You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Inside Climeworks’ big experiment to wrest carbon from the air
In the spring of 2021, the world’s leading authority on energy published a “roadmap” for preventing the most catastrophic climate change scenarios. One of its conclusions was particularly daunting. Getting energy-related emissions down to net zero by 2050, the International Energy Agency said, would require “huge leaps in innovation.”
Existing technologies would be mostly sufficient to carry us down the carbon curve over the next decade. But after that, nearly half of the remaining work would have to come from solutions that, for all intents and purposes, did not exist yet. Some would only require retooling existing industries, like developing electric long-haul trucks and carbon-free steel. But others would have to be built from almost nothing and brought to market in record time.
What will it take to rapidly develop new solutions, especially those that involve costly physical infrastructure and which have essentially no commercial value today?
That’s the challenge facing Climeworks, the Swiss company developing machines to wrest carbon dioxide molecules directly from the air. In September 2021, a few months after the IEA’s landmark report came out, Climeworks switched on its first commercial-scale “direct air capture” facility, a feat of engineering it dubbed “Orca,” in Iceland.
The technology behind Orca is one of the top candidates to clean up the carbon already blanketing the Earth. It could also be used to balance out any stubborn, residual sources of greenhouse gases in the future, such as from agriculture or air travel, providing the “net” in net-zero. If we manage to scale up technologies like Orca to the point where we remove more carbon than we release, we could even begin cooling the planet.
As the largest carbon removal plant operating in the world, Orca is either trivial or one of the most important climate projects built in the last decade, depending on how you look at it. It was designed to capture approximately 4,000 metric tons of carbon from the air per year, which, as one climate scientist, David Ho, put it, is the equivalent of rolling back the clock on just 3 seconds of global emissions. But the learnings gleaned from Orca could surpass any quantitative assessment of its impact. How well do these “direct air capture” machines work in the real world? How much does it really cost to run them? And can they get better?
The company — and its funders — are betting they can. Climeworks has made major deals with banks, insurers, and other companies trying to go green to eventually remove carbon from the atmosphere on their behalf. Last year, the company raised $650 million in equity that will “unlock the next phase of its growth,” scaling the technology “up to multi-million-ton capacity … as carbon removal becomes a trillion-dollar market.” And just last month, the U.S. Department of Energy selected Climeworks, along with another carbon removal company, Heirloom, to receive up to $600 million to build a direct air capture “hub” in Louisiana, with the goal of removing one million tons of carbon annually.
Two years after powering up Orca, Climeworks has yet to reveal how effective the technology has proven to be. But in extensive interviews, top executives painted a picture of innovation in progress.
Chief marketing officer Julie Gosalvez told me that Orca is small and climatically insignificant on purpose. The goal is not to make a dent in climate change — yet — but to maximize learning at minimal cost. “You want to learn when you're small, right?” Gosalvez said. “It’s really de-risking the technology. It’s not like Tesla doing EVs when we have been building cars for 70 years and the margin of learning and risk is much smaller. It’s completely new.”
From the ground, Orca looks sort of like a warehouse or a server farm with a massive air conditioning system out back. The plant consists of eight shipping container-sized boxes arranged in a U-shape around a central building, each one equipped with an array of fans. When the plant is running, which is more or less all the time, the fans suck air into the containers where it makes contact with a porous filter known as a “sorbent” which attracts CO2 molecules.
Courtesy of Climeworks
When the filters become totally saturated with CO2, the vents on the containers snap shut, and the containers are heated to more than 212 degrees Fahrenheit. This releases the CO2, which is then delivered through a pipe to a secondary process called “liquefaction,” where it is compressed into a liquid. Finally, the liquid CO2 is piped into basalt rock formations underground, where it slowly mineralizes into stone. The process requires a little bit of electricity and a lot of heat, all of which comes from a carbon-free source — a geothermal power plant nearby.
A day at Orca begins with the morning huddle. The total number on the team is often in flux, but it typically has a staff of about 15 people, Climeworks’ head of operations Benjamin Keusch told me. Ten work in a virtual control room 1,600 miles away in Zurich, taking turns monitoring the plant on a laptop and managing its operations remotely. The remainder work on site, taking orders from the control room, repairing equipment, and helping to run tests.
During the huddle, the team discusses any maintenance that needs to be done. If there’s an issue, the control room will shut down part of the plant while the on-site workers investigate. So far, they’ve dealt with snow piling up around the plant that had to be shoveled, broken and corroded equipment that had to be replaced, and sediment build-up that had to be removed.
Courtesy of Climeworks
The air is more humid and sulfurous at the site in Iceland than in Switzerland, where Climeworks had built an earlier, smaller-scale model, so the team is also learning how to optimize the technology for different weather. Within all this troubleshooting, there’s additional trade-offs to explore and lessons to learn. If a part keeps breaking, does it make more sense to plan to replace it periodically, or to redesign it? How do supply chain constraints play into that calculus?
The company is also performing tests regularly, said Keusch. For example, the team has tested new component designs at Orca that it now plans to incorporate into Climeworks’ next project from the start. (Last year, the company began construction on “Mammoth,” a new plant that will be nine times larger than Orca, on a neighboring site.) At a summit that Climeworks hosted in June, co-founder Jan Wurzbacher said the company believes that over the next decade, it will be able to make its direct air capture system twice as small and cut its energy consumption in half.
“In innovation lingo, the jargon is we haven’t converged on a dominant design,” Gregory Nemet, a professor at the University of Wisconsin who studies technological development, told me. For example, in the wind industry, turbines with three blades, upwind design, and a horizontal axis, are now standard. “There were lots of other experiments before that convergence happened in the late 1980s,” he said. “So that’s kind of where we are with direct air capture. There’s lots of different ways that are being tried right now, even within a company like Climeworks."
Although Climeworks was willing to tell me about the goings-on at Orca over the last two years, the company declined to share how much carbon it has captured or how much energy, on average, the process has used.
Gosalvez told me that the plant’s performance has improved month after month, and that more detailed information was shared with investors. But she was hesitant to make the data public, concerned that it could be misinterpreted, because tests and maintenance at Orca require the plant to shut down regularly.
“Expectations are not in line with the stage of the technology development we are at. People expect this to be turnkey,” she said. “What does success look like? Is it the absolute numbers, or the learnings and ability to scale?”
Danny Cullenward, a climate economist and consultant who has studied the integrity of various carbon removal methods, did not find the company’s reluctance to share data especially concerning. “For these earliest demonstration facilities, you might expect people to hit roadblocks or to have to shut the plant down for a couple of weeks, or do all sorts of things that are going to make it hard to transparently report the efficiency of your process, the number of tons you’re getting at different times,” he told me.
But he acknowledged that there was an inherent tension to the stance, because ultimately, Climeworks’ business model — and the technology’s effectiveness as a climate solution — depend entirely on the ability to make precise, transparent, carbon accounting claims.
Nemet was also of two minds about it. Carbon removal needs to go from almost nothing today to something like a billion tons of carbon removed per year in just three decades, he said. That’s a pace on the upper end of what’s been observed historically with other technologies, like solar panels. So it’s important to understand whether Climeworks’ tech has any chance of meeting the moment. Especially since the company faces competition from a number of others developing direct air capture technologies, like Heirloom and Occidental Petroleum, that may be able to do it cheaper, or faster.
However, Nemet was also sympathetic to the position the company was in. “It’s relatively incremental how these technologies develop,” he said. “I have heard this criticism that this is not a real technology because we haven’t built it at scale, so we shouldn’t depend on it. Or that one of these plants not doing the removal that it said it would do shows that it doesn’t work and that we therefore shouldn’t plan on having it available. To me, that’s a pretty high bar to cross with a climate mitigation technology that could be really useful.”
More data on Orca is coming. Climeworks recently announced that it will work with the company Puro.Earth to certify every ton of CO2 that it removes from the atmosphere and stores underground, in order to sell carbon credits based on this service. The credits will be listed on a public registry.
But even if Orca eventually runs at full capacity, Climeworks will never be able to sell 4,000 carbon credits per year from the plant. Gosalvez clarified that 4,000 tons is the amount of carbon the plant is designed to suck up annually, but the more important number is the amount of “net” carbon removal it can produce. “That might be the first bit of education you need to get out there,” she said, “because it really invites everyone to look at what are the key drivers to be paid attention to.”
She walked me through a chart that illustrated the various ways in which some of Orca’s potential to remove carbon can be lost. First, there’s the question of availability — how often does the plant have to shut down due to maintenance or power shortages? Climeworks aims to limit those losses to 10%. Next, there’s the recovery stage, where the CO2 is separated from the sorbent, purified, and liquified. Gosalvez said it’s basically impossible to do this without losing some CO2. At best, the company hopes to limit that to 5%.
Finally, the company also takes into account “gray emissions,” or the carbon footprint associated with the business, like the materials, the construction, and the eventual decommissioning of the plant and restoration of the site to its former state. If one of Climeworks’ plants ever uses energy from fossil fuels (which the company has said it does not plan to do) it would incorporate any emissions from that energy. Climeworks aims to limit gray emissions to 15%.
In the end, Orca’s net annual carbon removal capacity — the amount Climeworks can sell to customers — is really closer to 3,000 tons. Gosalvez hopes other carbon removal companies adopt the same approach. “Ultimately what counts is your net impact on the planet and the atmosphere,” she said.
Get one great climate story in your inbox every day:
Despite being a first-of-its-kind demonstration plant — and an active research site — Orca is also a commercial project. In fact, Gosalvez told me that Orca’s entire estimated capacity for carbon removal, over the 12 years that the plant is expected to run, sold out shortly after it began operating. The company is now selling carbon removal services from its yet-to-be-built Mammoth plant.
In January, Climeworks announced that Orca had officially fulfilled orders from Microsoft, Stripe, and Shopify. Those companies have collectively asked Climeworks to remove more than 16,000 tons of carbon, according to the deal-tracking site cdr.fyi, but it’s unclear what portion of that was delivered. The achievement was verified by a third party, but the total amount removed was not made public.
Climeworks has also not disclosed how much it has charged companies per ton of carbon, a metric that will eventually be an important indicator of whether the technology can scale to a climate-relevant level. But it has provided rough estimates of how much it expects each ton of carbon removal to cost as the technology scales — expectations which seem to have shifted after two years of operating Orca.
In 2021, Climeworks co-founder Jan Wurzbacher said the company aimed to get the cost down to $200 to $300 per ton removed by the end of the decade, with steeper declines in subsequent years. But at the summit in June, he presented a new cost curve chart showing that the price was currently more than $1,000, and that by the end of the decade, it would fall to somewhere between $400 to $700. The range was so large because the cost of labor, energy, and storing the CO2 varied widely by location, he said. The company aims to get the price down to $100 to $300 per ton by 2050, when the technology has significantly matured.
Critics of carbon removal technologies often point to the vast sums flowing into direct air capture tech like Orca, which are unlikely to make a meaningful difference in climate change for decades to come. During a time when worsening disasters make action feel increasingly urgent, many are skeptical of the value of investing limited funds and political energy into these future solutions. Carbon removal won’t make much of a difference if the world doesn’t deploy the tools already available to reduce emissions as rapidly as possible — and there’s certainly not enough money or effort going into that yet.
But we’ll never have the option to fully halt climate change, let alone begin reversing it, if we don’t develop solutions like Orca. In September, the International Energy Agency released an update to its seminal net-zero report. The new analysis said that in the last two years, the world had, in fact, made significant progress on innovation. Now, some 65% of emission reductions after 2030 could be accounted for with technologies that had reached market uptake. It even included a line about the launch of Orca, noting that Climeworks’ direct air capture technology had moved from the prototype to the demonstration stage.
But it cautioned that DAC needs “to be scaled up dramatically to play the role envisaged,” in the net zero scenario. Climeworks’ experience with Orca offers a glimpse of how much work is yet to be done.
Read more about carbon removal:
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Recovering from the Los Angeles wildfires will be expensive. Really expensive. Insurance analysts and banks have already produced a wide range of estimates of both what insurance companies will pay out and overall economic loss. AccuWeatherhas put out an eye-catching preliminary figure of $52 billion to $57 billion for economic losses, with the service’s chief meteorologist saying that the fires have the potential to “become the worst wildfire in modern California history based on the number of structures burned and economic loss.” On Thursday, J.P. Morgan doubled its previous estimate for insured losses to $20 billion, with an economic loss figure of $50 billion — about the gross domestic product of the country of Jordan.
The startlingly high loss figures from a fire that has only lasted a few days and is (relatively) limited in scope show just how distinctly devastating an urban fire can be. Enormous wildfires thatcover millions of acres like the 2023 Canadian wildfires can spew ash and particulate matter all over the globe and burn for months, darkening skies and clogging airways in other countries. And smaller — and far deadlier fires — than those still do not produce the same financial roll.
It’s in coastal Southern California where you find large population centers areas known by all to be at extreme risk of fire. And so a fire there can destroy a whole neighborhood in a few hours and put the state’s insurance system into jeopardy.
One reason why the projected economic impacts of the fires are so high is that the structures that have burned and the land those structures sit on are very valuable. Pacific Palisades, Malibu, and Santa Monica contain some of the most sought-after real estate on planet earth, with typical home prices over $2 million. Pacific Palisades itself has median home values of around $3 million, according to JPMorgan Chase.
The AccuWeather estimates put the economic damage for the Los Angeles fires at several times previous large, urban fires — the Maui wildfire in 2023 was estimated to cause around $14 billion of economic loss, for example — while the figure would be about a third or a quarter of a large hurricane, which tend to strike areas with millions of people in them across several states.
“The fires have not been contained thus far and continue to spread, implying that estimates of potential economic and insured losses are likely to increase,” the JPMorgan analysts wrote Thursday.
That level of losses would make the fires costlier in economic terms than the 2018 Butte County Camp Fire, whose insured losses of $10 billion made it California’s costliest at the time. That fire was far larger than the Los Angeles fires, spreading over 150,000 acres compared to just over 17,000 acres for the Palisades Fire and over 10,000 acres for the Eaton Fire. It also led to more than 80 deaths in the town of Paradise.
So far, around 2,000 homes have been destroyed,according to the Los Angeles Times,a fraction of the more than 19,000 structures affected by the Camp Fire. The difference in estimated losses comes from the fact that homes in Pacific Palisades weigh in at more than six times those in rural Butte, according to JPMorgan.
While insured losses get the lion’s share of attention when it comes to the cost impacts of a natural disaster, the potential damages go far beyond the balance sheet of insurers.
For one, it’s likely that many affected homeowners did not even carry insurance, either because their insurers failed to renew their existing policies or the homeowners simply chose to go without due to the high cost of what insurance they could find. “A larger than usual portion of the losses caused by the wildfires will be uninsured,” according to Morningstar DBRS, which estimated total insured losses at more than $8 billion. Many homeowners carry insurance from California’s backup FAIR Plan, which may itself come under financial pressure, potentially leading to assessments from the state’s policyholders to bolster its ability to pay claims.
AccuWeather arrived at its economic impact figure by looking not just at losses from property damage but also wages that go unearned due to economic activity slowing down or halting in affected areas, infrastructure that needs to be repaired, supply chain issues, and transportation snarls. Even when homes and businesses aren’t destroyed, people may be unable to work due to evacuations; businesses may close due to the dispersal of their customers or inability of their suppliers to make deliveries. Smoke inhalation can lead to short-, medium-, and long-term health impacts that take a dent out of overall economic activity.
The high level of insured losses, meanwhile, could mean that insurers’ will see less surplus and could have to pay more for reinsurance, Nancy Watkins, an actuary and wildfire expert at Milliman, told me in an email. This may mean that they would have to shed yet more policies “in order to avoid deterioration in their financial strength ratings,” just as California has been trying to lure insurers back with reforms to its dysfunctional insurance market.
The economic costs of the fire will likely be felt for years if not decades. While it would take an act of God far stronger than a fire to keep people from building homes on the slopes of the Santa Monica Mountains or off the Pacific Coast, the city that rebuilds may be smaller, more heavily fortified, and more expensive than the one that existed at the end of last year. And that’s just before the next big fire.
Suburban streets, exploding pipes, and those Santa Ana winds, for starters.
A fire needs three things to burn: heat, fuel, and oxygen. The first is important: At some point this week, for a reason we have yet to discover and may never will, a piece of flammable material in Los Angeles County got hot enough to ignite. The last is essential: The resulting fires, which have now burned nearly 29,000 acres, are fanned by exceptionally powerful and dry Santa Ana winds.
But in the critical days ahead, it is that central ingredient that will preoccupy fire managers, emergency responders, and the public, who are watching their homes — wood-framed containers full of memories, primary documents, material wealth, sentimental heirlooms — transformed into raw fuel. “Grass is one fuel model; timber is another fuel model; brushes are another — there are dozens of fuel models,” Bobbie Scopa, a veteran firefighter and author of the memoir Both Sides of the Fire Line, told me. “But when a fire goes from the wildland into the urban interface, you’re now burning houses.”
This jump from chaparral shrubland into neighborhoods has frustrated firefighters’ efforts to gain an upper hand over the L.A. County fires. In the remote wilderness, firefighters can cut fire lines with axes, pulaskis, and shovels to contain the blaze. (A fire’s “containment” describes how much firefighters have encircled; 25% containment means a quarter of the fire perimeter is prevented from moving forward by manmade or natural fire breaks.)
Once a fire moves into an urban community and starts spreading house to house, however, as has already happened in Santa Monica, Pasadena, and other suburbs of Los Angeles, those strategies go out the window. A fire break starves a fire by introducing a gap in its fuel; it can be a cleared strip of vegetation, a river, or even a freeway. But you can’t just hack a fire break through a neighborhood. “Now you’re having to use big fire engines and spray lots of water,” Scopa said, compared to the wildlands where “we do a lot of firefighting without water.”
Water has already proven to be a significant issue in Los Angeles, where many hydrants near Palisades, the biggest of the five fires, had already gone dry by 3:00 a.m. Wednesday. “We’re fighting a wildfire with urban water systems, and that is really challenging,” Los Angeles Department of Water and Power CEO Janisse Quiñones explained in a news conference later that same day.
LADWP said it had filled its 114 water storage tanks before the fires started, but the city’s water supply was never intended to stop a 17,000-acre fire. The hydrants are “meant to put out a two-house fire, a one-house fire, or something like that,” Faith Kearns, a water and wildfire researcher at Arizona State University, told me. Additionally, homeowners sometimes leave their sprinklers on in the hopes that it will help protect their house, or try to fight fires with their own hoses. At a certain point, the system — just like the city personnel — becomes overwhelmed by the sheer magnitude of the unfolding disaster.
Making matters worse is the wind, which restricted some of the aerial support firefighters typically employ. As gusts slowed on Thursday, retardant and water drops were able to resume, helping firefighters in their efforts. (The Eaton Fire, while still technically 0% contained because there are no established fire lines, has “significantly stopped” growing, The New York Times reports). Still, firefighters don’t typically “paint” neighborhoods; the drops, which don’t put out fires entirely so much as suppress them enough that firefighters can fight them at close range, are a liability. Kearns, however, told me that “the winds were so high, they weren’t able to do the water drops that they normally do and that are an enormous part of all fire operations,” and that “certainly compounded the problems of the fire hydrants running dry.”
Firefighters’ priority isn’t saving structures, though. “Firefighters save lives first before they have to deal with fire,” Alexander Maranghides, a fire protection engineer at the National Institute of Standards and Technology and the author of an ongoing case study of the 2018 Camp fire in Paradise, California, told me. That can be an enormous and time-consuming task in a dense area like suburban Los Angeles, and counterintuitively lead to more areas burning down. Speaking specifically from his conclusions about the Camp fire, which was similarly a wildland-urban interface, or WUI fire, Maranghides added, “It is very, very challenging because as things deteriorate — you’re talking about downed power lines, smoke obstructing visibility, and you end up with burn-overs,” when a fire moves so quickly that it overtakes people or fire crews. “And now you have to go and rescue those civilians who are caught in those burn-overs.” Sometimes, that requires firefighters to do triage — and let blocks burn to save lives.
Perhaps most ominously, the problems don’t end once the fire is out. When a house burns down, it is often the case that its water pipes burst. (This also adds to the water shortage woes during the event.) But when firefighters are simultaneously pumping water out of other parts of the system, air can be sucked down into those open water pipes. And not just any air. “We’re not talking about forest smoke, which is bad; we’re talking about WUI smoke, which is bad plus,” Maranghides said, again referring to his research in Paradise. “It’s not just wood burning; it’s wood, plastics, heavy metals, computers, cars, batteries, everything. You don’t want to be breathing it, and you don’t want it going into your water system.”
Water infrastructure can be damaged in other ways, as well. Because fires are burning “so much hotter now,” Kearns told me, contamination can occur due to melting PVC piping, which releases benzene, a carcinogen. Watersheds and reservoirs are also in danger of extended contamination, particularly once rains finally do come and wash soot, silt, debris, and potentially toxic flame retardant into nearby streams.
But that’s a problem for the future. In the meantime, Los Angeles — and lots of it — continues to burn.
“I don’t care how many resources you have; when the fires are burning like they do when we have Santa Anas, there’s so little you can do,” Scopa said. “All you can do is try to protect the people and get the people out, and try to keep your firefighters safe.”
Plus 3 more outstanding questions about this ongoing emergency.
As Los Angeles continued to battle multiple big blazes ripping through some of the most beloved (and expensive) areas of the city on Thursday, a question lingered in the background: What caused the fires in the first place?
Though fires are less common in California during this time of the year, they aren’t unheard of. In early December 2017, power lines sparked the Thomas Fire near Ventura, California, which burned through to mid-January. At the time it was the largest fire in the state since at least the 1930s. Now it’s the ninth-largest. Although that fire was in a more rural area, it ignited for many of the same reasons we’re seeing fires this week.
Read on for everything we know so far about how the fires started.
Five major fires started during the Santa Ana wind event this week:
Officials have not made any statements about the cause of any of the fires yet.
On Thursday morning, Edward Nordskog, a retired fire investigator from the Los Angeles Sheriff’s Department, told me it was unlikely they had even begun looking into the root of the biggest and most destructive of the fires in the Pacific Palisades. “They don't start an investigation until it's safe to go into the area where the fire started, and it just hasn't been safe until probably today,” he said.
It can take years to determine the cause of a fire. Investigators did not pinpoint the cause of the Thomas Fire until March 2019, more than two years after it started.
But Nordskog doesn’t think it will take very long this time. It’s easier to narrow down the possibilities for an urban fire because there are typically both witnesses and surveillance footage, he told me. He said the most common causes of wildfires in Los Angeles are power lines and those started by unhoused people. They can also be caused by sparks from vehicles or equipment.
At about 27,000 acres burned, these fires are unlikely to make the charts for the largest in California history. But because they are burning in urban, densely populated, and expensive areas, they could be some of the most devastating. With an estimated 2,000 structures damaged so far, the Eaton and Palisades fires are likely to make the list for most destructive wildfire events in the state.
And they will certainly be at the top for costliest. The Palisades Fire has already been declared a likely contender for the most expensive wildfire in U.S. history. It has destroyed more than 1,000 structures in some of the most expensive zip codes in the country. Between that and the Eaton Fire, Accuweather estimates the damages could reach $57 billion.
While we don’t know the root causes of the ignitions, several factors came together to create perfect fire conditions in Southern California this week.
First, there’s the Santa Ana winds, an annual phenomenon in Southern California, when very dry, high-pressure air gets trapped in the Great Basin and begins escaping westward through mountain passes to lower-pressure areas along the coast. Most of the time, the wind in Los Angeles blows eastward from the ocean, but during a Santa Ana event, it changes direction, picking up speed as it rushes toward the sea.
Jon Keeley, a research scientist with the US Geological Survey and an adjunct professor at the University of California, Los Angeles told me that Santa Ana winds typically blow at maybe 30 to 40 miles per hour, while the winds this week hit upwards of 60 to 70 miles per hour. “More severe than is normal, but not unique,” he said. “We had similar severe winds in 2017 with the Thomas Fire.”
Second, Southern California is currently in the midst of extreme drought. Winter is typically a rainier season, but Los Angeles has seen less than half an inch of rain since July. That means that all the shrubland vegetation in the area is bone-dry. Again, Keeley said, this was not usual, but not unique. Some years are drier than others.
These fires were also not a question of fuel management, Keeley told me. “The fuels are not really the issue in these big fires. It's the extreme winds,” he said. “You can do prescription burning in chaparral and have essentially no impact on Santa Ana wind-driven fires.” As far as he can tell, based on information from CalFire, the Eaton Fire started on an urban street.
While it’s likely that climate change played a role in amplifying the drought, it’s hard to say how big a factor it was. Patrick Brown, a climate scientist at the Breakthrough Institute and adjunct professor at Johns Hopkins University, published a long post on X outlining the factors contributing to the fires, including a chart of historic rainfall during the winter in Los Angeles that shows oscillations between very wet and very dry years over the past eight decades. But climate change is expected to make dry years drier in Los Angeles. “The LA area is about 3°C warmer than it would be in preindustrial conditions, which (all else being equal) works to dry fuels and makes fires more intense,” Brown wrote.