to figure out on the fly what to do about China restricting exports of rare earth metals in response to President Trump’s massive tariffs on the country’s imports.
Rare earth metals have a wide variety of applications, including for magnets in medical technology, defense, and energy productssuch as wind turbines and electric motors.
Jacquez told me there has been “years of work, including by the first Trump administration, that has pointed to this exact case as the worst-case scenario that could happen in an escalation with China.” It stands to reason, then, that experienced policymakers in the Trump administration might have been mindful of forestalling this when developing their tariff plan. But apparently not.
“The lines of attack here are numerous,” Jacquez said. “The fact that the National Economic Council and others are apparently just thinking about this for the first time is pretty shocking.”
And that’s not the only thing the Trump administration is doing that could hamper American access to rare earths and critical minerals.
Though China still effectively controls the global pipeline for most critical minerals (a broader category that includes rare earths as well as more commonly known metals and minerals such as lithium and cobalt), the U.S. has been at work for at least the past five years developing its own domestic supply chain. Much of that work has fallen to the Department of Energy, whose Loan Programs Office has funded mining and processing facilities, and whose Office of Manufacturing and Energy Supply Chains hasfunded and overseen demonstration projects for rare earths and critical minerals mining and refining.
The LPO is in line for dramatic cuts, as Heatmap has reported. So, too, are other departments working on rare earths, including the Office of Manufacturing and Energy Supply Chains. In its zeal to slash the federal government, the Trump administration may have to start from scratch in its efforts to build up a rare earths supply chain.
The Department of Energy did not reply to a request for comment.
This vulnerability to China has been well known in Washington for years, including by the first Trump administration.
“Our dependence on one country, the People's Republic of China (China), for multiple critical minerals is particularly concerning,” then-President Trump said in a 2020 executive order declaring a “national emergency” to deal with “our Nation's undue reliance on critical minerals.” At around the same time, the Loan Programs Office issued guidance “stating a preference for projects related to critical mineral” for applicants for the office’s funding, noting that “80 percent of its rare earth elements directly from China.” Using the Defense Production Act, the Trump administration also issued a grant to the company operating America's sole rare earth mine, MP Materials, to help fund a processing facility at the site of its California mine.
The Biden administration’s work on rare earths and critical minerals was almost entirely consistent with its predecessor’s, just at a greater scale and more focused on energy. About a month after taking office, President Bidenissued an executive order calling for, among other things, a Defense Department report “identifying risks in the supply chain for critical minerals and other identified strategic materials, including rare earth elements.”
Then as part of the Inflation Reduction Act in 2022, the Biden administration increased funding for LPO, which supported a number of critical minerals projects. It also funneled more money into MP Materials — including a $35 million contract from the Department of Defense in 2022 for the California project. In 2024, it awarded the company a competitive tax credit worth $58.5 million to help finance construction of its neodymium-iron-boron magnet factory in Texas. That facilitybegan commercial operation earlier this year.
The finished magnets will be bought by General Motors for its electric vehicles. But even operating at full capacity, it won’t be able to do much to replace China’s production. The MP Metals facility is projected to produce 1,000 tons of the magnets per year.China produced 138,000 tons of NdFeB magnets in 2018.
The Trump administration is not averse to direct financial support for mining and minerals projects, but they seem to want to do it a different way. Secretary of the Interior Doug Burgum has proposed using a sovereign wealth fund to invest in critical mineral mines. There is one big problem with that plan, however: the U.S. doesn’t have one (for the moment, at least).
“LPO can invest in mining projects now,” Jacquez told me. “Cutting 60% of their staff and the experts who work on this is not going to give certainty to the business community if they’re looking to invest in a mine that needs some government backstop.”
And while the fate of the Inflation Reduction Act remains very much in doubt, the subsidies it provided for electric vehicles, solar, and wind, along with domestic content requirements have been a major source of demand for critical minerals mining and refining projects in the United States.
“It’s not something we’re going to solve overnight,” Jacquez said. “But in the midst of a maximalist trade with China, it is something we will have to deal with on an overnight basis, unless and until there’s some kind of de-escalation or agreement.”
A conversation with VDE Americas CEO Brian Grenko.
This week’s Q&A is about hail. Last week, we explained how and why hail storm damage in Texas may have helped galvanize opposition to renewable energy there. So I decided to reach out to Brian Grenko, CEO of renewables engineering advisory firm VDE Americas, to talk about how developers can make sure their projects are not only resistant to hail but also prevent that sort of pushback.
The following conversation has been lightly edited for clarity.
Hiya Brian. So why’d you get into the hail issue?
Obviously solar panels are made with glass that can allow the sunlight to come through. People have to remember that when you install a project, you’re financing it for 35 to 40 years. While the odds of you getting significant hail in California or Arizona are low, it happens a lot throughout the country. And if you think about some of these large projects, they may be in the middle of nowhere, but they are taking hundreds if not thousands of acres of land in some cases. So the chances of them encountering large hail over that lifespan is pretty significant.
We partnered with one of the country’s foremost experts on hail and developed a really interesting technology that can digest radar data and tell folks if they’re developing a project what the [likelihood] will be if there’s significant hail.
Solar panels can withstand one-inch hail – a golfball size – but once you get over two inches, that’s when hail starts breaking solar panels. So it’s important to understand, first and foremost, if you’re developing a project, you need to know the frequency of those events. Once you know that, you need to start thinking about how to design a system to mitigate that risk.
The government agencies that look over land use, how do they handle this particular issue? Are there regulations in place to deal with hail risk?
The regulatory aspects still to consider are about land use. There are authorities with jurisdiction at the federal, state, and local level. Usually, it starts with the local level and with a use permit – a conditional use permit. The developer goes in front of the township or the city or the county, whoever has jurisdiction of wherever the property is going to go. That’s where it gets political.
To answer your question about hail, I don’t know if any of the [authority having jurisdictions] really care about hail. There are folks out there that don’t like solar because it’s an eyesore. I respect that – I don’t agree with that, per se, but I understand and appreciate it. There’s folks with an agenda that just don’t want solar.
So okay, how can developers approach hail risk in a way that makes communities more comfortable?
The bad news is that solar panels use a lot of glass. They take up a lot of land. If you have hail dropping from the sky, that’s a risk.
The good news is that you can design a system to be resilient to that. Even in places like Texas, where you get large hail, preparing can mean the difference between a project that is destroyed and a project that isn’t. We did a case study about a project in the East Texas area called Fighting Jays that had catastrophic damage. We’re very familiar with the area, we work with a lot of clients, and we found three other projects within a five-mile radius that all had minimal damage. That simple decision [to be ready for when storms hit] can make the complete difference.
And more of the week’s big fights around renewable energy.
1. Long Island, New York – We saw the face of the resistance to the war on renewable energy in the Big Apple this week, as protestors rallied in support of offshore wind for a change.
2. Elsewhere on Long Island – The city of Glen Cove is on the verge of being the next New York City-area community with a battery storage ban, discussing this week whether to ban BESS for at least one year amid fire fears.
3. Garrett County, Maryland – Fight readers tell me they’d like to hear a piece of good news for once, so here’s this: A 300-megawatt solar project proposed by REV Solar in rural Maryland appears to be moving forward without a hitch.
4. Stark County, Ohio – The Ohio Public Siting Board rejected Samsung C&T’s Stark Solar project, citing “consistent opposition to the project from each of the local government entities and their impacted constituents.”
5. Ingham County, Michigan – GOP lawmakers in the Michigan State Capitol are advancing legislation to undo the state’s permitting primacy law, which allows developers to evade municipalities that deny projects on unreasonable grounds. It’s unlikely the legislation will become law.
6. Churchill County, Nevada – Commissioners have upheld the special use permit for the Redwood Materials battery storage project we told you about last week.