You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
A conversation with the most interesting man on the Federal Energy Regulatory Commission.
It’s not every day that a top regulator calls into question the last few decades of policy in the area they help oversee. But that’s exactly what Mark Christie, a commissioner on the Federal Energy Regulatory Commission, the interstate power regulator, did earlier this year.
In a paper enticingly titled “It’s Time To Reconsider Single-Clearing Price Mechanisms in U.S. Energy Markets,” Christie gave a history of deregulation in the electricity markets and suggested it may have been a mistake.
While criticisms of deregulation are by no means new, that they were coming from a FERC commissioner was noteworthy — a Republican no less. While there is not yet a full-scale effort to reverse deregulation in the electricity markets, which has been going on since the 1990s, there is a rising tide of skepticism of how electricity markets do — and don’t — reward reliability, let alone the effect they have on consumer prices.
Christie’s criticisms have a conservative bent, as you’d expect from someone who was nominated by former President Donald Trump to the bipartisan commission. He is very concerned about existing generation going offline and has called activist drives against natural gas pipelines and other transportation infrastructure for the fossil-fuel-emitting power sources a “national campaign of legal warfare…[that] has prevented the construction of vitally needed natural gas transportation infrastructure.”
Since renewables have become, at times, among the world’s cheapest sources of energy and thus quite competitive in deregulated markets with fossil fuels (especially when subsidized), this kind of skepticism is a growing issue in the Republican Party, which has deep ties to oil and gas companies. The Texas state legislature, for instance, responded to Winter Storm Uri, which almost destroyed Texas’ electricity grid in 2021, with its own version of central planning: billions in low cost loans for the construction of new gas-fired power plants. Former Texas Governor Rick Perry, as secretary of energy in the Trump administration, even proposed to FERC a plan to explicitly subsidize coal and nuclear plants, citing reliability concerns. (FERC rejected it.) Some regions that didn’t embrace deregulation, like the Southeast and Southwest, also have some of the most carbon-intensive grids.
But Christie is not so much a critic of renewable resources like wind and solar, per se, as he is very focused on the benefits to the grid of ample “dispatchable” resources, i.e. power sources that can power up and down on demand.
This doesn’t have to mean uncritical acceptance of existing fossil fuel infrastructure. The idea that markets don’t reward reliability enough can help explain the poor winterization for fossil fuel generation that was so disastrous during Winter Storm Uri. And in California, the recognition that renewables alone can’t power the grid 24 hours a day has led to a massive investment in energy storage, which can help approximate the on-demand nature of natural gas or coal without the carbon pollution.
But Christie is primarily interested in the question of just how the planning is done for a system that links together electric generation and consumers. He criticized the deregulated system in much of the country where power is generated by companies separate from the utilities that ultimately sell and distribute that power to customers and where states have less of a role in overall planning, despite ultimately approving electricity rates.
Instead, these markets for power are mediated through a system where utilities pay independent generators a single price for their power at a given time that is arrived at through bidding, often in the context of sprawling multi-state regional transmission organizations like PJM Interconnection, which covers a large swath of the Midwest and Mid-Atlantic region, or the New England Independent System Operator. He says this set-up doesn’t do enough to incentivize dispatchable power, which only comes online when demand spikes, thus making the system overall less reliable, while still showing little evidence that costs have gone down for consumers.
Every year, grid operators and their regulators — including Christie — warn of reliability issues. What Christie argues is that these reliability issues may be endemic to the deregulated system.
Here is where there could be common ground between advocates for an energy transition and conservative deregulation skeptics like Christie. While the combination of deregulation and subsidies has been great for getting solar and wind from zero to around 13 percent of the nation’s utility-scale electricity generation, any truly decarbonized grid will likely require intensive government supervision and planning. Ultimately, political authorities who are guiding the grid to be less carbon-intensive will be responsible for keeping the lights on no matter how cold, warm, sunny, or windy it happens to be. And that may not be something today’s electricity “markets” are up for.
I spoke with Christie in late June about how FERC gave us the electricity market we have today, why states might be better managers than markets, and what he’s worried about this summer. Our conversation has been edited for length and clarity.
What happened to our energy markets in the 1990s and 2000s where you think things started to go wrong?
In the late ‘90s, we had this big push called deregulation. And as I pointed out in the article, it really wasn’t “deregulation” in the sense that in the ‘70s, you know, the trucking and airlines and railroads were deregulated where you remove government price regulation and you let the market set the prices. That’s not what happened. It really was just a change of the price-setting construct and the regulatory construct.
It took what had been the most common form of regulation of utilities, where utilities are considered to be natural monopolies, and said we’re going to restructure these utilities and we’re going to let the generation part compete in these regional markets.
And, you know, from an economic standpoint, okay, so far so good. But there’s been a lot of questioning as to whether there’s really true competition. Many parts of the country also just didn’t do it.
I think there’s a serious question whether that’s benefiting consumers more than the cost of service model where state regulators set the prices.
So if I’m an electricity consumer in one of the markets that’s more or less deregulated, how might reliability become an issue in my own home?
First of all, when you’re in one of these areas that are deregulated, essentially you’re paying the gas price. If it goes up, that’s what you’re going to pay. If it goes down, it looks really good.
But from the reliability standpoint, the question is whether these markets are procuring enough resources to make sure you have the power to keep your lights on 24/7. That is the big question to a consumer in a so-called deregulated state: Are these markets, which are now the main vehicle for buying generation resources, are they getting enough generation resources to make sure that your lights stay on, your heat stays on, and your air conditioning stays on?
Do you think there’s evidence that these deregulated markets are doing a worse job at that kind of procurement?
Well, let’s take, for example, PJM, which came out with an announcement in February that said they were going to lose in the next five years over 40 gigawatts. A gig is 1,000 megawatts, so that’s a lot of power, that’s a lot of generating resources. And the independent market monitor actually has told me it is closer to 50 gigawatts. So all these units are going to retire and they’re going to retire largely for economic reasons. They’re not getting sufficient compensation to stay open.
The essence of restructuring was that generating units are going to have to make their money in the market. They’re not going to get funding through what's called the “rate base,” which is the regulated, traditional cost-of-service model. They have to get it in the markets and theoretically, that sounds good.
But in reality, if they can’t get enough money to pay their cost, they’re going to retire and then you don’t have those resources. Particularly in the RTOs [regional transmission organizations, i.e. the multi-state electricity markets], you’re seeing these markets result in premature retirements of generating resources. And so, now, why is that? It’s more of a problem in the RTOS than non-RTOS because in the non-RTOS, they procure resources under the supervision of a state regulator through what’s called an integrated resource plan or IRP.
The reason I think the advantage and reliability is with the non-RTOS is that those utilities have to prove to a state regulator that their resource plan makes sense, that they’re planning to buy generating resources. Whether they’re buying wind or solar or gas, whatever, they have to go to a state regulator and say, “Here’s our plan” and then seek approval from that regulator. And if they’re shutting down units, the state regulator can say, “Wait a minute, you’re shutting down units that a few years ago you told us were needed for reliability, and now you’re telling us you want to shut them down.” So the state regulator can actually say , “No, you’re not going to shut that unit down. You’re going to keep running it.”
That’s why I think you have more accountability in the non-RTOS because the state regulators can tell the utility, “you need more resources, go build it or buy it,” or “you already have resources, you’re not going to shut them down, we’re not going to let you.”
You don’t have that in an RTO. In an RTO, it’s all done through the market. The market decides, to the extent it has a mind. You know, it’s all the result of market operations. It’s not anybody saying whether it’s a good idea or not for a certain unit to shut down.
I find it interesting that a lot of the criticism of the deregulated system — and a lot of places that are not deregulated — come from more conservative states that would generally not think of themselves as having this kind of strong state role in economic policy. What’s different about electricity? Why do you think the politics of this line up differently than it would on other issues?
I don’t know. That’s an interesting question. I haven’t even thought about it in those terms.
I think it goes back to when deregulation took place in the mid-to-late ‘90s. Other than Texas, which went all the way, the states that probably went farthest on it were in the Northeast. Part of the reason why is because they already had very high consumer prices. I think deregulation was definitely sold as a way to reduce prices to consumers. It hasn’t worked out that way.
Whereas you look at the Southeast, which never went in for deregulation. The Southeastern states, which are still non-RTO states, had relatively very low rates, so they didn’t see a problem to be fixed.
The other big trend since the 1990s and 2000s is the explosive growth of renewables, especially wind and solar. Is there something about deregulated electricity markets, the RTO system, that makes those types of resources economically more favorable than they would be under a different system?
Well, if you’re getting a very high subsidy, like wind and solar are getting, it means you can bid into the energy markets effectively at zero. So if you can bid in at zero offering, you’re virtually guaranteed to be a winner. In a non-RTO state, a state that's doing it through an integrated resource plan, the state regulator reviews the plan. That's why I think an IRP approach is better actually for implementing wind and solar because you can implement and deploy wind and solar as part of an integrated plan that includes enough balancing resources to make sure you keep the lights on.
To me an Integrated Resource Plan is a holistic process, where you can look at all the resources at your disposal: wind, solar, gas, as well as the demand side. And you can balance them all in a way that you think, “Okay, this balance is appropriate for us for the next three years, or four years, or five years.” Because you’re typically doing an IRP every three to five years anyway. And so I think it’s a good way to make sure you balance these resources.
In a market there’s no balancing. In a market it’s just winners and losers. And so wind and solar are almost always going to win because they have such massive subsidies that they’re going to get to offer in at a bid price of zero. The problem with that is they’re not going to get paid zero. They’re going to get paid the highest price [that all electricity suppliers get]. So they offer in at zero, but they get paid the highest price, which is going to be a gas price. It’s probably going to be the last gas unit to clear, that’s usually the one that’s the highest price unit. And yet because of the single clearing price mechanism, everybody gets that price. So you can offer it at zero to guarantee you clear, but then you’re going to get the highest price, usually a gas combustion turbine peaker.
Do you think we would see as much wind and solar on the grid if it weren’t for the fact that a lot of the resources are benefiting from the pricing mechanism you describe?
I don’t think you can draw that conclusion because there are non-RTO states that have what’s called a mandatory RPS, mandatory renewable portfolio standard. And so you can get there through a mandatory RPS and a cost to service model just as you can end up in a market. And actually, again, I think you can get there in a more balanced way to make sure that the reliability is not being threatened in the meantime.
To get back to what we’re talking about in the beginning, my understanding is that FERC, where you are now, played a large role in encouraging deregulation in the formation of RTOs. Is this something that your staff or other commissioners disagree with you about? How do you see the role you’re playing, where you’re doing public advocacy and reshaping this conversation around deregulation?
First of all, we always have to give the standard disclaimer, you never talk about a pending case. But FERC was really the driving force behind a lot of this deregulation. So obviously, they decided that that’s what they wanted to push, and they did. And so I think it’s appropriate as a FERC regulator to raise questions. I think raising questions about the status quo is an important thing that we do and should do. Ultimately, you advocate for what you think it ought to be and if the votes come eventually, it might take several years, but it’s important.
One of the things I try to do is, I put the consumer at the center of everything I do. It is absolutely my priority. And I think that it should be every regulator’s priority, particularly in the electric area because most consumers in America — in fact, almost all consumers in America — are captive customers. By captive. I mean, they don’t get to choose their electric supplier.
Like, where do you live, Matthew?
I live in New York City.
You don’t get to choose, right? You’re getting electricity from ConEd. And you don’t have any choice. So you’re a captive customer. And most consumers in America are captive customers. We tried this retail choice in a few states that didn’t work. You know, they’re still doing it. I’m not going to say whether it’s working or not, but I know we tried it in Virginia, and it didn’t work at all because of a lot of reasons.
I always put customers first and say, “Look, these customers are captive. We have to protect them. We have to protect the captive customers by making sure they’re not getting overcharged.” So that’s why I care about these issues. And that’s why I wrote this article. I think that customers in a lot of ways in America are not getting treated fairly. They’re getting overcharged and I think they’re not getting what they should be getting. And so I think a big part of it is some of this stuff that FERC's been pushing for the last 25 years.
Our time is running out. So I will leave with a question that is topical: It’s already been quite hot in Texas, but outside of Texas and in FERC-land, where are you concerned about reliability issues this summer?
Well, I’m concerned about everywhere. It’s not a flippant remark. I read very closely the reliability reports that we get from NERC and we have reliability challenges in many, many places. It’s not just in the RTOs. I think we have reliability challenges in the South. Fortunately, the West this year, which has been a problem the last couple of years, is actually looking pretty good because all the rain last winter — even flooding — really was great for hydropower.
I’m from California, and I think it’s the first time in my adult life that I remember stories about dams being 100 percent, if not more than 100 percent, full.
The rains and snowfall were so needed. It’s filled up reservoirs that have been really dry for years. And from an electrical standpoint, it’s been really good for hydro. So they’re looking at really good hydro availability this summer in ways they haven't been for the last several years. So the West actually, because of all the rain and the greater available of hydro, I think is in fairly good shape.
There’s a problem in California with the duck curve, the problem is still there. If you have such a high solar content, when the sun goes down, obviously the solar stops generating and so what do you do you know for the next four to five hours? Because the air conditioners are still running, it’s still hot, but that solar production has just dropped off the table. So they’ve been patching with some battery storage and some gas backup.
But I’m worried about everywhere. I watch very closely the reports that come out of the RTOs and you can’t be shutting down dispatchable resources at the rate we’re doing when you’re not replacing them one to one with wind or solar. The arithmetic doesn’t work and it’s going to catch up to us at some point.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The multi-faceted investment is defense-oriented, but could also support domestic clean energy.
MP Materials is the national champion of American rare earths, and now the federal government is taking a stake.
The complex deal, announced Thursday, involves the federal government acting as a guaranteed purchaser of MP Materials’ output, a lender, and also an investor in the company. In addition, the Department of Defense agreed to a price floor for neodymium-praseodymium products of $110 per kilogram, about $50 above its current spot price.
MP Materials owns a rare earths mine and processing facility near the California-Nevada border on the edges of the Mojave National Preserve. It claims to be “the largest producer of rare earth materials in the Western Hemisphere,” with “the only rare earth mining and processing site of scale in North America.”
As part of the deal, the company will build a “10X Facility” to produce magnets, which the DOD has guaranteed will be able to sell 100% of its output to some combination of the Pentagon and commercial customers. The DOD is also kicking in $150 million worth of financing for MP Materials’ existing processing efforts in California, alongside $1 billion from Wall Street — specifically JPMorgan Chase and Goldman Sachs — for the new magnet facility. The company described the deal in total as “a multi-billion-dollar commitment to accelerate American rare earth supply chain independence.”
Finally, the DOD will buy $400 million worth of newly issued stock in MP Materials, giving it a stake in the future production that it’s also underwriting.
Between the equity investment, the lending, and the guaranteed purchasing, the Pentagon, and by extension the federal government, has taken on considerable financial risk in casting its lot with a company whose primary asset’s previous owner went bankrupt a decade ago. But at least so far, Wall Street is happy with the deal: MP Materials’ market capitalization soared to over $7 billion on Thursday after its share price jumped over 40%, from a market capitalization of around $5 billion on Wednesday and the company is valued at around $7.5 billion as of Friday afternoon.
Despite the risk, former Biden administration officials told me they would have loved to make a deal like this.
When I asked Alex Jacquez, who worked on industrial policy for the National Economic Council in the Biden White House, whether he wished he could’ve overseen something like the DOD deal with MP Materials, he replied, “100%.” I put the same question to Ashley Zumwalt-Forbes, a former Department of Energy official who is now an investor; she said, “Absolutely.”
Rare earths and critical minerals were of intense interest to the Biden administration because of their use in renewable energy and energy storage. Magnets made with neodymium-praseodymium oxide are used in the electric motors found in EVs and wind turbines, as well as for various applications in the defense industry.
MP Materials will likely have to continue to rely on both sets of customers. Building up a real domestic market for the China-dominated industry will likely require both sets of buyers. According to a Commerce Department report issued in 2022, “despite their importance to national security, defense demand for … magnets is only a small portion of overall demand and insufficient to support an economically viable domestic industry.”
The Biden administration previously awarded MP Materials $58.5 million in 2024 through the Inflation Reduction Act’s 48C Advanced Energy Project tax credit to support the construction of a magnet facility in Fort Worth. While the deal did not come with the price guarantees and advanced commitment to purchase the facility’s output of the new agreement, GM agreed to come on as an initial buyer.
Matt Sloustcher, an MP Materials spokesperson, confirmed to me that the Texas magnet facility is on track to be fully up and running by the end of this year, and that other electric vehicle manufacturers could be customers of the new facility announced on Thursday.
At the time MP Materials received that tax credit award, the federal government was putting immense resources behind electric vehicles, which bolstered the overall supply supply chain and specifically demand for components like magnets. That support is now being slashed, however, thanks to the One Big Beautiful Bill Act, which will cancel consumer-side subsidies for electric vehicle purchases.
While the Biden tax credit deal and the DOD investment have different emphases, they both follow on years of bipartisan support for MP Materials. In 2020, the DOD used its authority under the Defense Production Act to award almost $10 million to MP Materials to support its investments in mineral refining. At the time, the company had been ailing in part due to retaliatory tariffs from China, cutting off the main market for its rare earths. The company was shipping its mined product to China to be refined, processed, and then used as a component in manufacturing.
“Currently, the Company sells the vast majority of its rare earth concentrate to Shenghe Resources,” MP Materials the company said in its 2024 annual report, referring to a Chinese rare earths company.
The Biden administration continued and deepened the federal government’s relationship with MP Materials, this time complementing the defense investments with climate-related projects. In 2022, the DOD awarded a contract worth $35 million to MP Materials for its processing project in order to “enable integration of [heavy rare earth elements] products into DoD and civilian applications, ensuring downstream [heavy rare earth elements] industries have access to a reliable feedstock supplier.”
While the DOD deal does not mean MP Materials is abandoning its energy customers or focus, the company does appear to be to the new political environment. In its February earnings release, the company mentioned “automaker” or “automotive-grade magnets” four times; in its May earnings release, that fell to zero times.
Former Biden administration officials who worked on critical minerals and energy policy are still impressed.
The deal is “a big win for the U.S. rare earths supply chain and an extremely sophisticated public-private structure giving not just capital, but strategic certainty. All the right levers are here: equity, debt, price floor, and offtake. A full-stack solution to scale a startup facility against a monopoly,” Zumwalt-Forbes, the former Department of Energy official, wrote on LinkedIn.
While the U.S. has plentiful access to rare earths in the ground, Zumwalt-Forbes told me, it has “a very underdeveloped ability to take that concentrate away from mine sites and make useful materials out of them. What this deal does is it effectively bridges that gap.”
The issue with developing that “midstream” industry, Jacquez told me, is that China’s world-leading mining, processing, and refining capacity allows it to essentially crash the price of rare earths to see off foreign competitors and make future investment in non-Chinese mining or processing unprofitable. While rare earths are valuable strategically, China’s whip hand over the market makes them less financially valuable and deters investment.
“When they see a threat — and MP is a good example — they start ramping up production,” he said. Jacquez pointed to neodymium prices spiking in early 2022, right around when the Pentagon threw itself behind MP Materials’ processing efforts. At almost exactly the same time, several state-owned Chinese rare earth companies merged. Neodymium-praseodymium oxide prices fell throughout 2022 thanks to higher Chinese production quotas — and continued to fall for several years.
While the U.S. has plentiful access to rare earths in the ground, Zumwalt-Forbes told me, it has “a very underdeveloped ability to take that concentrate out away from mine sites and make useful materials out of them. What this deal does is it effectively bridges that gap.”
The combination of whipsawing prices and monopolistic Chinese capacity to process and refine rare earths makes the U.S.’s existing large rare earth reserves less commercially viable.
“In order to compete against that monopoly, the government needed to be fairly heavy handed in structuring a deal that would both get a magnet facility up and running and ensure that that magnet facility stays in operation and weathers the storm of Chinese price manipulation,” Zumwalt-Forbes said.
Beyond simply throwing money around, the federal government can also make long-term commitments that private companies and investors may not be willing or able to make.
“What this Department of Defense deal did is, yes, it provided much-needed cash. But it also gave them strategic certainty around getting that facility off the ground, which is almost more important,” Zumwalt-Forbes said.
“I think this won’t be the last creative critical mineral deal that we see coming out of the Department of Defense,” Zumwalt-Forbes added. They certainly are in pole position here, as opposed to the other agencies and prior administrations.”
On a new plan for an old site, tariffs on Canada, and the Grain Belt Express
Current conditions: Phoenix will “cool” to 108 degrees Fahrenheit today after hitting 118 degrees on Thursday, its hottest day of the year so far • An extreme wildfire warning is in place through the weekend in Scotland • University of Colorado forecasters decreased their outlook for the 2025 hurricane season to 16 named storms, eight hurricanes, and three major hurricanes after a quiet June and July.
President Trump threatened a 35% tariff on Canadian imports on Thursday, giving Prime Minister Mark Carney a deadline of August 1 before the levies would go into effect. The move follows months of on-again, off-again threats against Canada, with former Canadian Prime Minister Justin Trudeau having successfully staved off the tariffs during talks in February. Despite those earlier negotiations, Trump held firm on his 50% tariff on steel and aluminum, which will have significant implications for green manufacturing.
As my colleagues Matthew Zeitlin and Robinson Meyer have written, tariffs on Canadian imports will affect the flow of oil, minerals, and lumber, as well as possibly break automobile supply chains in the United States. It was unclear as of Thursday, however, whether Trump’s tariffs “would affect all Canadian goods, or if he would follow through,” The New York Times reports. The move follows Trump’s announcement this week of tariffs on several other significant trade partners like Japan and South Korea, as well as a 50% tariff on copper.
The long beleaguered Lava Ridge Wind Project, formally halted earlier this year by an executive order from President Trump, might have a second life as the site for small modular reactors, Idaho News 6 reports. Sawtooth Energy Development Corporation has proposed installing six small nuclear power generators on the former Lava Ridge grounds in Jerome County, Idaho, drawn to the site by the power transmission infrastructure that could connect the region to the Midpoint Substation and onto the rest of the Western U.S. The proposed SMR project would be significantly smaller in scale than Lava Ridge, which would have produced 1,000 megawatts of electricity on a 200,000-acre footprint, sitting instead on 40 acres and generating 462 megawatts, enough to power 400,000 homes.
Sawtooth Energy plans to hold four public meetings on the proposal beginning July 21. The Lava Ridge Wind Project had faced strong local opposition — we named it the No. 1 most at-risk project of the energy transition last fall — due in part to concerns about the visibility of the turbines from the Minidoka National Historic Site, the site of a Japanese internment camp.
Get Heatmap AM directly in your inbox every morning:
Republican Senator Josh Hawley of Missouri said on social media Thursday that Energy Secretary Chris Wright had assured him that he will be “putting a stop to the Grain Belt Express green scam.” The Grain Belt Express is an 804-mile-long, $11 billion planned transmission line that would connect wind farms in Kansas to energy consumers in Missouri, Illinois, and Indiana, which has been nearing construction after “more than a decade of delays,” The New York Times reports. But earlier this month, Missouri Attorney General Andrew Bailey, a Republican, put in a request for the local public service commission to reconsider its approval, claiming that the project had overstated the number of jobs it would create and the cost savings for customers. Hawley has also been a vocal critic of the project and had asked the Energy Department to cancel its conditional loan guarantee for the transmission project.
New electric vehicles sold in Europe are significantly more environmentally friendly than gas cars, even when battery production is taken into consideration, according to a new study by the International Council on Clean Transportation. Per the report, EVs produce 73% less life-cycle greenhouse gas emissions than combustion engine cars, even considering production — a 24% improvement over 2021 estimates. The gains are also owed to the large share of renewable energy sources in Europe, and factor in that “cars sold today typically remain on the road for about 20 years, [and] continued improvement of the electricity mix will only widen the climate benefits of battery electric cars.” The gains are exclusive to battery electric cars, however; “other powertrains, including hybrids and plug-in hybrids, show only marginal or no progress in reducing their climate impacts,” the report found.
Aryna Sabalenka attempts to cool down during her Ladies' Singles semi-final at Wimbledon on Thursday.Julian Finney/Getty Images
With the United Kingdom staring down its third heatwave in a month this week, a new study warns of dire consequences if homes and cities do not adapt to the new climate reality. According to researchers at the University College London and the London School of Hygiene and Tropical Medicine, heat-related deaths in England and Wales could rise 50-fold by the 2070s, jumping from a baseline of 634 deaths to 34,027 in a worst-case scenario of 4.3 degrees Celsius warming, a high-emissions pathway.
The report specifically cited the aging populations of England and Wales, as older people become more vulnerable to the impacts of extreme heat. Low adoption of air conditioning is also a factor: only 2% to 5% of English households use air conditioning, although that number may grow to 32% by 2050. “We can mitigate [the] severity” of the health impacts of heat “by reducing greenhouse gas emissions and with carefully planned adaptations, but we have to start now,” UCL researcher Clare Heaviside told Sky News.
This week, Centerville, Ohio, rolled out high-tech recycling trucks that will use AI to scan the contents of residents’ bins and flag when items have been improperly sorted. “Reducing contamination in our recycling system lowers processing costs and improves the overall efficiency of our collection,” City Manager Wayne Davis said in a statement about the AI pilot program, per the Dayton Daily News.
Or at least the team at Emerald AI is going to try.
Everyone’s worried about the ravenous energy needs of AI data centers, which the International Energy Agency projects will help catalyze nearly 4% growth in global electricity demand this year and next, hitting the U.S. power sector particularly hard. On Monday, the Department of Energy released a report adding fuel to that fire, warning that blackouts in the U.S. could become 100 times more common by 2030 in large part due to data centers for AI.
The report stirred controversy among clean energy advocates, who cast doubt on that topline number and thus the paper’s justification for a significant fossil fuel buildout. But no matter how the AI revolution is powered, there’s widespread agreement that it’s going to require major infrastructure development of some form or another.
Not so fast, says Emerald AI, which emerged from stealth last week with $24.5 million in seed funding led by Radical Ventures along with a slew of other big name backers, including Nvidia’s venture arm as well as former Secretary of State John Kerry, Google’s chief scientist Jeff Dean, and Kleiner Perkins chair John Doerr. The startup, founded and led by Orsted’s former chief strategy and innovation officer Varun Sivaram, was built to turn data centers from “grid liabilities into flexible assets” by slowing, pausing, or redirecting AI workloads during times of peak energy demand.
Research shows this type of data center load flexibility could unleash nearly 100 gigawatts of grid capacity — the equivalent of four or five Project Stargates and enough to power about 83 million U.S. homes for a year. Such adjustments, Sivaram told me, would be necessary for only about 0.5% of a data center’s total operating time, a fragment so tiny that he says it renders any resulting training or operating performance dips for AI models essentially negligible.
As impressive as that hypothetical potential is, whether a software product can actually reduce the pressures facing the grid is a high stakes question. The U.S. urgently needs enough energy to serve that data center growth, both to ensure its economic competitiveness and to keep electricity bills affordable for Americans. If an algorithm could help alleviate even some of the urgency of an unprecedented buildout of power plants and transmission infrastructure, well, that’d be a big deal.
While Emerald AI will by no means negate the need to expand and upgrade our energy system, Sivaram told me, the software alone “materially changes the build out needs to meet massive demand expansion,” he said. “It unleashes energy abundance using our existing system.”
Grand as that sounds, the fundamental idea is nothing new. It’s the same concept as a virtual power plant, which coordinates distributed energy resources such as rooftop solar panels, smart thermostats, and electric vehicles to ramp energy supply either up or down in accordance with the grid’s needs.
Adoption of VPPs has lagged far behind their technical potential, however. That’s due to a whole host of policy, regulatory, and market barriers such as a lack of state and utility-level rules around payment structures, insufficient participation incentives for customers and utilities, and limited access to wholesale electricity markets. These programs also depend on widespread customer opt-in to make a real impact on the grid.
“It’s really hard to aggregate enough Nest thermostats to make any kind of dent,”” Sivaram told me. Data centers are different, he said, simply because “they’re enormous, they’re a small city.” They’re also, by nature, virtually controllable and often already interconnected if they’re owned by the same company. Sivaram thinks the potential of flexible data center loads is so promising and the assets themselves so valuable that governments and utilities will opt to organize “bespoke arrangements for data centers to provide their services.”
Sivaram told me he’s also optimistic that utilities will offer data center operators with flexible loads the option to skip the ever-growing interconnection queue, helping hyperscalers get online and turn a profit more quickly.
The potential to jump the queue is not something that utilities have formally advertised as an option, however, although there appears to be growing interest in the idea. An incentive like this will be core to making Emerald AI’s business case work, transmission advocate and president of Grid Strategies Rob Gramlich told me.
Data center developers are spending billions every year on the semiconductor chips powering their AI models, so the typical demand response value proposition — earn a small sum by turning off appliances when the grid is strained — doesn’t apply here. “There’s just not anywhere near enough money in that for a hyperscaler to say, Oh yeah, I’m gonna not run my Nvidia chips for a while to make $200 a megawatt hour. That’s peanuts compared to the bazillions [they] just spent,” Gramlich explained.
For Emerald AI to make a real dent in energy supply and blunt the need for an immediate and enormous grid buildout, a significant number of data center operators will have to adopt the platform. That’s where the partnership with Nvidia comes in handy, Sivaram told me, as the startup is “working with them on the reference architecture” for future AI data centers. “The goal is for all [data centers] to be potentially flexible in the future because there will be a standard reference design,” Sivaram said.
Whether or not data centers will go all in on Nvidia’s design remains to be seen, of course. Hyperscalers have not typically thought of data centers as a flexible asset. Right now, Gramlich said, most are still in the mindset that they need to be operating all 8,760 hours of the year to reach their performance targets.
“Two or three years ago, when we first noticed the surge in AI-driven demand, I talked to every hyperscaler about how flexible they thought they could be, because it seemed intuitive that machine learning might be more flexible than search and streaming,” Gramlich told me. By and large, the response was that while these companies might be interested in exploring flexibility “potentially, maybe, someday,” they were mostly focused on their mandate to get huge amounts of gigawatts online, with little time to explore new data center models.
“Even the ones that are talking about flexibility now, in terms of what they’re actually doing in the market today, they all are demanding 8,760 [hours of operation per year],” Gramlich told me.
Emerald AI is well aware that its business depends on proving to hyperscalers that a degree of flexibility won’t materially impact their operations. Last week, the startup released the results of a pilot demonstration that it ran at an Oracle data center in Phoenix, which proved it was able to reduce power consumption by 25% for three hours during a period of grid stress while still “assuring acceptable customer performance for AI workloads.”
It achieved this by categorizing specific AI tasks — think everything from model training and fine tuning to conversations with chatbots — from high to low priority, indicating the degree to which operations could be slowed while still meeting Oracle’s performance targets. Now, Emerald AI is planning additional, larger-scale demonstrations to showcase its capacity to handle more complex scenarios, such as responding to unexpected grid emergencies.
As transmission planners and hyperscalers alike wait to see more proof validating Emerald AI’s vision of the future, Sivaram is careful to note that his company is not advocating for a halt to energy system expansion. In an increasingly electrified economy, expanding and upgrading the grid will be essential — even if every data center in the world has a flexible load profile.
’We should be building a nationwide transmission system. We should be building out generation. We should be doing grid modernization with grid enhancing technologies,” Sivaram told me. “We just don’t need to overdo it. We don’t need the particularly massive projections that you’re seeing that are going to cause your grandmother’s electricity rates to spike. We can avoid that.”