You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Inside Climeworks’ big experiment to wrest carbon from the air

In the spring of 2021, the world’s leading authority on energy published a “roadmap” for preventing the most catastrophic climate change scenarios. One of its conclusions was particularly daunting. Getting energy-related emissions down to net zero by 2050, the International Energy Agency said, would require “huge leaps in innovation.”
Existing technologies would be mostly sufficient to carry us down the carbon curve over the next decade. But after that, nearly half of the remaining work would have to come from solutions that, for all intents and purposes, did not exist yet. Some would only require retooling existing industries, like developing electric long-haul trucks and carbon-free steel. But others would have to be built from almost nothing and brought to market in record time.
What will it take to rapidly develop new solutions, especially those that involve costly physical infrastructure and which have essentially no commercial value today?
That’s the challenge facing Climeworks, the Swiss company developing machines to wrest carbon dioxide molecules directly from the air. In September 2021, a few months after the IEA’s landmark report came out, Climeworks switched on its first commercial-scale “direct air capture” facility, a feat of engineering it dubbed “Orca,” in Iceland.
The technology behind Orca is one of the top candidates to clean up the carbon already blanketing the Earth. It could also be used to balance out any stubborn, residual sources of greenhouse gases in the future, such as from agriculture or air travel, providing the “net” in net-zero. If we manage to scale up technologies like Orca to the point where we remove more carbon than we release, we could even begin cooling the planet.
As the largest carbon removal plant operating in the world, Orca is either trivial or one of the most important climate projects built in the last decade, depending on how you look at it. It was designed to capture approximately 4,000 metric tons of carbon from the air per year, which, as one climate scientist, David Ho, put it, is the equivalent of rolling back the clock on just 3 seconds of global emissions. But the learnings gleaned from Orca could surpass any quantitative assessment of its impact. How well do these “direct air capture” machines work in the real world? How much does it really cost to run them? And can they get better?
The company — and its funders — are betting they can. Climeworks has made major deals with banks, insurers, and other companies trying to go green to eventually remove carbon from the atmosphere on their behalf. Last year, the company raised $650 million in equity that will “unlock the next phase of its growth,” scaling the technology “up to multi-million-ton capacity … as carbon removal becomes a trillion-dollar market.” And just last month, the U.S. Department of Energy selected Climeworks, along with another carbon removal company, Heirloom, to receive up to $600 million to build a direct air capture “hub” in Louisiana, with the goal of removing one million tons of carbon annually.
Two years after powering up Orca, Climeworks has yet to reveal how effective the technology has proven to be. But in extensive interviews, top executives painted a picture of innovation in progress.
Chief marketing officer Julie Gosalvez told me that Orca is small and climatically insignificant on purpose. The goal is not to make a dent in climate change — yet — but to maximize learning at minimal cost. “You want to learn when you're small, right?” Gosalvez said. “It’s really de-risking the technology. It’s not like Tesla doing EVs when we have been building cars for 70 years and the margin of learning and risk is much smaller. It’s completely new.”
From the ground, Orca looks sort of like a warehouse or a server farm with a massive air conditioning system out back. The plant consists of eight shipping container-sized boxes arranged in a U-shape around a central building, each one equipped with an array of fans. When the plant is running, which is more or less all the time, the fans suck air into the containers where it makes contact with a porous filter known as a “sorbent” which attracts CO2 molecules.

When the filters become totally saturated with CO2, the vents on the containers snap shut, and the containers are heated to more than 212 degrees Fahrenheit. This releases the CO2, which is then delivered through a pipe to a secondary process called “liquefaction,” where it is compressed into a liquid. Finally, the liquid CO2 is piped into basalt rock formations underground, where it slowly mineralizes into stone. The process requires a little bit of electricity and a lot of heat, all of which comes from a carbon-free source — a geothermal power plant nearby.
A day at Orca begins with the morning huddle. The total number on the team is often in flux, but it typically has a staff of about 15 people, Climeworks’ head of operations Benjamin Keusch told me. Ten work in a virtual control room 1,600 miles away in Zurich, taking turns monitoring the plant on a laptop and managing its operations remotely. The remainder work on site, taking orders from the control room, repairing equipment, and helping to run tests.
During the huddle, the team discusses any maintenance that needs to be done. If there’s an issue, the control room will shut down part of the plant while the on-site workers investigate. So far, they’ve dealt with snow piling up around the plant that had to be shoveled, broken and corroded equipment that had to be replaced, and sediment build-up that had to be removed.

The air is more humid and sulfurous at the site in Iceland than in Switzerland, where Climeworks had built an earlier, smaller-scale model, so the team is also learning how to optimize the technology for different weather. Within all this troubleshooting, there’s additional trade-offs to explore and lessons to learn. If a part keeps breaking, does it make more sense to plan to replace it periodically, or to redesign it? How do supply chain constraints play into that calculus?
The company is also performing tests regularly, said Keusch. For example, the team has tested new component designs at Orca that it now plans to incorporate into Climeworks’ next project from the start. (Last year, the company began construction on “Mammoth,” a new plant that will be nine times larger than Orca, on a neighboring site.) At a summit that Climeworks hosted in June, co-founder Jan Wurzbacher said the company believes that over the next decade, it will be able to make its direct air capture system twice as small and cut its energy consumption in half.
“In innovation lingo, the jargon is we haven’t converged on a dominant design,” Gregory Nemet, a professor at the University of Wisconsin who studies technological development, told me. For example, in the wind industry, turbines with three blades, upwind design, and a horizontal axis, are now standard. “There were lots of other experiments before that convergence happened in the late 1980s,” he said. “So that’s kind of where we are with direct air capture. There’s lots of different ways that are being tried right now, even within a company like Climeworks."
Although Climeworks was willing to tell me about the goings-on at Orca over the last two years, the company declined to share how much carbon it has captured or how much energy, on average, the process has used.
Gosalvez told me that the plant’s performance has improved month after month, and that more detailed information was shared with investors. But she was hesitant to make the data public, concerned that it could be misinterpreted, because tests and maintenance at Orca require the plant to shut down regularly.
“Expectations are not in line with the stage of the technology development we are at. People expect this to be turnkey,” she said. “What does success look like? Is it the absolute numbers, or the learnings and ability to scale?”
Danny Cullenward, a climate economist and consultant who has studied the integrity of various carbon removal methods, did not find the company’s reluctance to share data especially concerning. “For these earliest demonstration facilities, you might expect people to hit roadblocks or to have to shut the plant down for a couple of weeks, or do all sorts of things that are going to make it hard to transparently report the efficiency of your process, the number of tons you’re getting at different times,” he told me.
But he acknowledged that there was an inherent tension to the stance, because ultimately, Climeworks’ business model — and the technology’s effectiveness as a climate solution — depend entirely on the ability to make precise, transparent, carbon accounting claims.
Nemet was also of two minds about it. Carbon removal needs to go from almost nothing today to something like a billion tons of carbon removed per year in just three decades, he said. That’s a pace on the upper end of what’s been observed historically with other technologies, like solar panels. So it’s important to understand whether Climeworks’ tech has any chance of meeting the moment. Especially since the company faces competition from a number of others developing direct air capture technologies, like Heirloom and Occidental Petroleum, that may be able to do it cheaper, or faster.
However, Nemet was also sympathetic to the position the company was in. “It’s relatively incremental how these technologies develop,” he said. “I have heard this criticism that this is not a real technology because we haven’t built it at scale, so we shouldn’t depend on it. Or that one of these plants not doing the removal that it said it would do shows that it doesn’t work and that we therefore shouldn’t plan on having it available. To me, that’s a pretty high bar to cross with a climate mitigation technology that could be really useful.”
More data on Orca is coming. Climeworks recently announced that it will work with the company Puro.Earth to certify every ton of CO2 that it removes from the atmosphere and stores underground, in order to sell carbon credits based on this service. The credits will be listed on a public registry.
But even if Orca eventually runs at full capacity, Climeworks will never be able to sell 4,000 carbon credits per year from the plant. Gosalvez clarified that 4,000 tons is the amount of carbon the plant is designed to suck up annually, but the more important number is the amount of “net” carbon removal it can produce. “That might be the first bit of education you need to get out there,” she said, “because it really invites everyone to look at what are the key drivers to be paid attention to.”
She walked me through a chart that illustrated the various ways in which some of Orca’s potential to remove carbon can be lost. First, there’s the question of availability — how often does the plant have to shut down due to maintenance or power shortages? Climeworks aims to limit those losses to 10%. Next, there’s the recovery stage, where the CO2 is separated from the sorbent, purified, and liquified. Gosalvez said it’s basically impossible to do this without losing some CO2. At best, the company hopes to limit that to 5%.
Finally, the company also takes into account “gray emissions,” or the carbon footprint associated with the business, like the materials, the construction, and the eventual decommissioning of the plant and restoration of the site to its former state. If one of Climeworks’ plants ever uses energy from fossil fuels (which the company has said it does not plan to do) it would incorporate any emissions from that energy. Climeworks aims to limit gray emissions to 15%.
In the end, Orca’s net annual carbon removal capacity — the amount Climeworks can sell to customers — is really closer to 3,000 tons. Gosalvez hopes other carbon removal companies adopt the same approach. “Ultimately what counts is your net impact on the planet and the atmosphere,” she said.
Get one great climate story in your inbox every day:
Despite being a first-of-its-kind demonstration plant — and an active research site — Orca is also a commercial project. In fact, Gosalvez told me that Orca’s entire estimated capacity for carbon removal, over the 12 years that the plant is expected to run, sold out shortly after it began operating. The company is now selling carbon removal services from its yet-to-be-built Mammoth plant.
In January, Climeworks announced that Orca had officially fulfilled orders from Microsoft, Stripe, and Shopify. Those companies have collectively asked Climeworks to remove more than 16,000 tons of carbon, according to the deal-tracking site cdr.fyi, but it’s unclear what portion of that was delivered. The achievement was verified by a third party, but the total amount removed was not made public.
Climeworks has also not disclosed how much it has charged companies per ton of carbon, a metric that will eventually be an important indicator of whether the technology can scale to a climate-relevant level. But it has provided rough estimates of how much it expects each ton of carbon removal to cost as the technology scales — expectations which seem to have shifted after two years of operating Orca.
In 2021, Climeworks co-founder Jan Wurzbacher said the company aimed to get the cost down to $200 to $300 per ton removed by the end of the decade, with steeper declines in subsequent years. But at the summit in June, he presented a new cost curve chart showing that the price was currently more than $1,000, and that by the end of the decade, it would fall to somewhere between $400 to $700. The range was so large because the cost of labor, energy, and storing the CO2 varied widely by location, he said. The company aims to get the price down to $100 to $300 per ton by 2050, when the technology has significantly matured.
Critics of carbon removal technologies often point to the vast sums flowing into direct air capture tech like Orca, which are unlikely to make a meaningful difference in climate change for decades to come. During a time when worsening disasters make action feel increasingly urgent, many are skeptical of the value of investing limited funds and political energy into these future solutions. Carbon removal won’t make much of a difference if the world doesn’t deploy the tools already available to reduce emissions as rapidly as possible — and there’s certainly not enough money or effort going into that yet.
But we’ll never have the option to fully halt climate change, let alone begin reversing it, if we don’t develop solutions like Orca. In September, the International Energy Agency released an update to its seminal net-zero report. The new analysis said that in the last two years, the world had, in fact, made significant progress on innovation. Now, some 65% of emission reductions after 2030 could be accounted for with technologies that had reached market uptake. It even included a line about the launch of Orca, noting that Climeworks’ direct air capture technology had moved from the prototype to the demonstration stage.
But it cautioned that DAC needs “to be scaled up dramatically to play the role envisaged,” in the net zero scenario. Climeworks’ experience with Orca offers a glimpse of how much work is yet to be done.
Read more about carbon removal:
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The offshore wind developer was in the process of completing necessary repairs when the administration issued its stop work order, according to court filings.
In the Atlantic ocean south of Massachusetts, 10 wind turbine towers, each 500 feet tall, stand stripped of their rotary blades. Stuck in this bald state due to the Trump administration’s halt on offshore wind construction, the towers are susceptible to lightning strikes and water damage. This makes them a potential threat to public safety, according to previously unreported court filings from the project developer, Vineyard Wind.
The company filed for an injunction against Trump’s stop work order last week. The order posed a unique threat to Vineyard Wind, as the project is 95% complete and its contract with a key construction boat is set to expire on March 31, the filing said. “If construction is not completed by that date, the partially completed wind turbines will be left in an unsafe condition and Vineyard Wind will incur a series of financial consequences that it likely could not survive,” the company wrote.
One of the final tasks the company was working on was replacing faulty blades on nearly two dozen turbine towers. In July 2024, one of the installed blades snapped in two, sending fiberglass and other debris crashing into the sea and eventually onto the beaches of Nantucket. The incident revealed a manufacturing defect at the Canadian factory where the blades were made. After multiple investigations into the incident, the company reached an agreement with the Bureau of Ocean Energy Management and the Bureau of Safety and Environmental Enforcement to replace the defective equipment with blades produced at a different factory in France.
Trump’s construction freeze contained an exception for activities “necessary to respond to emergency situations and/or to prevent impacts to health, safety, and the environment.” So after the order came down on December 22, Vineyard Wind reached out to the relevant regulators and asked permission to continue its blade replacement process on safety grounds, the company explained in court filings. BSEE responded that the company could remove the faulty blades on the 10 remaining towers, but could not replace them.
The decision highlights an apparent double standard in the administration’s considerations of public safety. The stop work order itself was intended to “protect the American people,” according to Secretary of the Interior Doug Burgum. Yet the agency has refused to let construction move forward to mitigate risks created by the stoppage.
Testimony submitted by Steven Simkins, Vineyard Wind’s Wind turbine team lead, describes the dangers of leaving the towers bladeless for an extended period of time — a risk compounded by the ticking clock on the company’s construction boat contract. “The wind turbine was designed to be constructed completely and only be in a hammerhead state, without blades, for a brief amount of time during installation,” Simkins wrote.
He warned of three main liabilities. First, the towers are equipped with a lightning protection system, but the system’s receptors and conductors extend along the blades. Without the blades, the towers are essentially lightning rods, at risk of igniting an electrical fire, Simkins explained.
The three giant holes where the blades would be installed are also sitting open, with tarps covering them as temporary protection. That means that water, ice, and humidity could get into the nacelle, the top part of the tower that houses all of the electrical and mechanical systems, which are not designed to weather this kind of exposure. “Not only will this lead to prolonged offshore work replacing damaged equipment but it also puts the safety of the workers at risk,” Simkins wrote. “Electrical cabinets that have experienced some level of corrosion become less safe and increase the risk of an arc flash event.”
Lastly, the 500-foot towers are being roiled by winter wind and waves, which causes them to sway. The blades are designed to capture that wind, reducing its force on the towers. Without them, the “fatigue” on the towers will be exacerbated, “and the design has accounted for a limited amount of such fatigue over the total life of the structure.”
Court documents show that Vineyard Wind — the last of five affected companies to file for an injunction against Trump’s stop work order — held off on litigation as it made multiple attempts to convince the administration that completing blade installation was necessary to mitigate safety risks.
Vineyard Wind also sent BSEE verification of its safety claims by DNV Energy Systems, a Danish company it was required to retain to “ensure that the Project is installed in accordance with accepted engineering practices and, when necessary, to provide reports to BSEE regarding incidents affecting Critical Safety Systems.” But BSEE disagreed and denied Vineyard Wind’s request.
The Trump administration filed a response in the case on Tuesday, with BSEE’s Principal Deputy Director Kenneth Stevens testifying that the bureau’s technical personnel had “determined that there should be no structural issues associated with the tower and nacelle-only configuration if they were installed correctly.” He noted that the towers had been “routinely left in this configuration repeatedly” while the project was under construction over the past year and a half “with no reported adverse impacts to safety.”
Vineyard Wind did not respond to a request for comment on that assertion. A hearing in the case is scheduled for Friday. Three separate district judges have already granted injunctions to offshore projects affected by the stop work order: Revolution Wind, Empire Wind, and Dominion Energy’s Coastal Virginia offshore wind project. Each judge found that the companies were “likely” to succeed in showing that the stop work order violated the Administrative Procedures Act, and allowing them to continue construction.
Jael Holzman contributed reporting.
One of the buzziest climate tech companies in our Insiders Survey is pushing past the “missing middle.”
One of the buzziest climate tech companies of the past year is proving that a mature, hitherto moribund technology — conventional geothermal — still has untapped potential. After a breakthrough year of major discoveries, Zanskar has raised a $115 million Series C round to propel what’s set to be an investment-heavy 2026, as the startup plans to break ground on multiple geothermal power plants in the Western U.S.
“With this funding, we have a six power plant execution plan ahead of us in the next three, four years,” Diego D’Sola, Zanskar’s head of finance, told me. This, he estimates, will generate over $100 million of revenue by the end of the decade, and “unlock a multi-gigawatt pipeline behind that.”
The size of the round puts a number to climate world’s enthusiasm for Zanskar. In Heatmap’s Insider’s Survey, experts identified Zanskar as one of the most promising climate tech startups in operation today.
Zanskar relies on its suite of artificial intelligence tools to locate previously overlooked conventional geothermal resources — that is, naturally occurring reservoirs of hot water and steam. Trained on a combination of exclusive subsurface datasets, modern satellite and remote sensing imagery, and fresh inputs from Zanksar’s own field team, the company’s AI models can pinpoint the most promising sites for exploration and even guide exactly what angle and direction to drill a well from.
Early last year, Zanskar announced that it had successfully revitalized an underperforming geothermal power plant in New Mexico by drilling a new pumped well nearby, which has since become the most productive well of this type in the U.S. That was followed by the identification of a large geothermal resource in northern Nevada, where exploratory wells had been drilled for decades but no development had ever occurred. Just last month, the company revealed a major discovery in western Nevada — a so-called “blind” geothermal system with no visible surface activity such as geysers or hot springs, and no history of exploratory drilling.
“This is a site nobody had ever had on the radar, no prior exploration,” Carl Hoiland, Zanskar’s CEO, told me of this latest discovery, dubbed “Big Blind.” He described it as a tipping point for the industry, which had investors saying, “Okay, this is starting to look more like a trend than just an anomaly.”
Spring Lane Capital led Zanskar’s latest round, which also included Obvious Ventures, Union Square Ventures, and Lowercarbon Capital, among others. Spring Lane aims to fill the oft-bemoaned “missing middle” of climate finance — the stage at which a startup has matured beyond early-stage venture backing but is still considered too risky for more traditional infrastructure investors.
Zanskar now finds itself squarely in that position, needing to finance not just the drills, turbines, and generators for its geothermal plants, but also the requisite permitting and grid interconnection costs. D’Sola told me that he expects the company to close its first project financing this quarter, explaining that its ambitious plans require “north of $600 million in total capital expenditures, the vast majority of which will come from non-dilutive sources or project level financing.”
Unsurprisingly, the company anticipates that data centers will be some of its first customers, with hyperscalers likely working through utilities to secure the clean energy attributes of Zanskar’s grid-connected power. And while the West Coast isn’t the primary locus of today’s data center buildout, Hoiland thinks Zanskar’s clean, firm, low-cost power will help draw the industry toward geothermally rich states such as Utah and Nevada, where it’s focused.
“We see a scenario where the western U.S. is going to have some of the cheapest carbon-free energy, maybe anywhere in the world, but certainly in the United States.” Hoiland told me.
Just how cheap are we talking? Using the levelized cost of energy — which averages the lifetime cost of building and operating a power plant per unit of electricity generated — Zanskar plans to deliver electricity under $45 per megawatt-hour by the end of this decade. For context, the Biden administration set that same cost target for next-generation geothermal systems such as those being pursued by startups like Fervo Energy and Eavor — but projected it wouldn’t be reached 2035.
At this price point, conventional geothermal would be cheaper than natural gas, too. The LCOE for a new combined-cycle natural gas plant in the U.S. typically ranges from $48 to $107 per megawatt-hour.
That opens up a world of possibilities, Hoiland said, with the startup’s’s most optimistic estimates showing that conventional geothermal could potentially supply all future increases in electricity demand. “But really what we’re trying to meet is that firm, carbon-free baseload requirement, which by some estimates needs to be 10% to 30% of the total mix,” Hoiland said. “We have high confidence the resource can meet all of that.”
On New Jersey’s rate freeze, ‘global water bankruptcy,’ and Japan’s nuclear restarts
Current conditions: A major winter storm stretching across a dozen states, from Texas to Delaware, and could hit by midweek • The edge of the Sahara Desert in North Africa is experiencing sandstorms kicked up by colder air heading southward • The Philippines is bracing for a tropical cyclone heading toward northern Luzon.
Mikie Sherrill wasted no time in fulfilling the key pledge that animated her campaign for governor of New Jersey. At her inauguration Tuesday, the Democrat signed a series of executive orders aimed at constraining electricity bills and expanding energy production in the state. One order authorized state utility regulators to freeze rate hikes. Another directed the New Jersey Board of Public Utilities “to open solicitations for new solar and storage power generation, to modernize gas and nuclear generation so we can lower utility costs over the long term.” Now, as Heatmap’s Matthew Zeitlin put it, “all that’s left is the follow-through,” which could prove “trickier than it sounds” due to “strict deadlines to claim tax credits for renewable energy development looming.”
Last month, the environmental news site Public Domain broke a big story: Karen Budd-Falen, the No. 3 official at the Department of the Interior, has extensive financial ties to the controversial Thacker Pass lithium mine in northern Nevada that the Trump administration is pushing to fast track. Now The New York Times is reporting that House Democrats are urging the Interior Department’s inspector general to open an investigation into the multimillion-dollar relationship Budd-Falen’s husband has with the mine’s developer. Frank Falen, her husband, sold water from a family ranch in northern Nevada to the subsidiary of Lithium Americas for $3.5 million in 2019, but the bulk of the money from the sale depended on permit approval for the project. Budd-Falen did not reveal the financial arrangement on any of her four financial disclosures submitted to the federal government when she worked for the Interior Department during President Donald Trump’s first term from 2018 to 2021.
House Republicans, meanwhile, are planning to vote this week to undo Biden-era restrictions on mining near more than a million acres of Minnesota wilderness. “Mining is huge in Minnesota. And all mining helps the school trust fund in Minnesota as well. So it benefits all schools in the state,” Representative Pete Stauber, a Minnesota Republican and the chair of the Natural Resources Subcommittee on Energy and Mineral Resources, said of the rule-killing bill he sponsored. While the vote is expected to draw blowback from environmentalists, E&E News noted that it could also agitate proceduralists who oppose the GOP’s continued “use of the rule-busting Congressional Review Act for actions that have not been traditionally seen as rules.” Still, the move is likely to fuel the dealmaking boom for critical minerals. As Heatmap’s Katie Brigham wrote in September, “everybody wants to invest” in startups promising to mine and refine the metals over which China has a near monopoly.
Sign up to receive Heatmap AM in your inbox every morning:
A new United Nations report declares that the world has entered an era of “global water bankruptcy,” putting billions of people at risk. In an interview with The Guardian, Kaveh Madani, the report’s lead author, said that while not every basin and country is directly at risk, trade and migration are set to face calamity from water shortages. Upward of 75% of people live in countries classified as water insecure or critically water insecure, and 2 billion people live on land that is sinking as groundwater aquifers collapse. “This report tells an uncomfortable truth: Many critical water systems are already bankrupt,” Madani said. “It’s extremely urgent [because] no one knows exactly when the whole system would collapse.”

The Democratic Republic of the Congo has given the U.S. government a vetted list of mining and processing projects open to American investment. The shortlist, which Mining.com said was delivered to U.S. officials last week, includes manganese, gold, and cassiterite licenses; a copper-cobalt project and a germanium-processing venture; four gold permits; a lithium license; and mines producing cobalt, gold, and tungsten. The potential deals are an outgrowth of the peace agreement Trump brokered between the DRC and Rwanda-backed rebels, and could offer Washington a foothold in a mineral-rich country whose resources China has long dominated. But establishing an American presence in an unstable African country is a risky investment. As I reported for Heatmap back in October, the Denver-based Energy Fuels’ $2 billion mining project in Madagascar was suddenly thrown into chaos when the island nation’s protests resulted in a coup, though the company has said recently it’s still moving forward.
The Tokyo Electric Power Company is delaying the restart of the Kashiwazaki Kariwa nuclear power station in western Japan after an alarm malfunction. The alarm system for the control rods that keep the fission reaction in check failed to sound during a test operation on Tuesday, Tepco said. The world’s largest nuclear plant had been scheduled to restart one of its seven reactors on Tuesday. Fuel loading for the reactor, known as Unit 6, was completed in June. It’s unclear when the restart will now take place.
The delay marks a setback for Prime Minister Sanae Takaichi, who has made restarting the reactors idled after the 2011 Fukushima disaster and expanding the nuclear industry a top priority, as I told you in October. But as I wrote last month in an exclusive about Japan’s would-be national small modular reactor champion, the country has a number of potential avenues to regain its nuclear prowess beyond just reviving its existing fleet.
As a fourth-generation New Yorker, I’m qualified to say something controversial: I love, and often even prefer, Montreal-style bagels. They’re smaller, more efficient, and don’t deliver the same carbohydrate bomb to my gut. Now the best-known Montreal-style bagel place in the five boroughs has found a way to use the energy needed to make their hand-rolled, wood-fired bagels more efficiently, too. Black Seed Bagels’ catering kitchen in northern Brooklyn is now part of a battery pilot program run by David Energy, a New York-based retail energy provider. The startup supplied suitcase-sized batteries for free last August, allowing Black Seed to disconnect from ConEdison’s grid during hours when electricity rates are particularly high. “We’re in the game of nickels and dimes,” Noah Bernamoff, Black Seed’s co-owner, told Canary Media. “So we’re always happy to save the money.” Wise words.