You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Inside Climeworks’ big experiment to wrest carbon from the air
In the spring of 2021, the world’s leading authority on energy published a “roadmap” for preventing the most catastrophic climate change scenarios. One of its conclusions was particularly daunting. Getting energy-related emissions down to net zero by 2050, the International Energy Agency said, would require “huge leaps in innovation.”
Existing technologies would be mostly sufficient to carry us down the carbon curve over the next decade. But after that, nearly half of the remaining work would have to come from solutions that, for all intents and purposes, did not exist yet. Some would only require retooling existing industries, like developing electric long-haul trucks and carbon-free steel. But others would have to be built from almost nothing and brought to market in record time.
What will it take to rapidly develop new solutions, especially those that involve costly physical infrastructure and which have essentially no commercial value today?
That’s the challenge facing Climeworks, the Swiss company developing machines to wrest carbon dioxide molecules directly from the air. In September 2021, a few months after the IEA’s landmark report came out, Climeworks switched on its first commercial-scale “direct air capture” facility, a feat of engineering it dubbed “Orca,” in Iceland.
The technology behind Orca is one of the top candidates to clean up the carbon already blanketing the Earth. It could also be used to balance out any stubborn, residual sources of greenhouse gases in the future, such as from agriculture or air travel, providing the “net” in net-zero. If we manage to scale up technologies like Orca to the point where we remove more carbon than we release, we could even begin cooling the planet.
As the largest carbon removal plant operating in the world, Orca is either trivial or one of the most important climate projects built in the last decade, depending on how you look at it. It was designed to capture approximately 4,000 metric tons of carbon from the air per year, which, as one climate scientist, David Ho, put it, is the equivalent of rolling back the clock on just 3 seconds of global emissions. But the learnings gleaned from Orca could surpass any quantitative assessment of its impact. How well do these “direct air capture” machines work in the real world? How much does it really cost to run them? And can they get better?
The company — and its funders — are betting they can. Climeworks has made major deals with banks, insurers, and other companies trying to go green to eventually remove carbon from the atmosphere on their behalf. Last year, the company raised $650 million in equity that will “unlock the next phase of its growth,” scaling the technology “up to multi-million-ton capacity … as carbon removal becomes a trillion-dollar market.” And just last month, the U.S. Department of Energy selected Climeworks, along with another carbon removal company, Heirloom, to receive up to $600 million to build a direct air capture “hub” in Louisiana, with the goal of removing one million tons of carbon annually.
Two years after powering up Orca, Climeworks has yet to reveal how effective the technology has proven to be. But in extensive interviews, top executives painted a picture of innovation in progress.
Chief marketing officer Julie Gosalvez told me that Orca is small and climatically insignificant on purpose. The goal is not to make a dent in climate change — yet — but to maximize learning at minimal cost. “You want to learn when you're small, right?” Gosalvez said. “It’s really de-risking the technology. It’s not like Tesla doing EVs when we have been building cars for 70 years and the margin of learning and risk is much smaller. It’s completely new.”
From the ground, Orca looks sort of like a warehouse or a server farm with a massive air conditioning system out back. The plant consists of eight shipping container-sized boxes arranged in a U-shape around a central building, each one equipped with an array of fans. When the plant is running, which is more or less all the time, the fans suck air into the containers where it makes contact with a porous filter known as a “sorbent” which attracts CO2 molecules.
Courtesy of Climeworks
When the filters become totally saturated with CO2, the vents on the containers snap shut, and the containers are heated to more than 212 degrees Fahrenheit. This releases the CO2, which is then delivered through a pipe to a secondary process called “liquefaction,” where it is compressed into a liquid. Finally, the liquid CO2 is piped into basalt rock formations underground, where it slowly mineralizes into stone. The process requires a little bit of electricity and a lot of heat, all of which comes from a carbon-free source — a geothermal power plant nearby.
A day at Orca begins with the morning huddle. The total number on the team is often in flux, but it typically has a staff of about 15 people, Climeworks’ head of operations Benjamin Keusch told me. Ten work in a virtual control room 1,600 miles away in Zurich, taking turns monitoring the plant on a laptop and managing its operations remotely. The remainder work on site, taking orders from the control room, repairing equipment, and helping to run tests.
During the huddle, the team discusses any maintenance that needs to be done. If there’s an issue, the control room will shut down part of the plant while the on-site workers investigate. So far, they’ve dealt with snow piling up around the plant that had to be shoveled, broken and corroded equipment that had to be replaced, and sediment build-up that had to be removed.
Courtesy of Climeworks
The air is more humid and sulfurous at the site in Iceland than in Switzerland, where Climeworks had built an earlier, smaller-scale model, so the team is also learning how to optimize the technology for different weather. Within all this troubleshooting, there’s additional trade-offs to explore and lessons to learn. If a part keeps breaking, does it make more sense to plan to replace it periodically, or to redesign it? How do supply chain constraints play into that calculus?
The company is also performing tests regularly, said Keusch. For example, the team has tested new component designs at Orca that it now plans to incorporate into Climeworks’ next project from the start. (Last year, the company began construction on “Mammoth,” a new plant that will be nine times larger than Orca, on a neighboring site.) At a summit that Climeworks hosted in June, co-founder Jan Wurzbacher said the company believes that over the next decade, it will be able to make its direct air capture system twice as small and cut its energy consumption in half.
“In innovation lingo, the jargon is we haven’t converged on a dominant design,” Gregory Nemet, a professor at the University of Wisconsin who studies technological development, told me. For example, in the wind industry, turbines with three blades, upwind design, and a horizontal axis, are now standard. “There were lots of other experiments before that convergence happened in the late 1980s,” he said. “So that’s kind of where we are with direct air capture. There’s lots of different ways that are being tried right now, even within a company like Climeworks."
Although Climeworks was willing to tell me about the goings-on at Orca over the last two years, the company declined to share how much carbon it has captured or how much energy, on average, the process has used.
Gosalvez told me that the plant’s performance has improved month after month, and that more detailed information was shared with investors. But she was hesitant to make the data public, concerned that it could be misinterpreted, because tests and maintenance at Orca require the plant to shut down regularly.
“Expectations are not in line with the stage of the technology development we are at. People expect this to be turnkey,” she said. “What does success look like? Is it the absolute numbers, or the learnings and ability to scale?”
Danny Cullenward, a climate economist and consultant who has studied the integrity of various carbon removal methods, did not find the company’s reluctance to share data especially concerning. “For these earliest demonstration facilities, you might expect people to hit roadblocks or to have to shut the plant down for a couple of weeks, or do all sorts of things that are going to make it hard to transparently report the efficiency of your process, the number of tons you’re getting at different times,” he told me.
But he acknowledged that there was an inherent tension to the stance, because ultimately, Climeworks’ business model — and the technology’s effectiveness as a climate solution — depend entirely on the ability to make precise, transparent, carbon accounting claims.
Nemet was also of two minds about it. Carbon removal needs to go from almost nothing today to something like a billion tons of carbon removed per year in just three decades, he said. That’s a pace on the upper end of what’s been observed historically with other technologies, like solar panels. So it’s important to understand whether Climeworks’ tech has any chance of meeting the moment. Especially since the company faces competition from a number of others developing direct air capture technologies, like Heirloom and Occidental Petroleum, that may be able to do it cheaper, or faster.
However, Nemet was also sympathetic to the position the company was in. “It’s relatively incremental how these technologies develop,” he said. “I have heard this criticism that this is not a real technology because we haven’t built it at scale, so we shouldn’t depend on it. Or that one of these plants not doing the removal that it said it would do shows that it doesn’t work and that we therefore shouldn’t plan on having it available. To me, that’s a pretty high bar to cross with a climate mitigation technology that could be really useful.”
More data on Orca is coming. Climeworks recently announced that it will work with the company Puro.Earth to certify every ton of CO2 that it removes from the atmosphere and stores underground, in order to sell carbon credits based on this service. The credits will be listed on a public registry.
But even if Orca eventually runs at full capacity, Climeworks will never be able to sell 4,000 carbon credits per year from the plant. Gosalvez clarified that 4,000 tons is the amount of carbon the plant is designed to suck up annually, but the more important number is the amount of “net” carbon removal it can produce. “That might be the first bit of education you need to get out there,” she said, “because it really invites everyone to look at what are the key drivers to be paid attention to.”
She walked me through a chart that illustrated the various ways in which some of Orca’s potential to remove carbon can be lost. First, there’s the question of availability — how often does the plant have to shut down due to maintenance or power shortages? Climeworks aims to limit those losses to 10%. Next, there’s the recovery stage, where the CO2 is separated from the sorbent, purified, and liquified. Gosalvez said it’s basically impossible to do this without losing some CO2. At best, the company hopes to limit that to 5%.
Finally, the company also takes into account “gray emissions,” or the carbon footprint associated with the business, like the materials, the construction, and the eventual decommissioning of the plant and restoration of the site to its former state. If one of Climeworks’ plants ever uses energy from fossil fuels (which the company has said it does not plan to do) it would incorporate any emissions from that energy. Climeworks aims to limit gray emissions to 15%.
In the end, Orca’s net annual carbon removal capacity — the amount Climeworks can sell to customers — is really closer to 3,000 tons. Gosalvez hopes other carbon removal companies adopt the same approach. “Ultimately what counts is your net impact on the planet and the atmosphere,” she said.
Get one great climate story in your inbox every day:
Despite being a first-of-its-kind demonstration plant — and an active research site — Orca is also a commercial project. In fact, Gosalvez told me that Orca’s entire estimated capacity for carbon removal, over the 12 years that the plant is expected to run, sold out shortly after it began operating. The company is now selling carbon removal services from its yet-to-be-built Mammoth plant.
In January, Climeworks announced that Orca had officially fulfilled orders from Microsoft, Stripe, and Shopify. Those companies have collectively asked Climeworks to remove more than 16,000 tons of carbon, according to the deal-tracking site cdr.fyi, but it’s unclear what portion of that was delivered. The achievement was verified by a third party, but the total amount removed was not made public.
Climeworks has also not disclosed how much it has charged companies per ton of carbon, a metric that will eventually be an important indicator of whether the technology can scale to a climate-relevant level. But it has provided rough estimates of how much it expects each ton of carbon removal to cost as the technology scales — expectations which seem to have shifted after two years of operating Orca.
In 2021, Climeworks co-founder Jan Wurzbacher said the company aimed to get the cost down to $200 to $300 per ton removed by the end of the decade, with steeper declines in subsequent years. But at the summit in June, he presented a new cost curve chart showing that the price was currently more than $1,000, and that by the end of the decade, it would fall to somewhere between $400 to $700. The range was so large because the cost of labor, energy, and storing the CO2 varied widely by location, he said. The company aims to get the price down to $100 to $300 per ton by 2050, when the technology has significantly matured.
Critics of carbon removal technologies often point to the vast sums flowing into direct air capture tech like Orca, which are unlikely to make a meaningful difference in climate change for decades to come. During a time when worsening disasters make action feel increasingly urgent, many are skeptical of the value of investing limited funds and political energy into these future solutions. Carbon removal won’t make much of a difference if the world doesn’t deploy the tools already available to reduce emissions as rapidly as possible — and there’s certainly not enough money or effort going into that yet.
But we’ll never have the option to fully halt climate change, let alone begin reversing it, if we don’t develop solutions like Orca. In September, the International Energy Agency released an update to its seminal net-zero report. The new analysis said that in the last two years, the world had, in fact, made significant progress on innovation. Now, some 65% of emission reductions after 2030 could be accounted for with technologies that had reached market uptake. It even included a line about the launch of Orca, noting that Climeworks’ direct air capture technology had moved from the prototype to the demonstration stage.
But it cautioned that DAC needs “to be scaled up dramatically to play the role envisaged,” in the net zero scenario. Climeworks’ experience with Orca offers a glimpse of how much work is yet to be done.
Read more about carbon removal:
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The EV-maker is now a culture war totem, plus some AI.
During Alan Greenspan’s decade-plus run leading the Federal Reserve, investors and the financial media were convinced that there was a “Greenspan put” underlying the stock market. The basic idea was that if the markets fell too much or too sharply, the Fed would intervene and put a floor on prices analogous to a “put” option on a stock, which allows an investor to sell a stock at a specific price, even if it’s currently selling for less. The existence of this put — which was, to be clear, never a stated policy — was thought to push stock prices up, as it gave investors more confidence that their assets could only fall so far.
While current Fed Chair Jerome Powell would be loath to comment on a specific volatile security, we may be seeing the emergence of a kind of sociopolitical put for Tesla, one coming from the White House and conservative media instead of the Federal Reserve.
The company’s high-flying stock shed over $100 billion of value on Monday, falling around 15% and leaving the price down around 50% from its previous all-time high. While the market as a whole also swooned, especially high-value technology companies like Nvidia and Meta, Tesla was the worst hit. Analysts attributed the particularly steep fall to concerns that CEO Elon Musk was spending too much time in Washington, and that the politicization of the brand had made it toxic to buyers in Europe and among liberals in the United States.
Then the cavalry came in. Sean Hannity told his Fox News audience that he had bought a Model S, while President Donald Trump posted on Truth Social that “I’m going to buy a brand new Tesla tomorrow morning as a show of confidence and support for Elon Musk, a truly great American.” By this afternoon, Trump had turned the White House lawn into a sales floor for Musk’s electric vehicles. Tesla shares closed the day up almost 4%, while the market overall closed down after Trump and his advisors’ furious whiplash policy pronouncements on tariffs.
Whether the Tesla put succeeds remains to be seen. The stock is still well, well below its all-time highs, but it may confirm a new way to understand Tesla — not as a company that sells electric vehicles to people concerned about climate change, but rather as a conservative culture war totem that has also made sizable investments in artificial intelligence and robotics.
When Musk bought Twitter and devoted more of his time, energy, money, and public pronouncements to right wing politics, some observers thought that maybe he could lift the dreadful image of electric vehicles among Trump voters. But when Pew did a survey on public attitudes towards electric vehicles back in 2023, it found that “Democrats and Democratic-leaning independents, younger adults, and people living in urban areas are among the most likely to say they would consider purchasing an EV” — hardly a broad swathe of Trump’s America. More than two-thirds of Republicans surveyed said they weren’t interested in buying an electric car, compared to 30% of Democrats.
On the campaign trail, Trump regularly lambasted EVs, although by the end of the campaign, as Musk’s support became more voluminous, he’s lightened up a bit. In any case, the Biden administration’s pro-electric-vehicle policies were an early target for the Trump administration, and the consumer subsidies for EVs passed under the 2022 Inflation Reduction Act are widely considered to be one of the softest targets for repeal.
But newer data shows that the tide may be turning, not so much for electric vehicles, but likely for Tesla itself.
The Wall Street Journalreported survey data last week showing that only 13% of Democrats would consider buying a Tesla, down from 23% from August of 2023, while 26% of Republicans would consider buying a Tesla, up from 15%. Vehicle registration data cited by the Journal suggested a shift in new Tesla purchases from liberal urban areas such as New York, San Francisco, and Los Angeles, towards more conservative-friendly metropolises like Las Vegas, Salt Lake City, and Miami.
At the same time, many Tesla investors appear to be mostly seeing through the gyrations in the famously volatile stock and relatively unconcerned about month-to-month or quarter-to-quarter sales data. After all, even after the epic fall in Tesla’s stock price, the company is still worth over $700 billion, more than Toyota, General Motors, and Ford combined, each of which sells several times more cars per year than Tesla.
Many investors simply do not view Tesla as a luxury or mass market automaker, instead seeing it as an artificial intelligence and robotics company. When I speak to individual Tesla shareholders, they’re always telling me how great Full Self-Driving is, not how many cars they expect the company to sell in August. In many cases, Musk has made Tesla stockholders a lot of money, so they’re willing to cut him tremendous slack and generally believe that he has the future figured out.
Longtime Tesla investor Ron Baron, who bought hundreds of millions of dollars worth of shares from 2014 to 2016, told CNBC Tuesday morning, that Musk “believes that digitization [and] autonomy is going to be driving the future. And he thinks we’re … on the verge of having an era of incredible abundance.”Baron also committed that he hasn’t, won’t, and will never sell. “I’m the last in, I’ll be the last out. So I won’t sell a single share personally until I sell all the shares for clients, and that’s what I’ve done.”
Wedbush Securities’ Dan Ives, one of the biggest Tesla bulls on the street, has told clients that he expects Tesla’s valuation to exceed $2 trillion, and that its self-driving and robotics business “will represent 90% of the valuation.”
Another longtime Tesla bull, Morgan Stanley’s Adam Jonas, told clients in a note Monday that Tesla remained a “Top Pick,” and that his price target was still $430, compared to the stock’s $230.58 close price on the day. His bull case, he said, was $800, which would give the company a valuation over $2.5 trillion.
When the stock lags, Jonas wrote, investors see Tesla as a car company. “In December with the stock testing $500/share, the prevailing sentiment was that the company is an AI ‘winner’ with untapped exposure to embodied AI expressions such as humanoid robotics,” Jonas wrote. “Today with the stock down 50% our investor conversations are focused on management distraction, brand degradation and lost auto sales.”
In a note to clients Tuesday, Ives beseeched Musk to “step up as CEO,” and lamented that there has been “little to no sign of Musk at any Tesla factory or manufacturing facility the last two months.” But his bullishness for Tesla was undaunted. He argued that the scheduled launch of unsupervised Full Self-Driving in June “kicks off the autonomous era at Tesla that we value at $1 trillion alone on a sum-of-the-parts valuation.”
“Autonomous will be the biggest transformation to the auto industry in modern day history,” Ives wrote, “and in our view Tesla will own the autonomous market in the U.S. and globally.”
The most effective put of all may not be anything Trump says or does, but rather investors’ optimism about the future — as long as it’s Elon Musk’s future.
The uncertainty created by Trump’s erratic policymaking could not have come at a worse time for the industry.
This is the second story in a Heatmap series on the “green freeze” under Trump.
Climate tech investment rode to record highs during the Biden administration, supercharged by a surge in ESG investing and net-zero commitments, the passage of the Infrastructure Investment and Jobs Act and Inflation Reduction Act, and at least initially, low interest rates. Though the market had already dropped somewhat from its recent peak, climate tech investors told me that the Trump administration is now shepherding in a detrimental overcorrection. The president’s fossil fuel-friendly rhetoric, dubiously legal IIJA and IRA funding freezes, and aggressive tariffs, have left climate tech startups in the worst possible place: a state of deep uncertainty.
“Uncertainty is the enemy of economic progress,” Andrew Beebe, managing director at Obvious Ventures, told me.
The lack of clarity is understandably causing investors to throw on the brakes. “We’ve talked internally about, let’s be a little bit more cautious, let’s be a little more judicious with our dollars right now,” Gabriel Kra, co-founder at the climate tech firm Prelude Ventures, told me. “We’re not out in the market, but I would think this would be a really tough time to try and go out and raise a new fund.”
This reluctance comes at a particularly bad time for climate tech startups, many of which are now reaching a point where they are ready to scale up and build first-of-a-kind infrastructure projects and factories. That takes serious capital, the kind that wasn’t as necessary during Trump’s first term, or even much of Biden’s, when many of these companies were in a more nascent research and development or proof-of-concept stage.
I also heard from investors that the pace of Trump’s actions and the extent of the economic upheaval across every sector feels unique this time around. “We’re entering a pretty different economic construct,” Beebe told me, citing the swirling unknowns around how Trump’s policies will impact economic indicators such as inflation and interest rates. “We haven’t seen this kind of economic warfare in decades,” he said.
Even before Trump took office, it was notoriously difficult for climate companies to raise funding in the so-called “missing middle,” when startups are too mature for early-stage venture capital but not mature enough for traditional infrastructure investors to take a bet on them. This is exactly the point at which government support — say, a loan guarantee from the Department of Energy’s Loan Programs Office or a grant from the DOE’s Office of Clean Energy Demonstrations — could be most useful in helping a company prove its commercial viability.
But now that Trump has frozen funding — even some that’s been contractually obligated — companies are left with fewer options than ever to reach scale.
One investor who wished to remain anonymous in order to speak more openly told me that “a lot of the missing middle companies are living in a dicier world.” A 2023 white paper on “capital imbalances in the energy transition” from S2G Investments, a firm that supports both early-stage and growth-stage companies, found that from 2017 to 2022, only 20% of climate capital flowed toward companies at this critical inflection point, while 43% went to early-stage companies and 37% towards established technologies. For companies at this precarious growth stage, a funding delay on the order of months could be the difference between life and death, the investor added. Many of these companies may also be reliant on debt financing, they explained. “Unless they’ve been extremely disciplined, they could run into a situation where they’re just not able to service that debt.”
The months or even years that it could take for Trump’s rash funding rescission to wind through the courts will end up killing some companies, Beebe told me. “And unfortunately, that’s what people on the other side of this debate would like, is just to litigate and escalate. And even if they ultimately lose, they’ve won, because startups just don’t have the balance sheets that big companies would,” he explained.
Kra’s Prelude Ventures has a number of prominent companies in its portfolio that have benefitted from DOE grants. This includes Electric Hydrogen, which received a $43.3 million DOE grant to scale electrolyzer manufacturing; Form Energy, which received $150 million to help build a long-duration battery storage manufacturing plant; Boston Metal, which was awarded $50 million for a green steel facility; and Heirloom, which is a part of the $600 million Project Cypress Direct Air Capture hub. DOE funding is often doled out in tranches, with some usually provided upfront and further payments tied to specific project milestones. So even if a grant has officially been awarded, that doesn’t mean all of the funding has been disbursed, giving the Trump administration an opening to break government contracts and claw it back.
Kra told me that a few of his firm’s companies were on the verge of securing government funding before Trump took office, or have a project in the works that is now on hold. “We and the board are working closely with those companies to figure out what to do,” he told me. “If the mandates or supports aren’t there for that company, you’ve got to figure out how to make that cash last a bunch longer so you can still meet some commercially meaningful milestones.”
In this environment, Kra said his firm will be taking a closer look at companies that claim they will be able to attract federal funds. “Let’s make sure we understand what they can do without that non-dilutive capital, without those grants, without that project level support,” he told me, noting that “several” companies in his portfolio will also be impacted by Trump’s ever-changing tariffs on imports from Canada, Mexico, and China. Prelude Ventures is working with its portfolio companies to figure how to “smooth out the hit,” Kra told me later via email, but inevitably the tariffs “will affect the prices consumers pay in the short and long run.”
While investors can’t avoid the impacts of all government policies and impulses, the growth-stage firm G2 Venture Partners has long tried to inoculate itself against the vicissitudes of government financing. “None of our companies actually have any exposure to DOE loans,” Brook Porter, a partner and co-founder at G2, told me in an email, nor have they received government grants. If you add up the revenue from all of the companies in G2’s portfolio, which is made up mainly of sustainability-focused startups, only about 3% “has any exposure to the IRA,” Porter told me. So even if the law’s generous clean energy tax credits are slashed or the programs it supports are left to languish, G2’s companies will likely soldier on.
Then there are the venture capitalists themselves. Many of the investors I spoke with emphasized that not all firms will have the ability or will to weather this storm. “I definitely believe many generalist funds who dabbled in climate will pull back,” Beebe told me. Porter agreed. “The generalists are much more interested in AI, then I think in climate,” he said. It’s not as if there’s been a rash of generalist investors announcing pullbacks, though Kra told me he knows of “a couple of firms” that are rethinking their climate investment strategies, potentially opting to fold these investments under an umbrella category such as “hard tech” instead of highlighting a sectoral focus on energy or climate, specifically.
Last month, the investment firm Coatue, which has about $70 billion in assets under management, raised around $250 million for a climate-focused fund, showing it’s not all doom and gloom for the generalists’ climate ambitions. But Porter told me this is exactly the type of large firm he wouldexpect to back out soon, citing Tiger Global Management and Softbank as others that started investing heavily during climate tech’s boom years from 2020 to 2022 that he could imagine winding down that line of business.
Strategic investors such as oil companies have also been quick to dial back their clean energy ambitions and refocus their sights on the fossil fuels championed by the Trump administration. “Corporate venture is very cyclical,” Beebe told me, explaining that large companies tend to make venture investments when they have excess budget or when a sector looks hot, but tighten the purse strings during periods of uncertainty.
But Cody Simms, a managing partner at the climate tech investment firm MCJ, told me that at the moment, he actually sees the corporate venture ecosystem as “quite strong and quite active.” The firm’s investments include the low-carbon cement company Sublime Systems, which last year got strategic backing from two of the world’s largest building materials companies, and the methane capture company Windfall Bio, which has received strategic funding from Amazon’s Climate Pledge Fund. Simms noted that this momentum could represent an overexuberance among corporations who just recently stood up their climate-focused venture arms, and “we’ll see if it continues into the next few years.”
Notably, Sublime and Windfall Bio both also have millions in DOE grants, and another of MCJ’s portfolio companies, bio-based chemicals maker Solugen, has a “conditional commitment” from the LPO for a loan guarantee of over $200 million. Since that money isn’t yet obligated, there’s a good chance it might never actually materialize, which could stall construction on the company’s in-progress biomanufacturing facility.
Simms told me that the main thing he’s encouraging MCJ’s portfolio companies to do at this stage is to contact their local representatives — not to advocate for climate action in general, but rather “to push on the very specific tax credit that they are planning to use and to talk about how it creates jobs locally in their districts.”
Getting startups to shift the narrative away from decarbonization and climate and toward their multitudinous co-benefits — from energy security to supply chain resilience — is of course a strategy many are already deploying to one degree or another. And investors were quick to remind me that the landscape may not be quite as bleak as it appears.
“We’ve made more investments, and we have a pipeline of more attractive investments now than we have in the last couple of years,” Porter told me. That’s because in spite of whatever havoc the Trump administration is wreaking, a lot of climate tech companies are reaching a critical juncture that could position the sector overall for “a record number of IPOs this year and next,” Porter said. The question is, “will these macro uncertainties — political, economic, financial uncertainty — hold companies back from going public?”
As with so many economic downturns and periods of instability, investors also see this as a moment for the true blue startups and venture capitalists to prove their worth and business acumen in an environment that’s working against them. “Now we have the hardcore founders, the people who really are driven by building economically viable, long-term, massively impactful companies, and the investors who understand the markets very well, coming together around clean business models that aren’t dependent on swinging from one subsidy vine to the next subsidy vine,” Beebe told me.
“There is no opportunity that’s an absolute no, even in this current situation, across the entire space,” the anonymous climate tech investor told me. “And so this might be one of the most important points — I won’t say a high point, necessarily — but it might be a moment of truth that the energy transition needs to embrace.”
On the energy secretary’s keynote, Ontario’s electricity surcharge, and record solar power
Current conditions: Critical fire weather returns to New Mexico and Texas and will remain through Saturday • Sharks have been spotted in flooded canals along Australia’s Gold Coast after Cyclone Alfred dropped more than two feet of rain • A tanker carrying jet fuel is still burning after it collided with a cargo ship in the North Sea yesterday. The ship was transporting toxic chemicals that could devastate ecosystems along England’s northeast coast.
In a keynote speech at the energy industry’s annual CERAWeek conference, Energy Secretary Chris Wright told executives and policymakers that the Trump administration sees climate change as “a side effect of building the modern world,” and said that “everything in life involves trade-offs." He pledged to “end the Biden administration’s irrational, quasi-religious policies on climate change” and insisted he’s not a climate change denier, but rather a “climate realist.” According toThe New York Times, “Mr. Wright’s speech was greeted with enthusiastic applause.” Wright also reportedly told fossil fuel bosses he intended to speed up permitting for their projects.
Other things overheard at Day 1 of CERAWeek:
The premier of Canada’s Ontario province announced he is hiking fees on electricity exported to the U.S. by 25%, escalating the trade war kicked off by President Trump’s tariffs on Canadian goods, including a 10% tariff on Canadian energy resources. The decision could affect prices in Minnesota, New York, and Michigan, which get some of their electricity from the province. Ontario Premier Doug Ford estimated the surcharge will add about $70 to the monthly bills of affected customers. “I will not hesitate to increase this charge,” Ford said. “If the United States escalates, I will not hesitate to shut the electricity off completely.” The U.S. tariffs went into effect on March 4. Trump issued another 30-day pause just days later, but Ford said Ontario “will not relent” until the threat of tariffs is gone for good.
There was a lot of news from the White House yesterday that relates to climate and the energy transition. Here’s a quick rundown:
The EPA cancelled hundreds of environmental justice grants: EPA Administrator Lee Zeldin and Elon Musk’s so-called Department of Government Efficiency nixed 400 grants across environmental justice programs and diversity, equity, and inclusion programs worth $1.7 billion. Zeldin said this round of cuts “was our biggest yet.”
Transportation Secretary Sean Duffy rescinded Biden memos about infrastructure projects: The two memos encouraged states to prioritize climate change resilience in infrastructure projects funded by the Bipartisan Infrastructure Law, and to include under-represented groups when planning projects.
The military ended funding for climate studies: This one technically broke on Friday. The Department of Defense is scrapping its funding for social science research, which covers climate change studies. In a post on X, Defense Secretary Pete Hegseth said DOD “does not do climate change crap. We do training and war fighting.”
Meanwhile, a second nonprofit – the Coalition for Green Capital – filed a lawsuit against Citibank over climate grant money awarded under the Inflation Reduction Act but frozen by Zeldin’s EPA. Climate United filed a similar lawsuit (but targeting the EPA, as well as Citibank) on Saturday.
A new report from the Princeton ZERO Lab’s REPEAT Project examines the potential consequences of the Trump administration’s plans to kill existing EV tax credits and repeal EPA tailpipe regulations. It finds that, compared to a scenario in which the current policies are kept in place:
“In other words, killing the IRA tax credits for EVs will decimate the nascent renaissance in vehicle and battery manufacturing investment and employment we’re currently seeing play out across the United States,” said Jesse Jenkins, an assistant professor and expert in energy systems engineering and policy at Princeton University and head of the REPEAT Project. (Jenkins is also the co-host of Heatmap’s Shift Key podcast.)
REPEAT Project
The U.S. installed nearly 50 gigawatts of new solar power capacity last year, up 21% from 2023, according to a new report from the Solar Energy Industries Association (SEIA) and Wood Mackenzie. That’s a record, and the largest annual grid capacity increase from any energy technology in the U.S. in more than 20 years. Combined with storage, solar represents 84% of all new grid capacity added in 2024.
SEIA and Wood Mackenzie
Last year was “the year of materialization of the IRA,” with supply chains becoming more resilient and interest from utilities and corporate buyers growing. Installations are expected to remain steady this year, with little growth, because of policy uncertainty. Total U.S. solar capacity is expected to reach 739 GW by 2035, but this depends on policy. The worst case scenario shows a 130 GW decline in deployment through 2035, which would represent $250 billion in lost investments.
“Last year’s record-level of installations was aided by several solar policies and credits within the Inflation Reduction Act that helped drive interest in the solar market,” said Sylvia Levya Martinez, a principal analyst of North America utility-scale solar for Wood Mackenzie. “We still have many challenges ahead, including unprecedented load growth on the power grid. If many of these policies were eliminated or significantly altered, it would be very detrimental to the industry’s continued growth.”
Tesla shares plunged yesterday by 15%, marking the company’s worst day on the market since 2020 and erasing its post-election stock bump.