You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Inside Climeworks’ big experiment to wrest carbon from the air
In the spring of 2021, the world’s leading authority on energy published a “roadmap” for preventing the most catastrophic climate change scenarios. One of its conclusions was particularly daunting. Getting energy-related emissions down to net zero by 2050, the International Energy Agency said, would require “huge leaps in innovation.”
Existing technologies would be mostly sufficient to carry us down the carbon curve over the next decade. But after that, nearly half of the remaining work would have to come from solutions that, for all intents and purposes, did not exist yet. Some would only require retooling existing industries, like developing electric long-haul trucks and carbon-free steel. But others would have to be built from almost nothing and brought to market in record time.
What will it take to rapidly develop new solutions, especially those that involve costly physical infrastructure and which have essentially no commercial value today?
That’s the challenge facing Climeworks, the Swiss company developing machines to wrest carbon dioxide molecules directly from the air. In September 2021, a few months after the IEA’s landmark report came out, Climeworks switched on its first commercial-scale “direct air capture” facility, a feat of engineering it dubbed “Orca,” in Iceland.
The technology behind Orca is one of the top candidates to clean up the carbon already blanketing the Earth. It could also be used to balance out any stubborn, residual sources of greenhouse gases in the future, such as from agriculture or air travel, providing the “net” in net-zero. If we manage to scale up technologies like Orca to the point where we remove more carbon than we release, we could even begin cooling the planet.
As the largest carbon removal plant operating in the world, Orca is either trivial or one of the most important climate projects built in the last decade, depending on how you look at it. It was designed to capture approximately 4,000 metric tons of carbon from the air per year, which, as one climate scientist, David Ho, put it, is the equivalent of rolling back the clock on just 3 seconds of global emissions. But the learnings gleaned from Orca could surpass any quantitative assessment of its impact. How well do these “direct air capture” machines work in the real world? How much does it really cost to run them? And can they get better?
The company — and its funders — are betting they can. Climeworks has made major deals with banks, insurers, and other companies trying to go green to eventually remove carbon from the atmosphere on their behalf. Last year, the company raised $650 million in equity that will “unlock the next phase of its growth,” scaling the technology “up to multi-million-ton capacity … as carbon removal becomes a trillion-dollar market.” And just last month, the U.S. Department of Energy selected Climeworks, along with another carbon removal company, Heirloom, to receive up to $600 million to build a direct air capture “hub” in Louisiana, with the goal of removing one million tons of carbon annually.
Two years after powering up Orca, Climeworks has yet to reveal how effective the technology has proven to be. But in extensive interviews, top executives painted a picture of innovation in progress.
Chief marketing officer Julie Gosalvez told me that Orca is small and climatically insignificant on purpose. The goal is not to make a dent in climate change — yet — but to maximize learning at minimal cost. “You want to learn when you're small, right?” Gosalvez said. “It’s really de-risking the technology. It’s not like Tesla doing EVs when we have been building cars for 70 years and the margin of learning and risk is much smaller. It’s completely new.”
From the ground, Orca looks sort of like a warehouse or a server farm with a massive air conditioning system out back. The plant consists of eight shipping container-sized boxes arranged in a U-shape around a central building, each one equipped with an array of fans. When the plant is running, which is more or less all the time, the fans suck air into the containers where it makes contact with a porous filter known as a “sorbent” which attracts CO2 molecules.
Courtesy of Climeworks
When the filters become totally saturated with CO2, the vents on the containers snap shut, and the containers are heated to more than 212 degrees Fahrenheit. This releases the CO2, which is then delivered through a pipe to a secondary process called “liquefaction,” where it is compressed into a liquid. Finally, the liquid CO2 is piped into basalt rock formations underground, where it slowly mineralizes into stone. The process requires a little bit of electricity and a lot of heat, all of which comes from a carbon-free source — a geothermal power plant nearby.
A day at Orca begins with the morning huddle. The total number on the team is often in flux, but it typically has a staff of about 15 people, Climeworks’ head of operations Benjamin Keusch told me. Ten work in a virtual control room 1,600 miles away in Zurich, taking turns monitoring the plant on a laptop and managing its operations remotely. The remainder work on site, taking orders from the control room, repairing equipment, and helping to run tests.
During the huddle, the team discusses any maintenance that needs to be done. If there’s an issue, the control room will shut down part of the plant while the on-site workers investigate. So far, they’ve dealt with snow piling up around the plant that had to be shoveled, broken and corroded equipment that had to be replaced, and sediment build-up that had to be removed.
Courtesy of Climeworks
The air is more humid and sulfurous at the site in Iceland than in Switzerland, where Climeworks had built an earlier, smaller-scale model, so the team is also learning how to optimize the technology for different weather. Within all this troubleshooting, there’s additional trade-offs to explore and lessons to learn. If a part keeps breaking, does it make more sense to plan to replace it periodically, or to redesign it? How do supply chain constraints play into that calculus?
The company is also performing tests regularly, said Keusch. For example, the team has tested new component designs at Orca that it now plans to incorporate into Climeworks’ next project from the start. (Last year, the company began construction on “Mammoth,” a new plant that will be nine times larger than Orca, on a neighboring site.) At a summit that Climeworks hosted in June, co-founder Jan Wurzbacher said the company believes that over the next decade, it will be able to make its direct air capture system twice as small and cut its energy consumption in half.
“In innovation lingo, the jargon is we haven’t converged on a dominant design,” Gregory Nemet, a professor at the University of Wisconsin who studies technological development, told me. For example, in the wind industry, turbines with three blades, upwind design, and a horizontal axis, are now standard. “There were lots of other experiments before that convergence happened in the late 1980s,” he said. “So that’s kind of where we are with direct air capture. There’s lots of different ways that are being tried right now, even within a company like Climeworks."
Although Climeworks was willing to tell me about the goings-on at Orca over the last two years, the company declined to share how much carbon it has captured or how much energy, on average, the process has used.
Gosalvez told me that the plant’s performance has improved month after month, and that more detailed information was shared with investors. But she was hesitant to make the data public, concerned that it could be misinterpreted, because tests and maintenance at Orca require the plant to shut down regularly.
“Expectations are not in line with the stage of the technology development we are at. People expect this to be turnkey,” she said. “What does success look like? Is it the absolute numbers, or the learnings and ability to scale?”
Danny Cullenward, a climate economist and consultant who has studied the integrity of various carbon removal methods, did not find the company’s reluctance to share data especially concerning. “For these earliest demonstration facilities, you might expect people to hit roadblocks or to have to shut the plant down for a couple of weeks, or do all sorts of things that are going to make it hard to transparently report the efficiency of your process, the number of tons you’re getting at different times,” he told me.
But he acknowledged that there was an inherent tension to the stance, because ultimately, Climeworks’ business model — and the technology’s effectiveness as a climate solution — depend entirely on the ability to make precise, transparent, carbon accounting claims.
Nemet was also of two minds about it. Carbon removal needs to go from almost nothing today to something like a billion tons of carbon removed per year in just three decades, he said. That’s a pace on the upper end of what’s been observed historically with other technologies, like solar panels. So it’s important to understand whether Climeworks’ tech has any chance of meeting the moment. Especially since the company faces competition from a number of others developing direct air capture technologies, like Heirloom and Occidental Petroleum, that may be able to do it cheaper, or faster.
However, Nemet was also sympathetic to the position the company was in. “It’s relatively incremental how these technologies develop,” he said. “I have heard this criticism that this is not a real technology because we haven’t built it at scale, so we shouldn’t depend on it. Or that one of these plants not doing the removal that it said it would do shows that it doesn’t work and that we therefore shouldn’t plan on having it available. To me, that’s a pretty high bar to cross with a climate mitigation technology that could be really useful.”
More data on Orca is coming. Climeworks recently announced that it will work with the company Puro.Earth to certify every ton of CO2 that it removes from the atmosphere and stores underground, in order to sell carbon credits based on this service. The credits will be listed on a public registry.
But even if Orca eventually runs at full capacity, Climeworks will never be able to sell 4,000 carbon credits per year from the plant. Gosalvez clarified that 4,000 tons is the amount of carbon the plant is designed to suck up annually, but the more important number is the amount of “net” carbon removal it can produce. “That might be the first bit of education you need to get out there,” she said, “because it really invites everyone to look at what are the key drivers to be paid attention to.”
She walked me through a chart that illustrated the various ways in which some of Orca’s potential to remove carbon can be lost. First, there’s the question of availability — how often does the plant have to shut down due to maintenance or power shortages? Climeworks aims to limit those losses to 10%. Next, there’s the recovery stage, where the CO2 is separated from the sorbent, purified, and liquified. Gosalvez said it’s basically impossible to do this without losing some CO2. At best, the company hopes to limit that to 5%.
Finally, the company also takes into account “gray emissions,” or the carbon footprint associated with the business, like the materials, the construction, and the eventual decommissioning of the plant and restoration of the site to its former state. If one of Climeworks’ plants ever uses energy from fossil fuels (which the company has said it does not plan to do) it would incorporate any emissions from that energy. Climeworks aims to limit gray emissions to 15%.
In the end, Orca’s net annual carbon removal capacity — the amount Climeworks can sell to customers — is really closer to 3,000 tons. Gosalvez hopes other carbon removal companies adopt the same approach. “Ultimately what counts is your net impact on the planet and the atmosphere,” she said.
Get one great climate story in your inbox every day:
Despite being a first-of-its-kind demonstration plant — and an active research site — Orca is also a commercial project. In fact, Gosalvez told me that Orca’s entire estimated capacity for carbon removal, over the 12 years that the plant is expected to run, sold out shortly after it began operating. The company is now selling carbon removal services from its yet-to-be-built Mammoth plant.
In January, Climeworks announced that Orca had officially fulfilled orders from Microsoft, Stripe, and Shopify. Those companies have collectively asked Climeworks to remove more than 16,000 tons of carbon, according to the deal-tracking site cdr.fyi, but it’s unclear what portion of that was delivered. The achievement was verified by a third party, but the total amount removed was not made public.
Climeworks has also not disclosed how much it has charged companies per ton of carbon, a metric that will eventually be an important indicator of whether the technology can scale to a climate-relevant level. But it has provided rough estimates of how much it expects each ton of carbon removal to cost as the technology scales — expectations which seem to have shifted after two years of operating Orca.
In 2021, Climeworks co-founder Jan Wurzbacher said the company aimed to get the cost down to $200 to $300 per ton removed by the end of the decade, with steeper declines in subsequent years. But at the summit in June, he presented a new cost curve chart showing that the price was currently more than $1,000, and that by the end of the decade, it would fall to somewhere between $400 to $700. The range was so large because the cost of labor, energy, and storing the CO2 varied widely by location, he said. The company aims to get the price down to $100 to $300 per ton by 2050, when the technology has significantly matured.
Critics of carbon removal technologies often point to the vast sums flowing into direct air capture tech like Orca, which are unlikely to make a meaningful difference in climate change for decades to come. During a time when worsening disasters make action feel increasingly urgent, many are skeptical of the value of investing limited funds and political energy into these future solutions. Carbon removal won’t make much of a difference if the world doesn’t deploy the tools already available to reduce emissions as rapidly as possible — and there’s certainly not enough money or effort going into that yet.
But we’ll never have the option to fully halt climate change, let alone begin reversing it, if we don’t develop solutions like Orca. In September, the International Energy Agency released an update to its seminal net-zero report. The new analysis said that in the last two years, the world had, in fact, made significant progress on innovation. Now, some 65% of emission reductions after 2030 could be accounted for with technologies that had reached market uptake. It even included a line about the launch of Orca, noting that Climeworks’ direct air capture technology had moved from the prototype to the demonstration stage.
But it cautioned that DAC needs “to be scaled up dramatically to play the role envisaged,” in the net zero scenario. Climeworks’ experience with Orca offers a glimpse of how much work is yet to be done.
Read more about carbon removal:
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Here at Heatmap, we write a lot about decarbonization — that is, the process of transitioning the global economy away from fossil fuels and toward long-term sustainable technologies for generating energy. What we don’t usually write about is what those technologies actually do. Sure, solar panels convert energy from the sun into electricity — but how, exactly? Why do wind turbines have to be that tall? What’s the difference between carbon capture, carbon offsets, and carbon removal, and why does it matter?
So today, we’re bringing you Climate 101, a primer on some of the key technologies of the energy transition. In this series, we’ll cover everything from what makes silicon a perfect material for solar panels (and computer chips), to what’s going on inside a lithium-ion battery, to the difference between advanced and enhanced geothermal.
There’s something here for everyone, whether you’re already an industry expert or merely climate curious. For instance, did you know that contemporary 17th century readers might have understood Don Quixote’s famous “tilting at windmills” to be an expression of NIMYBism? I sure didn’t! But I do now that I’ve read Jeva Lange’s 101 guide to wind energy.
That said, I’d like to extend an especial welcome to those who’ve come here feeling lost in the climate conversation and looking for a way to make sense of it. All of us at Heatmap have been there at some point or another, and we know how confusing — even scary — it can be. The constant drumbeat of news about heatwaves and floods and net-zero this and parts per million that is a lot to take in. We hope this information will help you start to see the bigger picture — because the sooner you do, the sooner you can join the transition, yourself.
Without further ado, here’s your Climate 101 syllabus:
Once you feel ready to go deeper, here are some more Heatmap stories to check out:
The basics on the world’s fastest-growing source of renewable energy.
Solar power is already the backbone of the energy transition. But while the basic technology has been around for decades, in more recent years, installations have proceeded at a record pace. In the United States, solar capacity has grown at an average annual rate of 28% over the past decade. Over a longer timeline, the growth is even more extraordinary — from an stalled capacity base of under 1 gigawatt with virtually no utility-scale solar in 2010, to over 60 gigawatts of utility-scale solar in 2020, and almost 175 gigawatts today. Solar is the fastest-growing source of renewable energy in both the U.S. and the world.
There are some drawbacks to solar, of course. The sun, famously, does not always shine, nor does it illuminate all places on Earth to an equal extent. Placing solar where it’s sunniest can sometimes mean more expense and complexity to connect to the grid. But combined with batteries — especially as energy storage systems develop beyond the four hours of storage offered by existing lithium-ion technology — solar power could be the core of a decarbonized grid.
Solar power can be thought of as a kind of cousin of the semiconductors that power all digital technology. As Princeton energy systems professor and Heatmap contributor Jesse Jenkins has explained, certain materials allow for electrons to flow more easily between molecules, carrying an electrical charge. On one end of the spectrum are your classic conductors, like copper, which are used in transmission lines; on the other end are insulators, like rubber, which limit electrical charges.
In between on that spectrum are semiconductors, which require some amount of energy to be used as a conductor. In the computing context these are used to make transistors, and in the energy context they’re used to make — you guessed it — solar panels.
In a solar panel, the semiconductor material absorbs heat and light from the sun, allowing electrons to flow. The best materials for solar panels, explained Jenkins, have just the right properties so that when they absorb light, all of that energy is used to get the electrons flowing and not turned into wasteful heat. Silicon fits the bill.
When you layer silicon with other materials, you can force the electrons to flow in a single direction consistently; add on a conductive material to siphon off those subatomic particles, and voilà, you’ve got direct current. Combine a bunch of these layers, and you’ve got a photovoltaic panel.
Globally, solar generation capacity stood at over 2,100 terawatt-hours in 2024, according to Our World in Data and the Energy Institute, growing by more than a quarter from the previous year. A huge portion of that growth has been in China, which has almost half of the world’s total installed solar capacity. Installations there have grown at around 40% per year in the past decade.
Solar is still a relatively small share of total electricity generation, however, let alone all energy usage, which includes sectors like transportation and industry. Solar is the sixth largest producer of electricity in the world, behind coal, gas, hydropower, nuclear power, and wind. It’s the fourth largest non-carbon-emitting generation source and the third largest renewable power source, after wind and hydropower.
Solar has taken off in the United States, too, where utility-scale installations make up almost 4% of all electricity generated.
While that doesn’t seem like much, overall growth in generation has been tremendous. In 2024, solar hit just over 300 terawatt-hours of generation in the U.S., compared to about 240 terawatt-hours in 2023 and just under 30 in 2014.
Looking forward, there’s even more solar installation planned. Developers plan to add some 63 gigawatts of capacity to the grid this year, following an additional 30 gigawatts in 2024, making up just over half of the total planned capacity additions, according to Energy information Administration.
Solar is cheap compared to other energy sources, and especially other renewable sources. The world has a lot of practice dealing with silicon at industrial scale, and China especially has rapidly advanced manufacturing processes for photovoltaic cells. Once the solar panel is manufactured, it’s relatively simple to install compared to a wind turbine. And compared to a gas- or coal-fired power plant, the fuel is free.
From 1975 to 2022, solar module costs fell from over $100 per watt to below $0.50, according to Our World In Data. From 2012 to 2022 alone, costs fell by about 90%, and have fallen by “around 20% every time the global cumulative capacity doubles,” writes OWID analyst Hannah Ritchie. Much of the decline in cost has been attributed to “Wright’s Law,” which says that unit costs fall as production increases.
While construction costs have flat-lined or slightly increased recently due to supply chain issues and overall inflation, the overall trend is one of cost declines, with solar construction costs declining from around $3,700 per kilowatt-hour in 2013, to around $1,600 in 2023.
There are solar panels at extreme latitudes — Alaska, for instance, has seen solar growth in the past few years. But there are obvious challenges with the low amount of sunlight for large stretches of the year. At higher latitudes, irradiance, a measure of how much power is transmitted from the sun to a specific area, is lower (although that also varies based on climate and elevation). Then there are also more day-to-day issues, such as the effect of snow and ice on panels, which can cause issues in turning sunlight into power (they literally block the panel from the sun). High latitudes can see wild swings in solar generation: In Tromso, in northern Norway, solar generation in summer months can be three times as high as the annual average, with a stretch of literally zero production in December and January.
While many Nordic countries have been leaders in decarbonizing their electricity grids, they tend not to rely on solar in that project. In Sweden, nuclear and hydropower are its largest non-carbon-emitting fuel sources for electricity; in Norway, electricity comes almost exclusively from hydropower.
There has been some kind of policy support for solar power since 1978, when the Energy Tax Act provided tax credits for solar power investment. Since then, the investment tax credit has been the workhorse of American solar policy. The tax credit as it was first established was worth 10% of the system’s upfront cost “for business energy property and equipment using energy resources other than oil or natural gas,” according to the Congressional Research Service.
But above that baseline consistency has been a fair amount of higher-level turmoil, especially recently. The Energy Policy Act of 2005 kicked up the value of that credit to 30% through 2007; Congress kept extending that timeline, with the ITC eventually scheduled to come down to 10% for utility-scale and zero for residential projects by 2024.
Then came the 2022 Inflation Reduction Act, which re-instituted the 30% investment tax credit, with bonuses for domestic manufacturing and installing solar in designated “energy communities,” which were supposed to be areas traditionally economically dependent on fossil fuels. The tax then transitioned into a “technology neutral” investment tax credit that applied across non-carbon-emitting energy sources, including solar, beginning in 2024.
This year, Congress overhauled the tax incentives for solar (and wind) yet again. Under the One Big Beautiful Bill Act, signed in July, solar projects have to start construction by July 2026, or complete construction by the end of 2027 to qualify for the tax credit. The Internal Revenue Service later tightened up its definition of what it means for a project to start construction, emphasizing continuing actual physical construction activities as opposed to upfront expenditures, which could imperil future solar development.
At the same time, the Trump administration is applying a vise to renewables projects on public lands and for which the federal government plays a role in permitting. Renewable industry trade groups have said that the highest levels of the Department of Interior are obstructing permitting for solar projects on public lands, which are now subject to a much closer level of review than non-renewable energy projects.
Massachusetts Institute of Technology Researchers attributed the falling cost of solar this century to “scale economies.” Much of this scale has been achieved in China, which dominates the market for solar panel production, especially for export, even though much of the technology was developed in the United States.
At this point, however, the cost of an actual solar system is increasingly made up of “soft costs” like labor and permitting, at least in the United States. According to data from the National Renewables Energy Laboratory, a utility-scale system costs $1.20 per watt, of which soft costs make up a third, $0.40. Ten years ago, a utility-scale system cost $2.90 per watt, of which soft costs was $1.20, or less than half.
Beyond working to make existing technology even cheaper, there are other materials-based advances that promise higher efficiency for solar panels.
The most prominent is “perovskite,” the name for a group of compounds with similar structures that absorb certain frequencies of light particularly well and, when stacked with silicon, can enable more output for a given amount of solar radiation. Perovskite cells have seen measured efficiencies upwards of 34% when combined with silicon, whereas typical solar cells top out around 20%.
The issue with perovskite is that it’s not particularly durable, partially due to weaker chemical bonds within the layers of the cell. It’s also more expensive than existing solar, although much of that comes down inefficient manufacturing processes. If those problems can be solved, perovskite could promise more output for the same level of soft costs as silicon-based solar panels.
The country’s largest source of renewable energy has a long history.
Was Don Quixote a NIMBY?
Miguel de Cervantes’ hero admittedly wasn’t tilting at turbines in 1605, but for some of his contemporary readers in 17th-century Spain, windmills for grinding wheat into flour were viewed as a “dangerous new technology,” author Simon Winchester writes in his forthcoming book, The Breath of the Gods: The History and Future of the Wind. One interpretation of Cervantes’ novel might be that Quixote was “actually doing battle with progress.”
Nearly four and a half centuries later, harnessing the energy of the wind remains controversial, even if the breeze is one of humankind’s longest-utilized resources. While wind is the largest source of renewable electricity generation in the United States today, high construction costs and local opposition have more recently stymied the industry’s continued expansion. The new presidential administration — suspicious of wind’s reliability and place in the American energy mix — has also been doing its very best to stunt any future growth in the sector.
Whether you’re catching up on Trump’s latest regulatory moves, you have your own concerns about the safety of the technology, or this is your first time even thinking about this energy resource, here is the blow-by-blow — sorry! — on wind power in the U.S.
At their most basic conceptual level, wind turbines work by converting kinetic energy — the energy of an object in motion; in this case, air particles — into electrical energy that can be used to power homes, buildings, factories, and data centers.
Like hydroelectric dams, turbines do this by first converting kinetic energy into mechanical energy. The wind turns the turbine blades, which spin a rotor that is connected to a generator. Inside the generator are magnets that rotate around coils of copper wire, creating a magnetic field that pushes and pulls the electrons within the copper. Voilà — and with gratitude to Michael Faraday — now you have an electrical current that can be distributed to the grid.
Turbines typically require an average wind speed of about 9 miles per hour to generate electricity, which is why they are constructed in deserts, mountain passes, on top of hills, or in shallow coastal waters offshore, where there is less in the way to obstruct the flow of wind. Higher elevations are also windier, so utility-scale wind turbines are frequently around 330 feet tall (though the largest turbines tower 600 feet or higher).
It depends on the size of the turbine and also the wind speed. The average capacity of a new land-based wind turbine in the U.S. was 3.4 megawatts in 2023 — but that’s the “nameplate capacity,” or what the turbine would generate if it ran at optimal capacity around the clock.
U.S. Department of Energy
In the U.S., the average capacity factor (i.e. the actual energy output) for a turbine is more like 42%, or close to two-fifths of its theoretical maximum output. The general rule of thumb is that one commercial turbine in the U.S. can power nearly 1,000 homes per month. In 2023, the latest year of data available, land-based and offshore wind turbines in the U.S. generated 425,235 gigawatt-hours of electricity, or enough to power 39 million American homes per year.
A common criticism of wind power is that it “stops working” if the wind isn’t blowing. While it’s true that wind is an intermittent resource, grid operators are used to coping with this. A renewables-heavy grid should combine different energy sources and utilize offline backup generators to prevent service interruptions during doldrums. Battery storage can also help handle fluctuations in demand and increase reliability.
At the same time, wind power is indeed dependent on, well, the wind. In 2023, for example, U.S. wind power generation dropped below 2022 levels due to lower-than-average wind speeds in parts of the Midwest. When you see a turbine that isn’t spinning, though, it isn’t necessarily because there isn’t enough wind. Turbines also have a “cut out” point at which they stop turning if it gets too windy, which protects the structural integrity of the blades and prevents Twisters-like mishaps, as well as keeps the rotor from over-spinning, which could strain or break the turbine’s internal rotating components used to generate electricity.
Though Americans have used wind power in various forms since the late 1800s, the oil crisis of the 1970s brought new interest, development, and investment in wind energy. “The American industry really got going after the suggestion from the Finns, the Swedes, the Danes,” who’d already been making advances in the technology, albeit on single-turbine scales, Winchester, the author of the forthcoming history of wind power, The Breath of the Gods, told me.
In the early 1970s, the Department of Energy issued a grant to William Heronemus, a professor at the University of Massachusetts, Amherst, to explore the potential of wind energy. Heronemus became “really enthusiastic and built wind generators on the campus,” helping to modernize turbines into the more familiar construction we see widely today, Winchester said.
Some of Heronemus’ former students helped build the world’s first multi-turbine wind farm in New Hampshire in 1981. Though the blades of that farm interfered with nearby television reception — they had to be paused during prime time — the technology “seemed to everyone to make sense,” Winchester said. The Energy Policy Act of 1992, which introduced production tax credits for renewables, spurred further development through the end of the millennium.
Heronemus, a former Naval architect, had dreamed in the 1970s of building a flotilla of floating turbines mounted on “wind ships” that were powered by converting seawater into hydrogen fuel. Early experiments in offshore wind by the Energy Research and Development Administration, the progenitor of the Department of Energy, weren’t promising due to the technological limitations of the era — even commercial onshore wind was still in its infancy, and Heronemus’ plans looked like science-fiction.
In 1991, though, the Danes — ever the leaders in wind energy — successfully constructed the Vindeby Offshore Wind Farm, complete with 11 turbines and a total installed capacity of 5 megawatts. The Blyth offshore wind farm in northern Wales soon followed, with the United States finally constructing its first grid-connected offshore wind turbines off of Maine in 2013. The Block Island wind farm, with a capacity of 30 megawatts, is frequently cited as the first true offshore wind farm in the U.S., and began operating off the coast of Rhode Island in 2016.
Though offshore wind taps into higher and more consistent wind speeds off the ocean — and, as a result, is generally considered more efficient than onshore wind — building turbines at sea comes with its own set of challenges. Due to increased installation costs and the greater wear-and-tear of enduring saltwater and storms at sea, offshore wind is generally calculated to be about twice as expensive as onshore wind. “It’s unclear if offshore wind will ever be as cheap as onshore — even the most optimistic projections documented by the National Renewable Energy Laboratory have offshore wind more expensive than the current price of onshore in 2035,” according to Brian Potter in his newsletter, Construction Physics, though he notes that “past projections have underestimated the future cost reductions of wind turbines.”
Scott Eisen/Getty Images
In the decade from 2014 to 2023, total wind capacity in the U.S. doubled. Onshore and offshore wind power is now responsible for over 10% of utility-scale electricity generation in the U.S., and has been the highest-producing renewable energy source in the nation since 2019. (Hydropower, the next highest-producing renewable energy source, is responsible for about 5.7% of the energy mix, by comparison.) In six states — Iowa, Kansas, Oklahoma, New Mexico, South Dakota, and North Dakota — onshore wind makes up more than a third of the current electricity mix, Climate Central reports.
Offshore wind has been slower to grow in the U.S. Even during the Biden administration, when the government targeted developing 30 gigawatts of offshore wind capacity by 2030, the industry faced financing challenges, transmission and integration obstacles, and limits in access to a skilled workforce, per a 2024 paper in Energy Research & Social Science. That same year, the Department of Energy reported that the nation had a total of 80,523 megawatts for offshore wind in operation and in the pipeline, which, under ideal conditions, could power 26 million homes. Many of those offshore projects and plans now face an uncertain future under the Trump administration.
Though we’re far removed from the 1880s, when suspicious Scots dismissed wind energy pioneer James Blyth’s home turbine as “the devil’s work,” there are still plenty of persistent concerns about the safety of wind power to people and animals.
Some worry about onshore wind turbines’ effects on people, including the perceived dangers of electromagnetic fields, shadow flicker from the turning blades, and sleep disturbance or stress. Per a 2014 systematic review of 60 peer-reviewed studies on wind turbines and human health by the National Institutes of Health, while there was “evidence to suggest that wind turbines can be a source of annoyance to some people, there was no evidence demonstrating a direct causal link between living in proximity to wind turbines and more serious physiological health effects.” The topic has since been extensively studied, with no reputable research concluding that turbines have poor health impacts on those who live near them.
Last year, the blade of a turbine at Vineyard Wind 1 broke and fell into the water, causing the temporary closure of beaches in Nantucket to protect people from the fiberglass debris. While no one was ultimately injured, GE Vernova, which owns Vineyard Wind, agreed earlier this year to settle with the town for $10.5 million to compensate for the tourism and business losses that resulted from the failure. Thankfully, as my colleague Jael Holzman has written, “major errors like blade failures are incredibly rare.”
There are also concerns about the dangers of wind turbines to some wildlife. Turbines do kill birds, including endangered golden eagles, which has led to opposition from environmental and local activist groups. But context is also important: The U.S. Fish & Wildlife Service has found that wind farms “represent just 0.03% of all human-related bird deaths in the U.S.” (Illegal shootings, for example, are the greatest cause of golden eagle deaths.) The continued use of fossil fuels and the ecological impacts of climate change also pose a far graver threat to birds than wind farms do. Still, there is room for discussion and improvement: The California Department of Fish and Wildlife issued a call earlier this year for proposals to help protect golden eagles from turbine collisions in its major wind resource areas.
Perhaps the strongest objection to offshore wind has come from concern for whales. Though there has been an ongoing “unusual mortality event” for whales off the East Coast dating back to 2016 — about the same time the burgeoning offshore wind industry took off in the United States — the two have been falsely correlated (especially by groups with ties to the fossil fuel industry). A recent government impact report ordered by Republicans even found that “NOAA Fisheries does not anticipate any death or serious injury to whales from offshore wind-related actions and has not recorded marine mammal deaths from offshore wind activities.” Still, that hasn’t stopped Republican leaders — including the president — from claiming offshore wind is making whales “a little batty.”
Polling by Heatmap has found that potential harm to wildlife is a top concern of both Democrats and Republicans when it comes to the deployment of renewable energy. Although there has been “no evidence to date that the offshore wind build-out off the Atlantic coast has harmed a single whale … studies have shown that activities related to offshore wind could harm a whale, which appears to be enough to override the benefits for some people,” my colleague Jael has explained. A number of environmental groups are attempting to prevent offshore and land-based wind development on conservationist grounds, to varying degrees of success. Despite these reservations, though, our polling has found that Americans on the coast largely support offshore wind development.
Aesthetic concerns are another reason wind faces opposition. The proposed Lava Ridge wind farm in Idaho, which was Heatmap’s most imperiled renewable energy project last year, faced intense opposition, ostensibly due to the visibility of the turbines from the Minidoka National Historic Site, the site of a Japanese internment camp. Coastal homeowners have raised the same complaint about offshore wind that would be visible from the beach, like the Skipjack offshore wind project, which would be situated off the coast of Maryland.
Not good. As one of President Trump’s first acts in office, he issued an executive order that the government “shall not issue new or renewed approvals, rights of way, permits, leases, or loans for onshore or offshore wind projects” until the completion of a “comprehensive assessment” of the industry’s impacts on the economy and the environment. Eight months later, federal agencies were still not processing applications for onshore wind projects.
Offshore wind is in even more trouble because such projects are sited entirely in federal waters. As of late July, the Bureau of Ocean Energy Management had rescinded all designated wind energy areas — a decision that applies to some 3.5 million acres of federal waters, including the Central Atlantic, California, and Oregon. The Department of the Interior has also made moves to end what it calls the “special treatment for unreliable energy sources, such as wind,” including by “evaluating whether to stop onshore wind development on some federal lands and halting future offshore wind lease sales.” The Interior Department will also look into how “constructing and operating wind turbines might affect migratory bird populations.”
The One Big Beautiful Bill Act, meanwhile, put strict restrictions on tax credits available to wind developers. Per Cleanview, the bill jeopardizes some 114 gigawatts of wind energy projects, while the Center for American Progress writes that “more than 17,000 jobs are connected to offshore wind power projects that are already canceled, on hold, or at risk from the Trump administration’s attacks on wind power.”
The year 2024 marked a record for new wind power capacity, with 117 gigawatts of wind energy installed globally. China in particular has taken a keen interest in constructing new wind farms, installing 26 gigawatts worth, or about 5,300 turbines, between January and May of last year alone.
Still, there are significant obstacles to the buildout of wind energy even outside of the United States, including competition from solar, which is now the cheapest and most widely deployed renewable energy resource in the world. High initial construction costs, deepened by inflation and supply-chain issues, have also stymied wind development.
There are an estimated 424 terawatts worth of wind energy available on the planet, and current wind turbines tap into just half a percent of that. According to Columbia Business School’s accounting, if maximized, wind has the potential to “abate 10% to 20% of CO2 emissions by 2050, through the clean electrification of power, heat, and road transport.”
Wind is also a heavy player in the Net Zero Emissions by 2050 Scenario, which aims for
7,100 terawatt hours of wind electricity generation worldwide by the end of the decade, per the International Energy Agency. But current annual growth would need to increase annual capacity additions from about 115 gigawatts in 2023 to 340 gigawatts in 2030. “Far greater policy and private-sector efforts are needed to achieve this level of capacity growth,” IEA notes, “with the most important areas for improvement being facilitating permitting for onshore wind and cost reductions for offshore wind.”
Wind turbines continue to become more efficient and more economical. Many of the advances have come in the form of bigger turbines, with the average height of a hub for a land-based turbine increasing 83% since the late 1990s. The world’s most powerful offshore turbine, Vestas’ V236-15.0 megawatt prototype, is, not coincidentally, also the world’s tallest, at 919 feet.
Advanced manufacturing techniques, such as the use of carbon fiber composites in rotor blades and 3D printed materials, could also lead to increases in efficiency. In a 2024 report, NREL anticipated that such innovations could potentially “unlock 80% more economically viable wind energy capacity within the contiguous United States.”
Floating offshore wind farms are another area of active innovation. Unlike the fixed-foundation turbines mainly used offshore today, floating turbines could be installed in deep waters and allow for development on trickier coastlines like off of Oregon and Washington state. Though there are no floating offshore wind farms in the United States yet, there are an estimated 266 gigawatts of floating turbine capacity in the pipeline globally.