You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Inside Climeworks’ big experiment to wrest carbon from the air
In the spring of 2021, the world’s leading authority on energy published a “roadmap” for preventing the most catastrophic climate change scenarios. One of its conclusions was particularly daunting. Getting energy-related emissions down to net zero by 2050, the International Energy Agency said, would require “huge leaps in innovation.”
Existing technologies would be mostly sufficient to carry us down the carbon curve over the next decade. But after that, nearly half of the remaining work would have to come from solutions that, for all intents and purposes, did not exist yet. Some would only require retooling existing industries, like developing electric long-haul trucks and carbon-free steel. But others would have to be built from almost nothing and brought to market in record time.
What will it take to rapidly develop new solutions, especially those that involve costly physical infrastructure and which have essentially no commercial value today?
That’s the challenge facing Climeworks, the Swiss company developing machines to wrest carbon dioxide molecules directly from the air. In September 2021, a few months after the IEA’s landmark report came out, Climeworks switched on its first commercial-scale “direct air capture” facility, a feat of engineering it dubbed “Orca,” in Iceland.
The technology behind Orca is one of the top candidates to clean up the carbon already blanketing the Earth. It could also be used to balance out any stubborn, residual sources of greenhouse gases in the future, such as from agriculture or air travel, providing the “net” in net-zero. If we manage to scale up technologies like Orca to the point where we remove more carbon than we release, we could even begin cooling the planet.
As the largest carbon removal plant operating in the world, Orca is either trivial or one of the most important climate projects built in the last decade, depending on how you look at it. It was designed to capture approximately 4,000 metric tons of carbon from the air per year, which, as one climate scientist, David Ho, put it, is the equivalent of rolling back the clock on just 3 seconds of global emissions. But the learnings gleaned from Orca could surpass any quantitative assessment of its impact. How well do these “direct air capture” machines work in the real world? How much does it really cost to run them? And can they get better?
The company — and its funders — are betting they can. Climeworks has made major deals with banks, insurers, and other companies trying to go green to eventually remove carbon from the atmosphere on their behalf. Last year, the company raised $650 million in equity that will “unlock the next phase of its growth,” scaling the technology “up to multi-million-ton capacity … as carbon removal becomes a trillion-dollar market.” And just last month, the U.S. Department of Energy selected Climeworks, along with another carbon removal company, Heirloom, to receive up to $600 million to build a direct air capture “hub” in Louisiana, with the goal of removing one million tons of carbon annually.
Two years after powering up Orca, Climeworks has yet to reveal how effective the technology has proven to be. But in extensive interviews, top executives painted a picture of innovation in progress.
Chief marketing officer Julie Gosalvez told me that Orca is small and climatically insignificant on purpose. The goal is not to make a dent in climate change — yet — but to maximize learning at minimal cost. “You want to learn when you're small, right?” Gosalvez said. “It’s really de-risking the technology. It’s not like Tesla doing EVs when we have been building cars for 70 years and the margin of learning and risk is much smaller. It’s completely new.”
From the ground, Orca looks sort of like a warehouse or a server farm with a massive air conditioning system out back. The plant consists of eight shipping container-sized boxes arranged in a U-shape around a central building, each one equipped with an array of fans. When the plant is running, which is more or less all the time, the fans suck air into the containers where it makes contact with a porous filter known as a “sorbent” which attracts CO2 molecules.
Courtesy of Climeworks
When the filters become totally saturated with CO2, the vents on the containers snap shut, and the containers are heated to more than 212 degrees Fahrenheit. This releases the CO2, which is then delivered through a pipe to a secondary process called “liquefaction,” where it is compressed into a liquid. Finally, the liquid CO2 is piped into basalt rock formations underground, where it slowly mineralizes into stone. The process requires a little bit of electricity and a lot of heat, all of which comes from a carbon-free source — a geothermal power plant nearby.
A day at Orca begins with the morning huddle. The total number on the team is often in flux, but it typically has a staff of about 15 people, Climeworks’ head of operations Benjamin Keusch told me. Ten work in a virtual control room 1,600 miles away in Zurich, taking turns monitoring the plant on a laptop and managing its operations remotely. The remainder work on site, taking orders from the control room, repairing equipment, and helping to run tests.
During the huddle, the team discusses any maintenance that needs to be done. If there’s an issue, the control room will shut down part of the plant while the on-site workers investigate. So far, they’ve dealt with snow piling up around the plant that had to be shoveled, broken and corroded equipment that had to be replaced, and sediment build-up that had to be removed.
Courtesy of Climeworks
The air is more humid and sulfurous at the site in Iceland than in Switzerland, where Climeworks had built an earlier, smaller-scale model, so the team is also learning how to optimize the technology for different weather. Within all this troubleshooting, there’s additional trade-offs to explore and lessons to learn. If a part keeps breaking, does it make more sense to plan to replace it periodically, or to redesign it? How do supply chain constraints play into that calculus?
The company is also performing tests regularly, said Keusch. For example, the team has tested new component designs at Orca that it now plans to incorporate into Climeworks’ next project from the start. (Last year, the company began construction on “Mammoth,” a new plant that will be nine times larger than Orca, on a neighboring site.) At a summit that Climeworks hosted in June, co-founder Jan Wurzbacher said the company believes that over the next decade, it will be able to make its direct air capture system twice as small and cut its energy consumption in half.
“In innovation lingo, the jargon is we haven’t converged on a dominant design,” Gregory Nemet, a professor at the University of Wisconsin who studies technological development, told me. For example, in the wind industry, turbines with three blades, upwind design, and a horizontal axis, are now standard. “There were lots of other experiments before that convergence happened in the late 1980s,” he said. “So that’s kind of where we are with direct air capture. There’s lots of different ways that are being tried right now, even within a company like Climeworks."
Although Climeworks was willing to tell me about the goings-on at Orca over the last two years, the company declined to share how much carbon it has captured or how much energy, on average, the process has used.
Gosalvez told me that the plant’s performance has improved month after month, and that more detailed information was shared with investors. But she was hesitant to make the data public, concerned that it could be misinterpreted, because tests and maintenance at Orca require the plant to shut down regularly.
“Expectations are not in line with the stage of the technology development we are at. People expect this to be turnkey,” she said. “What does success look like? Is it the absolute numbers, or the learnings and ability to scale?”
Danny Cullenward, a climate economist and consultant who has studied the integrity of various carbon removal methods, did not find the company’s reluctance to share data especially concerning. “For these earliest demonstration facilities, you might expect people to hit roadblocks or to have to shut the plant down for a couple of weeks, or do all sorts of things that are going to make it hard to transparently report the efficiency of your process, the number of tons you’re getting at different times,” he told me.
But he acknowledged that there was an inherent tension to the stance, because ultimately, Climeworks’ business model — and the technology’s effectiveness as a climate solution — depend entirely on the ability to make precise, transparent, carbon accounting claims.
Nemet was also of two minds about it. Carbon removal needs to go from almost nothing today to something like a billion tons of carbon removed per year in just three decades, he said. That’s a pace on the upper end of what’s been observed historically with other technologies, like solar panels. So it’s important to understand whether Climeworks’ tech has any chance of meeting the moment. Especially since the company faces competition from a number of others developing direct air capture technologies, like Heirloom and Occidental Petroleum, that may be able to do it cheaper, or faster.
However, Nemet was also sympathetic to the position the company was in. “It’s relatively incremental how these technologies develop,” he said. “I have heard this criticism that this is not a real technology because we haven’t built it at scale, so we shouldn’t depend on it. Or that one of these plants not doing the removal that it said it would do shows that it doesn’t work and that we therefore shouldn’t plan on having it available. To me, that’s a pretty high bar to cross with a climate mitigation technology that could be really useful.”
More data on Orca is coming. Climeworks recently announced that it will work with the company Puro.Earth to certify every ton of CO2 that it removes from the atmosphere and stores underground, in order to sell carbon credits based on this service. The credits will be listed on a public registry.
But even if Orca eventually runs at full capacity, Climeworks will never be able to sell 4,000 carbon credits per year from the plant. Gosalvez clarified that 4,000 tons is the amount of carbon the plant is designed to suck up annually, but the more important number is the amount of “net” carbon removal it can produce. “That might be the first bit of education you need to get out there,” she said, “because it really invites everyone to look at what are the key drivers to be paid attention to.”
She walked me through a chart that illustrated the various ways in which some of Orca’s potential to remove carbon can be lost. First, there’s the question of availability — how often does the plant have to shut down due to maintenance or power shortages? Climeworks aims to limit those losses to 10%. Next, there’s the recovery stage, where the CO2 is separated from the sorbent, purified, and liquified. Gosalvez said it’s basically impossible to do this without losing some CO2. At best, the company hopes to limit that to 5%.
Finally, the company also takes into account “gray emissions,” or the carbon footprint associated with the business, like the materials, the construction, and the eventual decommissioning of the plant and restoration of the site to its former state. If one of Climeworks’ plants ever uses energy from fossil fuels (which the company has said it does not plan to do) it would incorporate any emissions from that energy. Climeworks aims to limit gray emissions to 15%.
In the end, Orca’s net annual carbon removal capacity — the amount Climeworks can sell to customers — is really closer to 3,000 tons. Gosalvez hopes other carbon removal companies adopt the same approach. “Ultimately what counts is your net impact on the planet and the atmosphere,” she said.
Get one great climate story in your inbox every day:
Despite being a first-of-its-kind demonstration plant — and an active research site — Orca is also a commercial project. In fact, Gosalvez told me that Orca’s entire estimated capacity for carbon removal, over the 12 years that the plant is expected to run, sold out shortly after it began operating. The company is now selling carbon removal services from its yet-to-be-built Mammoth plant.
In January, Climeworks announced that Orca had officially fulfilled orders from Microsoft, Stripe, and Shopify. Those companies have collectively asked Climeworks to remove more than 16,000 tons of carbon, according to the deal-tracking site cdr.fyi, but it’s unclear what portion of that was delivered. The achievement was verified by a third party, but the total amount removed was not made public.
Climeworks has also not disclosed how much it has charged companies per ton of carbon, a metric that will eventually be an important indicator of whether the technology can scale to a climate-relevant level. But it has provided rough estimates of how much it expects each ton of carbon removal to cost as the technology scales — expectations which seem to have shifted after two years of operating Orca.
In 2021, Climeworks co-founder Jan Wurzbacher said the company aimed to get the cost down to $200 to $300 per ton removed by the end of the decade, with steeper declines in subsequent years. But at the summit in June, he presented a new cost curve chart showing that the price was currently more than $1,000, and that by the end of the decade, it would fall to somewhere between $400 to $700. The range was so large because the cost of labor, energy, and storing the CO2 varied widely by location, he said. The company aims to get the price down to $100 to $300 per ton by 2050, when the technology has significantly matured.
Critics of carbon removal technologies often point to the vast sums flowing into direct air capture tech like Orca, which are unlikely to make a meaningful difference in climate change for decades to come. During a time when worsening disasters make action feel increasingly urgent, many are skeptical of the value of investing limited funds and political energy into these future solutions. Carbon removal won’t make much of a difference if the world doesn’t deploy the tools already available to reduce emissions as rapidly as possible — and there’s certainly not enough money or effort going into that yet.
But we’ll never have the option to fully halt climate change, let alone begin reversing it, if we don’t develop solutions like Orca. In September, the International Energy Agency released an update to its seminal net-zero report. The new analysis said that in the last two years, the world had, in fact, made significant progress on innovation. Now, some 65% of emission reductions after 2030 could be accounted for with technologies that had reached market uptake. It even included a line about the launch of Orca, noting that Climeworks’ direct air capture technology had moved from the prototype to the demonstration stage.
But it cautioned that DAC needs “to be scaled up dramatically to play the role envisaged,” in the net zero scenario. Climeworks’ experience with Orca offers a glimpse of how much work is yet to be done.
Read more about carbon removal:
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Thea Riofrancos, a professor of political science at Providence College, discusses her new book, Extraction, and the global consequences of our growing need for lithium.
We cannot hope to halt or even slow dangerous climate change without remaking our energy systems, and we cannot remake our energy systems without environmentally damaging projects like lithium mines.
This is the perplexing paradox at the heart of Extraction: The Frontiers of Green Capitalism, a new book by political scientist and climate activist Thea Riofrancos, coming out September 23, from Norton.
Riofrancos, a professor at Providence College, has spent much of her academic career studying mining and oil production in Latin America. In Extraction, she traces the lithium boom of the past five or so years, as the aims of the Global North and Global South began to resemble an inverted mirror. Countries in the latter group that have long been sites of mineral extraction — with little economic benefit — are now seeking to manufacture the more lucrative high tech products further down the supply chain. Meanwhile, after decades of offshoring, Europe and the U.S. suddenly want to bring mining back home in pursuit of “green dominance,” she writes. All of this is happening against the backdrop of China’s geopolitical rise, the war in Ukraine, the COVID-19 pandemic, and worsening effects of climate change.
The book also spends time with the indigenous communities and environmental defenders fighting the lithium industry in Chile, Spain, and the American West. Riofrancos doesn’t shy away from difficult questions, such as whether there is such a thing as a “right place” for a lithium mine. But she’s optimistic that there’s a better path than the one we’re on now. “The energy transition has presented a fork in the road for the entire economic and social order,” she writes. Down one road, we entrench existing power structures. Down the other, we capitalize on the energy transition to create a more just society.
Green capitalism, Riofrancos argues, is an oxymoron. While we can’t avoid extraction, we can reduce the need for it, for example through better public transit, smaller EV batteries, and minerals recycling, she concludes.
This interview has been edited and condensed for length and clarity.
Are there notable differences between lithium and the extraction of other natural resources?
Yes and no. Whether it’s copper or lithium or gold or cobalt — and even I would include hydrocarbons in this, to a degree — whether we look at the economics, the way that they have boom and bust cycles, the fact that governments, even neoliberal governments, tend to take a pretty concerted interest in extractive sectors within their jurisdiction, environmental concerns and direct forms of violence that are meted out at environmental defenders — no, it’s not different. Which should raise alarm bells because a lot of those dynamics are not positive.
What’s different, though, is that precisely because mining companies and host governments claim that the extraction of lithium is urgent and essential for the energy transition, what ends up happening is that these big claims are made — like, “We are now a sustainable mining company because we’re extracting lithium,” or, “This is part of our green industrial policy.” This toxic and dirty extractive sector is now greenified because of its role in the energy transition. On the one hand, that’s greenwashing. On the other, it’s an opening. When companies make those claims, it’s something to hold them accountable to.
I was somewhat surprised by the issues you describe with the way lithium mining is regulated in Chile — the companies do their own environmental monitoring, there’s a lack of transparent data, the brine they mine in the Atacama is not considered water under Chilean law, etc. It seems like the state could change a lot of this. Why hasn’t it?
States in the Global South, although not exclusively there, lack geological and hydrological data about their own territory. In ways that we can trace to colonialism and neocolonialism in terms of who controls the territory and who has knowledge about it, the actors that have the basic data about deposits, how they interact with water sources, all of that, are the companies. And so to even regulate these companies better, you first need to set up independent and objective sources of data collection — and that’s something that any state might struggle with, but especially in the Global South, given the kind of legacy under which these companies operated, with little oversight of the state.
The [U.S. Geological Survey] doesn’t exist everywhere in the world. Not every state has a surveying agency with that level of expertise. And even in the U.S., the USGS actually has quite partial knowledge of what’s here. And there are many examples of companies in the U.S. hiding proprietary knowledge from the government.
What about after Gabriel Boric became president in Chile, in 2022, and created this new public-private partnership between the mining giant SQM and the government. Wouldn’t that have given the Chilean government more visibility and more control?
I think in some ways he’s made strides. He has set aside many salt flats for conservation. A right wing government wouldn’t have done that. He also is inserting the state, via the state-owned copper company Codelco, entering into public-private partnerships with companies, including SQM. If all goes according to plan, that will help the state learn more about lithium extraction, or maybe even set up their own lithium company, which was the initial goal of this government.
I’ll just point out two things to show how this is difficult. According to indigenous communities and environmental activists that have been organizing around this, they were excluded from the initial moment where that memorandum of understanding between SQM and Codelco was signed, and so they felt like it was a reenactment of historic injuries by a government that they had cautiously supported or thought would be different. Now they’re back at the negotiating table and indigenous communities are being consulted again. But there was a critical moment where the MOU was signed and indigenous communities were not present, and actually learned about it from the media. These historic patterns are really hard to change because companies hold a lot of power.
Even a progressive government is balancing indigenous rights and ecological protection with a desire to not lose market share. Argentina is starting to catch up with Chile — is Chile still going to remain the number two producer globally? Does it need to change its regulations to attract more companies? This is the kind of double bind that Global South societies find themselves in.
You write about this tension between expanding extraction and minimizing environmental and community impacts. Do you believe there are actually ways to minimize these impacts?
Absolutely. You can do anything better. I believe in human ingenuity and science and figuring out how to improve processes. There are ways to extract using less water, using a smaller land footprint, using fewer polluting energy sources. One of the reasons emissions from mining are not insignificant is a lot of it happens off-grid, and for now, that means diesel generators or gasoline-powered mining vehicles, let alone the cargo ships that are shipping the stuff around the world. So we could think about localizing or regionalizing supply chains.
The question is, how do we get companies to change their practices? They might do it if a regulator tells them they have to, if civil society puts so much pressure on them that it just becomes reputational harm if they don’t do it, if perhaps activist shareholders ask or tell the company to change its practices.
But the company, if it’s a shareholder-owned company, has one main obligation, which is to maximize the value of their shares. Changing your technological setup and your physical plant arrangement is costly, and it may not immediately produce more profits. And so you have to think about, what are the crude economic dynamics that keep companies on a particular technological path in terms of how they do their physical operations? And then think, using the power of policy, of economics, of consumer pressure, whatever it is, how to get them to make a decision that may not be in their immediate shareholder interest.
One theme in the book is that countries in the West are making a case for domestic mining by arguing that it will be greener than mining in the Global South. Is there any evidence for that? What’s the logic?
This was honestly one of the most surprising things in my research as someone that primarily has worked in Latin America. I heard some rumblings — and this was in 2019, before the pandemic — of EU officials wanting to onshore. It confused me because mining is toxic, it’s low value-added. And what I learned is that it had come to a point where Western policymakers saw the whole supply chain as a domain of geostrategic power.
And then, probably some people really feel this way, and other people are using it as nice rhetoric, but Western policymakers also started to come to the idea that it would be more “responsible” to mine in the West. This is in no small part due to the fact that the mining industry has deservedly gotten a lot of negative coverage for, in some cases, outright killing people. In other cases, you have an avalanche that destroys a village. You have water contamination. There are issues around forced labor, how the Uyghurs are treated in China. So there was a lot of bad press on the industry. I think they thought, We can solve a few problems at once. We can increase our geopolitical power by having domestic supply chains for the most important 21st century technologies, and we can also make the claim to consumers, regulators, and the media that this is better if you care about responsible, ethical, green mining.
The reality is, of course, more complex than that. Our mining law in the U.S. that governs hard rock mining on public lands is from 1872, which tells you everything you need to know. It’s extremely out of date with the modern mining industry and the scale of harm that mining poses, and it also literally was implemented during the westward expansion and dispossession of indigenous peoples to serve that end.
In fact, countries in Latin America tend to have better — on paper — governance of mining than the U.S., though they may not have the state capacity to always implement it. In Europe, there’s even more dependence on imports. A lot of the European countries have almost no regulations on the books for basic things like, how do you deal with mining waste? And so in the Global North, what we have to fight for is a mining governance regime and a set of legal codes and regulations that is up to date.
This book is pretty critical of the way communities have been treated in the lithium boom so far. What are some of the ways community engagement can be done better?
We see better outcomes when communities are organized, when they actually identify as a community, have some meetings, maybe set up a group to coordinate themselves. Like, who’s going to go to the public hearing? Who’s going to contact a lawyer? Who’s going to contact the water expert? Because communities need a lot of outside help. The companies have lawyers, they have experts, they probably have friends in government. A lot of lawyers and experts that companies hire used to work for the government, and they know these processes inside out, and so the community needs to be as or more organized. They’re already on the losing end of a power imbalance.
In a way, none of this is about what companies can do, because I presume that companies are responsive to pressure. Multinationals, insofar as they’re shareholder-owned, their main goal is to maximize value, and that’s it. It’s that simple. And so in order to get them to behave differently towards communities, outside forces need to take a role. The first outside force is the community itself. A second is, how involved is the government? And how objective and public-serving is the government? Where governments take a more objective role and help protect the baseline rights of communities, make sure that those rights are not being violated by companies, help distribute more culturally sensitive and appropriate information about the mine, we could get better outcomes that way.
You had activists tell you, “I support lithium mining, but this is the wrong place for it.” Do you think there is such a thing as a right or wrong place, or even a better or worse place for a lithium mine?
This was honestly the most vexing question that I had to contemplate in my own research. I often think about how these communities are called NIMBYs, and there’s two reasons that’s a really inappropriate term. First of all, the “my backyard” — not every person has private property, or that’s not their stake in the matter. It’s not about, this is going to decrease the value of my property, or this is going to disrupt my ocean view. It’s about the land that they have a deep relationship with.
The second thing is, I don’t think most of the people that call these communities NIMBYs would really want to live next to a large-scale mine, either. They are just enormous scars on the landscape. I understand that they are necessary, to some degree, to provide for the technologies that we enjoy, including life-saving and planet-saving technology. Even in my perfect world, where everyone is riding an electric bus or bike or walking around, some lithium is still needed in the near term. In the future, we could conceivably enter into a circular economy, but we don’t have the level of feedstock for that yet.
So the question remains, where are we going to mine? I don’t have an easy answer to that, but I will say that in the entire process of land use planning, the corporation is the protagonist. In the U.S., a place that I think most political scientists would say has more state capacity than a country in Africa or Latin America, we do not use that capacity to proactively plan land use. I think it would make sense to really rearrange the process such that governments plan with substantial community input, and then corporations, if we want to have private corporations doing this, get the ability to compete for contracts. I know that would be a big lift to change that policy dynamic, but I think we need to have the conversation.
You write a lot about this difficult dance between supply and demand in mining. What are you seeing right now in how the lithium industry is reacting to Trump’s dismantling of EV policy?
With Trump, it’s particularly interesting and bizarre because on the list of fast-tracked mines, you have several lithium mines and some lithium processing along with other “critical minerals.” He really wants to expand mining, to the point that the Pentagon is now the No. 1 investor in our only rare earth mine in the U.S. They bought 15% of MP Materials’ shares, the company that manages the Mountain Pass mine. And so Trump is fast-tracking mines, he’s sending huge amounts of public money to financially underwrite these mining companies. But yet, he’s destroying demand for rare earths. He loves to talk about AI and military tech — that’s a small slice of demand. It’s really about wind turbines and electric vehicle motors. That’s really where the demand is. With lithium, it’s even clearer.
That all seems like a recipe for prices to crash.
The thing is, they already had crashed because of a supply glut. But at the same time, the market will likely pick back up because we’re seeing so much action elsewhere in the world. It’s very easy to focus on the U.S., especially because the U.S. government is such a basket case right now. But if we zoom out, there’s been a bunch of recent reporting, including in Heatmap, on how rapidly the energy transition is going in other parts of the world, with China playing an enormous role not only on the trade side, but also in foreign direct investment, in setting up solar and EV manufacturing hubs in the Global South.
And so I think that Trump can dismantle EVs as much as he wants in the U.S., and that’s a shame given that transportation is our most polluting sector. I mean, that pains me as a climate activist. But the world is bigger than the U.S.
The last thing I’ll say — and this is another interesting contradiction — in the Big, Beautiful Bill, it’s not across the board against all green technologies. There’s this distinction that conservatives increasingly like to make called “clean, firm power.” So they put nuclear, geothermal, and battery storage in that. Now, battery storage, what is that made of? Lithium. So in a weird way, they like lithium mining, they like batteries for storage, they just don’t like electric vehicles. We’re still going to have lithium demand in the U.S., and lots of individual people will still buy electric cars, and blue states will still procure them for their public fleets. He’s not going to kill the market. He’s just going to slow its growth, primarily by making it less affordable for working and middle class people.
The CEO’s $1 billion share buy changes nothing — except in the eyes of his shareholders.
Elon Musk’s signature talent, the thing that made him the world’s richest man, has long been his ability to make Tesla’s stock price soar. It’s a superpower that manifests through a combination of financial lever-pulling and promises of world-changing innovations to come. For this reason, it leads to glaring disconnects such as Tesla having become the world’s most valuable automaker despite selling only a 10th as many vehicles as a true manufacturing superpower like Toyota.
By that yardstick, this week’s news might be his biggest achievement yet.
On Monday, headlines declared that Tesla has turned itself around. Its share price has rebounded after taking a nosedive early this year. In this case, the bullish stock market performance is divorced not only from the reality of the company’s electric car sales, but also from, well, everything else that’s happened lately.
Remember the protests? Remember the celebrities performatively selling their Teslas? The “I bought this before Elon went crazy” bumper stickers? With Musk having abandoned his dalliance with the Trump administration, other crises have taken over the spotlight. Even so, the echo of discontent is visible. Protests dogged the opening of the new Tesla Diner charging station here in Los Angeles, and plenty of Teslas in my neighborhood still have the apology stuck to their bumpers.
Most crucially for Tesla, the anger did real damage to its bottom line. The brand’s sales around the world fell dramatically as public disgust with Musk rose and EV shoppers ran toward a growing number of competitors, especially those from China. But even in the U.S., where cheap Chinese EVs are not an option, Tesla’s dominance has shrunk. In August 2025, the company’s share of the U.S. EV market fell to 38%. That was Tesla’s lowest figure since 2017, before the Model 3 or Model Y rolled off assembly lines. It was enough to inspire another round of speculation over whether the company might be better off freeing itself from the PR albatross that is Elon Musk.
Yet once again, the performance of Tesla’s stock would suggest that none of this had ever happened, or at least that it didn’t matter. Tesla offered Musk a trillion-dollar pay package — so absurd that even the pope felt compelled to condemn it. Musk then turned around and bought a billion dollars of Tesla stock to signal his self-confidence, which in turn propelled Tesla’s share price back up again and wiped out the losses from earlier this year.
The “why” of this financial madness is the same refrain that’s been playing for the past two years, ever since Musk rolled out the disastrous Cybertruck rather than building Tesla’s volume EV business. The man cares about robotics, AI, and autonomy — and decidedly not about building cars — and has convinced shareholders that his pivot in this direction will reap untold rewards. Once again, it’s possible that he’s right.
I am, admittedly, a cynic about Tesla and self-driving, for reasons personal and general. My Model 3 encounters the occasional worrisome blip with its relatively simpler Autopilot system, for instance on the part of Interstate 5 near Disneyland where it suddenly decides it’s on the 45 mile-per-hour access road rather than the freeway and hits the brakes.
This error alone is enough that I wouldn’t entrust my family’s safety to Tesla Full Self-Driving, to say nothing of Musk’s lifelong habit of overstating the abilities of his tech. But I know plenty of people who are already allowing versions of FSD to chauffeur them. Conversations with industry sources often settle on the inevitability of autonomy, if for no other reason than they worry about younger folks who can’t be bothered with learning to drive. Maybe Tesla will win the race to sell them self-driving electric cars. (Or, as a Bloomberg op-ed says, maybe the big buy is just window dressing, though a more apt metaphor might have been lipstick on a pig.)
Either way, it’s not great news for the here and now, the EV market of the present that Musk loves to neglect. South Korean competitors Hyundai and Kia — which are both building cool EVs for today that humans drive and trying to do much of their manufacturing in the United States — are nonetheless getting hammered by Trump tariffs and ICE raids. The federal tax credit set to expire at the end of this month is a particularly hard hit for forthcoming vehicles such as the new Chevy Bolt and Nissan Leaf, which could have reached compellingly cheap prices had the government not killed the incentive and slapped tariffs in its place.
Will Tesla, which has long teased an affordable EV, at least redouble its efforts to sell more cars? If anything can motivate Musk to refocus on Tesla rather than trolling on X, it’s money. To date, the company has sold a little more than 7 million vehicles; 20 million Tesla cars sold is one of the many strings attached to Musk actually earning the entire “trillion-dollar” deal.
Another condition is that he aid the company in its search for his successor, a sign that those who’ve always wanted to see a Tesla without Musk might get their wish sooner rather than later.
On Toyota’s recalls, America’s per-capita emissions, and Sierra Club drama
Current conditions: Drought is worsening in the U.S. Northeast, where cities such as Pittsburgh and Bangor, Maine have recorded 30% less rainfall than average • Temperatures in the Mississippi Valley are soaring into the triple digits, with cities such as Omaha, Nebraska and St. Louis breaking daily temperature records with highs of up to 20 degrees Fahrenheit above average • A heat wave in Mecca, Saudi Arabia, has sent temperatures as high as 114 degrees.
Orsted is offering investors a nearly 70% discount on the new shares issued to raise money to save its American offshore wind projects amid the Trump administration’s aggressive crackdown on the industry. The Danish energy giant won nearly unanimous approval from its shareholders earlier this month for a rights issue aimed at raising $9.4 billion. Shares in the company, which is half owned by the government in Copenhagen, closed around $32 each on Friday. But the offering of 901 million new shares came at a subscription rate of about $10.50 each. Orsted’s projects in the northeastern U.S. already “struggled” with what The Wall Street Journal listed as “supply-chain bottlenecks, higher interest rates, and trouble getting tax credits,” which culminated in the restructuring last year that saw the company “pull out of two high-profile wind projects off the coast of New Jersey.”
The offshore wind industry, as I noted in yesterday’s newsletter, is just starting to fight back. The owners of the Rhode Island offshore project Revolution Wind, which Trump halted unilaterally, filed a lawsuit claiming the administration illegally withdrew its already-finalized permits. After the administration filed a lawsuit to revoke the permits of US Wind’s big project off Maryland’s coast, the company said it intends “to vigorously defend those permits in federal court, and we are confident that the court will uphold their validity and prevent any adverse action against them.” But the multi-agency assault on offshore turbine projects has only escalated in recent months, as the timeline Heatmap’s Emily Pontecorvo produced shows. And Orsted is facing other headwinds. The company just warned investors of lower profits this year after weaker-than-forecast wind speeds reduced the output of its turbines.
Toyota issued a voluntary recall for some 591,000 Toyota and Lexus cars over a slight glitch in the display screen. The 12.3-inch screen could fail to turn on after the car started, or go black while driving. Toyota said it will begin notifying owners if affected vehicles by mid-November. The move came just days after the Japanese auto giant — which owns both its eponymous passenger car brand and the associated luxury line, Lexus — recalled 62,000 electric vehicles, including the Toyota bZ4X SUV and the Lexus RZ300e sedan and its luxury SUV, the RZ450. Subaru, in which Toyota owns a minority stake, is also recalling its electric SUV, the Solterra. With all four EVs, the issue revolved around a faulty windshield defroster that “may not remove frost, ice and/or fog from the windshield glass due to a software issue in the electrical control unit,” the company said in a press release..
States such as Mississippi and Idaho had the lowest drop in energy-related per-capita emissions.EIA
Americans who complain that the U.S. should bear less responsibility for mitigating climate change like to point out that China produces far more planet-heating emissions per year, and that India is not far behind. The cumulative nature of carbon in the atmosphere makes for an easy rebuke, since the U.S. and Western Europe are overwhelmingly responsible for the emissions of the past two centuries. But a less historically abstract response could be that Americans still have by far the highest per capita emissions of any large country. That doesn’t mean the U.S. isn’t making progress on a per capita level, though. Between 2005 and 2023, per capita emissions from primary energy consumption decreased in every U.S. state, with an average drop of 30%, even as the American population grew by 14%, according to a new analysis by the U.S. Energy Information Administration. The dip is largely thanks to the electric power sector burning less coal. Increased electricity generation from natural gas, which releases about half as much carbon per unit of energy when burned as coal, and the growth of renewables such as wind and solar have reduced the need for the dirtier fuel. But the EIA forecasts that overall U.S. emissions are set to climb by 1% as electricity demand increases.
For those keen to shrink their individual carbon output at a much faster pace than American society at large, Heatmap’s award-winning Decarbonize Your Life series walks through the benefits and drawbacks to driving less, eating less steak, installing solar panels, and renovating homes to be more energy efficient.
Following rebellions from various state chapters, the Sierra Club terminated its executive director, Ben Jealous, last month, as I reported here in this newsletter at the time. Now the group has named its new leader: Loren Blackford. The Sierra Club veteran, who served in various senior roles before taking on the interim executive director job last month, won unanimous support from the group’s board of directors on Saturday.
Jealous had previously served as a chief executive of the National Association for the Advancement of Colored People and the 2018 Democratic nominee for Maryland governor before becoming the first non-white leader of the 133-year-old Sierra Club. His appointment marked a symbolic turning of the page from the group’s early chapters under its founder, John Muir, who made numerous derogatory remarks about Black and Native Americans. Jealous was accused of sexual harassment earlier this year.
Thermal battery company Fourth Power just announced $20 million in follow-on funding, building on its $19 million Series A round from 2023. While other thermal storage companies such as Rondo and Antora are targeting the decarbonization of high-temperature industrial processes such as smelting or chemical manufacturing, Fourth Power aims to manufacture long-duration energy storage systems for utilities and power producers.
“In our view, electricity is the biggest problem that needs to be solved,” Fourth Power’s CEO Arvin Ganesan told Heatmap’s Katie Brigham. “There is certainly a future application for heat, but we don’t think that’s where to start.” The company’s tech works by taking in excess renewable electricity from the grid, which is used to heat up liquid tin to 2,400 degrees Celsius, nearly half the temperature of the sun’s surface. That heat is then stored in carbon blocks and later converted back into electricity using thermophotovoltaic cells. This latest funding will accelerate the deployment of the startup’s first one megawatt hour demonstration plant.
The tropical storm that later became Hurricane María formed exactly eight years ago today and went on to lay waste to Puerto Rico’s aging electrical system. The grid remains fragile and expensive, with frequent outages and some of the highest rates in the U.S. on the hours when the power is accessible. That has spurred a boom in rooftop solar panels. Now more than 10% of the island’s electricity consumption comes from rooftop solar power. Data released by the grid operator LUMA Energy showed approximately 1.2 gigawatts of residential and commercial rooftop solar had been installed under Puerto Rico’s net-metering regulations as of June 2025. New analysis by the Institute for Energy Economics and Financial Analysis found that is equal to about 10.3% of Puerto Rico’s total power consumption — and that’s not counting any off-grid systems.