You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The University of Sheffield just bought one to make sustainable airplane fuel.
The future of climate-friendly air travel might lie in a 20-foot shipping container that was dropped off on the campus of the University of Sheffield in England in late September.
Inside the box is a system developed by Mission Zero Technologies, a London-based company, that extracts carbon dioxide molecules directly from the ambient air. University researchers purchased the tech for about $762,000 for a pioneering project to turn the captured carbon into e-kerosene, a fuel that’s chemically identical to what’s used in airplanes but is made without oil or gas.
On Monday, Mission Zero announced that this mini “direct air capture” plant is now officially up and running. It has the capacity to capture 50 tons of carbon dioxide per year. That’s tiny compared to the nearly 37 billion tons emitted by humans last year, but it’s sufficient for the university’s quest to demonstrate that jet fuel made from CO2 can be safe and sustainable.
“It is kind of a baby system, for sure,” Nicholas Chadwick, Mission Zero’s CEO told me. “But we think it's delivering something quite unique.”
Courtesy of Mission Zero
When it comes to safely propelling metal tubes weighing hundreds of thousands of pounds 40,000 feet in the air, without burning fossil fuels, there are two potential paths. We can use what are called sustainable “drop in fuels,” cleaner versions of jet fuel that are compatible with existing planes and engines, but still release carbon emissions, like e-kerosene. Or, we can re-engineer planes entirely so that they can be powered by hydrogen or batteries, neither of which would release any carbon.
The first path is much more viable in the near term. Today, small volumes of sustainable drop-in fuels are already in use. They are mostly made from animal fat and used cooking oils — often literally sucked out of the fryers of fast food restaurants. There’s also potential to make sustainable drop-in fuels from biomass, like algae, wood residues from the forest floor, agricultural waste like corn stalks, or purpose-grown crops like sugar beets.
But these resources are limited. “There's only so much used cooking oil available in the world,” said Nikita Pavlenko, the program lead for aviation fuels at the International Council on Clean Transportation, a research nonprofit. There isn’t enough waste biomass either, he told me, and growing crops for energy competes with food markets and can lead to deforestation. This is why capturing CO2 from the atmosphere and using it to produce e-kerosene is so promising. “The amount of energy and CO2 available is theoretically much, much higher.”
Theoretically is the key word there. Even though the concentration of carbon in the air is high enough to warm the planet, it’s still relatively dilute, and requires a lot of energy to capture. To make e-kerosene, the CO2 has to be combined with hydrogen, which also requires a lot of energy to produce in a clean way. Then the gas mixture is put through a reactor that converts the gas into a liquid fuel.
“You’re kind of swimming upstream in terms of the chemistry and thermodynamics of it,” said Anu Khan, the deputy director of science and innovation at Carbon180. “And so it matters a lot where you get the energy from.”
Mission Zero’s technology is unique on that front. Whereas Climeworks and Heirloom, two other direct air capture companies that have plants operating today, rely on heat for their processes, the Sheffield project will run solely on electricity — in part from a solar array on site. Chadwick told me the system uses between three and five times less energy as a result, depending on how it is operated.
Courtesy of Mission Zero
The company also has a unique business model. Climeworks and Heirloom own and operate their own plants, and sell carbon credits to other companies based on the amount of CO2 they remove from the atmosphere and store permanently. Mission Zero, by contrast, is selling the technology itself. Third parties can buy its shipping containers and use the system to do whatever they choose, whether that’s storing the carbon underground and selling credits, using the carbon to make fuels, or something else.
Another benefit of Mission Zero’s tech, according to Chadwick, is that it is made from off-the-shelf parts with established supply chains. The company was able to deliver the project to the University of Sheffield within seven months of landing the contract.
Using carbon captured from the atmosphere to make fuel is one element of a larger vision that some climate advocates have for a “circular carbon economy.” If the carbon is captured and turned into products using renewable energy, the atmosphere will not be any worse-off.
Chadwick said the University researchers hope to develop a certification process to guarantee the fuel’s safety. The U.K. is in the process of introducing a sustainable aviation fuel mandate that will require at least 10% of jet fuel to be made from sustainable sources by 2030, and is considering an additional mandate for some portion of that to come from carbon and hydrogen.
“We’ve got to get started now if the scale is going to be there in seven years,” he told me.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Plus 3 more outstanding questions about this ongoing emergency.
As Los Angeles continued to battle multiple big blazes ripping through some of the most beloved (and expensive) areas of the city on Thursday, a question lingered in the background: What caused the fires in the first place?
Though fires are less common in California during this time of the year, they aren’t unheard of. In early December 2017, power lines sparked the Thomas Fire near Ventura, California, which burned through to mid-January. At the time it was the largest fire in the state since at least the 1930s. Now it’s the ninth-largest. Although that fire was in a more rural area, it ignited for many of the same reasons we’re seeing fires this week.
Read on for everything we know so far about how the fires started.
Five major fires started during the Santa Ana wind event this week:
Officials have not made any statements about the cause of any of the fires yet.
On Thursday morning, Edward Nordskog, a retired fire investigator from the Los Angeles Sheriff’s Department, told me it was unlikely they had even begun looking into the root of the biggest and most destructive of the fires in the Pacific Palisades. “They don't start an investigation until it's safe to go into the area where the fire started, and it just hasn't been safe until probably today,” he said.
It can take years to determine the cause of a fire. Investigators did not pinpoint the cause of the Thomas Fire until March 2019, more than two years after it started.
But Nordskog doesn’t think it will take very long this time. It’s easier to narrow down the possibilities for an urban fire because there are typically both witnesses and surveillance footage, he told me. He said the most common causes of wildfires in Los Angeles are power lines and those started by unhoused people. They can also be caused by sparks from vehicles or equipment.
At about 27,000 acres burned, these fires are unlikely to make the charts for the largest in California history. But because they are burning in urban, densely populated, and expensive areas, they could be some of the most devastating. With an estimated 2,000 structures damaged so far, the Eaton and Palisades fires are likely to make the list for most destructive wildfire events in the state.
And they will certainly be at the top for costliest. The Palisades Fire has already been declared a likely contender for the most expensive wildfire in U.S. history. It has destroyed more than 1,000 structures in some of the most expensive zip codes in the country. Between that and the Eaton Fire, Accuweather estimates the damages could reach $57 billion.
While we don’t know the root causes of the ignitions, several factors came together to create perfect fire conditions in Southern California this week.
First, there’s the Santa Ana winds, an annual phenomenon in Southern California, when very dry, high-pressure air gets trapped in the Great Basin and begins escaping westward through mountain passes to lower-pressure areas along the coast. Most of the time, the wind in Los Angeles blows eastward from the ocean, but during a Santa Ana event, it changes direction, picking up speed as it rushes toward the sea.
Jon Keeley, a research scientist with the US Geological Survey and an adjunct professor at the University of California, Los Angeles told me that Santa Ana winds typically blow at maybe 30 to 40 miles per hour, while the winds this week hit upwards of 60 to 70 miles per hour. “More severe than is normal, but not unique,” he said. “We had similar severe winds in 2017 with the Thomas Fire.”
Second, Southern California is currently in the midst of extreme drought. Winter is typically a rainier season, but Los Angeles has seen less than half an inch of rain since July. That means that all the shrubland vegetation in the area is bone-dry. Again, Keeley said, this was not usual, but not unique. Some years are drier than others.
These fires were also not a question of fuel management, Keeley told me. “The fuels are not really the issue in these big fires. It's the extreme winds,” he said. “You can do prescription burning in chaparral and have essentially no impact on Santa Ana wind-driven fires.” As far as he can tell, based on information from CalFire, the Eaton Fire started on an urban street.
While it’s likely that climate change played a role in amplifying the drought, it’s hard to say how big a factor it was. Patrick Brown, a climate scientist at the Breakthrough Institute and adjunct professor at Johns Hopkins University, published a long post on X outlining the factors contributing to the fires, including a chart of historic rainfall during the winter in Los Angeles that shows oscillations between very wet and very dry years over the past eight decades. But climate change is expected to make dry years drier in Los Angeles. “The LA area is about 3°C warmer than it would be in preindustrial conditions, which (all else being equal) works to dry fuels and makes fires more intense,” Brown wrote.
And more of this week’s top renewable energy fights across the country.
1. Otsego County, Michigan – The Mitten State is proving just how hard it can be to build a solar project in wooded areas. Especially once Fox News gets involved.
2. Atlantic County, New Jersey – Opponents of offshore wind in Atlantic City are trying to undo an ordinance allowing construction of transmission cables that would connect the Atlantic Shores offshore wind project to the grid.
3. Benton County, Washington – Sorry Scout Clean Energy, but the Yakima Nation is coming for Horse Heaven.
Here’s what else we’re watching right now…
In Connecticut, officials have withdrawn from Vineyard Wind 2 — leading to the project being indefinitely shelved.
In Indiana, Invenergy just got a rejection from Marshall County for special use of agricultural lands.
In Kansas, residents in Dickinson County are filing legal action against county commissioners who approved Enel’s Hope Ridge wind project.
In Kentucky, a solar project was actually approved for once – this time for the East Kentucky Power Cooperative.
In North Carolina, Davidson County is getting a solar moratorium.
In Pennsylvania, the town of Unity rejected a solar project. Elsewhere in the state, the developer of the Newton 1 solar project is appealing their denial.
In South Carolina, a state appeals court has upheld the rejection of a 2,300 acre solar project proposed by Coastal Pine Solar.
In Washington State, Yakima County looks like it’ll keep its solar moratorium in place.
And more of this week’s top policy news around renewables.
1. Trump’s Big Promise – Our nation’s incoming president is now saying he’ll ban all wind projects on Day 1, an expansion of his previous promise to stop only offshore wind.
2. The Big Nuclear Lawsuit – Texas and Utah are suing to kill the Nuclear Regulatory Commission’s authority to license small modular reactors.
3. Biden’s parting words – The Biden administration has finished its long-awaited guidance for the IRA’s tech-neutral electricity credit (which barely changed) and hydrogen production credit.