You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The world’s biggest, most functional city might also be the most pedestrian-friendly. That’s not a coincidence.
For cities that want to reduce the number of cars, bike lanes are a good place to start. They are cheap, usually city-level authorities can introduce them, and they do not require you to raise taxes on people who own cars. What if you want to do something more radical though? What would a city that genuinely wanted to get the car out of its citizens’ lives in a much bigger way do? A city that wanted to make it possible for most people to live decent lives and be able to get around without needing a car, even without needing to get on a bicycle?
There is only one city on Earth I have ever visited that has truly managed this. But it happens to be the biggest city on the planet: Tokyo, the capital of Japan.
In popular imagination, at least in the West, Tokyo is both incredibly futuristic, and also rather foreign and confusing. Before I first visited, in 2017, I imagined it to be an incredibly hectic place, a noisy, bustling megacity. I was on holiday and trying to escape Nairobi, the rather sprawling, low-height, and green city I was living in at the time, and I picked Tokyo largely because I wanted to get as far away from Africa as I could. I needed a break from the traffic jams, the power cuts, the constant negotiation to achieve anything, and the heat. I was looking for an escape somewhere as different as I could think of, and I wanted to ride trains around and look at high-tech skyscrapers and not worry about getting splattered by mud walking in the street. I was expecting to feel bowled over by the height of the buildings, the sheer crush of people, and the noise.
Yet when I emerged from the train station in Shibuya, blinking jetlagged in the morning light after a night flight from Amsterdam, what actually caught me off guard was not the bustle but rather how quiet the city is. When you see cliched images of Tokyo, what invariably is shown are the enormous crowds of pedestrians crossing the roads, or Mount Fuji in the background of the futuristic skyline. I expected something like Los Angeles in Blade Runner, I suppose — futuristic and overwhelming. From photos, Tokyo can look almost unplanned, with neon signs everywhere and a huge variety of forms of architecture. You expect it to feel messy. What I experienced, however, was a city that felt almost like being in a futuristic village. It is utterly calm, in a way that is actually rather strange.
And it took me a little while to realize why. There is simply no traffic noise. No hooting, no engine noise, not even much of the noise of cars accelerating on tarmac. Because there are so few of them. Most of the time you can walk in the middle of the street, so rare is the traffic. There are not even cars parked at the side of the road. That is not true of all of Tokyo, of course. The expressways are often packed. Occasionally, I was told, particularly when it snows, or during holidays when large numbers of people try to drive out to the countryside, jams form that can trap drivers for whole days. But on most residential streets, traffic is almost nonexistent. Even the relatively few cars that you do see are invariably tiny, quiet vehicles.
Among rich cities, Tokyo has the lowest car use in the world. According to Deloitte, a management consultancy, just 12 percent of journeys are completed by private car. It might surprise you to hear that cycling is actually more popular than driving in Tokyo — it accounts for 17 percent of journeys, though the Japanese do not make as much of a big deal out of it as the Dutch do. But walking and public transport dwarf both sorts of vehicles. Tokyo has the most-used public transport system in the world, with 30 million people commuting by train each day. This may sound rather unpleasant. You have probably seen footage of the most crowded routes at rush hour, when staff literally push people onto the carriages to make space, or read about young women being groped in the crush. It happens, but it is not typical. Most of the trains I rode were busy but comfortable, and I was able to get a seat.
And what makes Tokyo remarkable is that the city was almost entirely built after the original city was mostly flattened by American bombers in the Second World War. Elsewhere in the world, cities built after the war are almost invariably car-dependent. Think of Houston, Texas, which has grown from 300,000 people in the 1950s to 10 times that now. Or England’s tiny version, Milton Keynes, which is the fastest-growing city in the country. Or almost any developing world city. Since the advent of the automobile, architects and urban planners worldwide have found it almost impossible to resist building cities around roads and an assumption that most people will drive. Tokyo somehow managed not to. It rebuilt in a much more human-centric way.
It may come as a surprise that Japan is home to the world’s biggest relatively car-free city. After all, Japan is the country that gave the world Mitsubishi, Toyota, and Nissan, and exports vehicles all over the world. And in fairness, a lot of Japanese people do own cars. Overall car ownership in Japan is about 590 vehicles per 1,000 people, which is less than America’s rate of about 800 per 1,000, but comparable to a lot of European countries. On average, there are 1.06 cars per household. But Tokyo is a big exception. In Tokyo, there are only 0.32 cars per household. Most Japanese car owners live in smaller towns and cities than the capital. The highest rate of car ownership, for example, is in Fukui Prefecture, on the western coast of Honshu, one of Japan’s least densely populated areas.
And car ownership in Japan is falling, unlike almost everywhere else on Earth. Part of the reason is just that the country is getting older and the population is falling. But it is also that more and more people live in Tokyo. Annually, Japan is losing about 0.3 percent of its population, or about half a million people a year. Greater Tokyo, however, with its population of 37 million, is shrinking by less than that, or about 0.1 percent a year. And the prefecture of Tokyo proper, with a population of 14 million, is still growing. The reason is that Tokyo generates the best jobs in Japan, and it is also an increasingly pleasant place to live. You may think of Tokyoites as being crammed into tiny apartments, but in fact, the average home in Tokyo has 65.9 square meters of livable floor space (709 square feet). That is still very small—indeed, it is less than the size of the average home in London, where the figure is 80 square meters. But the typical household in London has 2.7 people living in it. In Tokyo, it is 1.95. So per capita, people in Tokyo actually have more space than Londoners.
Overall in fact, people in Tokyo have one of the highest qualities of life in the world. A 2015 survey by Monocle magazine came to the conclusion that Tokyo is the best city on Earth in which to live, “due to its defining paradox of heart-stopping size and concurrent feeling of peace and quiet.” In 2021 The Economist ranked it fourth, after Wellington and Auckland in New Zealand, and another Japanese city, Osaka. Life expectancy overall is 84 years old, one of the highest levels of any city on the planet. A good part of this has to do with the lack of cars. Air pollution is considerably lower than in any other city of equivalent size anywhere in the world. Typical commutes are, admittedly, often fairly long, at 40 minutes each way. But they are not in awful smoggy car traffic.
This article was excerpted from Daniel Knowles' book "Carmageddon: How Cars Make Life Worse and What to Do About It"Abrams Press ©2023
So how has Tokyo managed it? Andre Sorensen, a professor of urban planning at the University of Toronto, who published a history of urban planning in Japan, told me that Japan’s history has a lot to do with it. Japan’s urbanization happened a little more like some poorer countries — quickly. At the start of the 20th century, just 15 percent of Japanese people lived in cities. Now 91 percent do, one of the highest rates of urbanization in the entire world. That rapid growth meant that Tokyo’s postwar growth was relatively chaotic. Buildings sprawled out into rice paddies, with sewage connections and power often only coming later. Electricity is still often delivered by overhead wires, not underground cables. And yet somehow this haphazard system manages to produce a relatively coherent city, and one that is much easier to get around on foot or by public transport than by car.
Part of the reason, Sorensen explained to me, is just historical chance. Japanese street layouts traditionally were narrow, much like medieval alleys in Europe. Land ownership was often very fragmented, meaning that house builders had to learn to use small plots in a way that almost never happened in Europe or America. And unlike the governments there, the government in postwar Japan was much more concerned with boosting economic growth by creating power plants and industrial yards than it was with creating huge new boulevards through neighborhoods. So the layouts never changed. According to Sorensen’s research, 35 percent of Japanese streets are not actually wide enough for a car to travel down them. More remarkably still, 86 percent are not wide enough for a car to be able to stop without blocking the traffic behind it.
Yet the much bigger reason for Tokyo’s high quality of life is that Japan does not subsidize car ownership in the way other countries do. In fact, owning a car in Tokyo is rather difficult. For one thing, cars are far more enthusiastically inspected than in America or most of Europe. Cars must be checked by officials every two years to ensure that they are still compliant, and have not been modified. That is true in Britain too, but the cost is higher than what a Ministry of Transport test costs. Even a well-maintained car can cost 100,000 yen to inspect (or around $850). On cars that are older than 10 years, the fees escalate dramatically, which helps to explain why so many Japanese sell their cars relatively quickly, and so many of them end up in East Africa or Southeast Asia. On top of that there is an annual automobile tax of up to 50,000 yen, as well as a 5 percent tax on the purchase. And then gasoline is taxed too, meaning it costs around 160 yen per liter, or about $6 a gallon, less than in much of Europe, but more than Americans accept.
And even if you are willing to pay all of the taxes, you cannot simply go and buy a car in the way that you might in most countries. To be allowed to purchase a car, you have to be able to prove that you have somewhere to park it. This approval is issued by the local police, and is known as a shako shomeisho, or “garage certificate.” Without one, you cannot buy a car. This helps to explain why the Japanese buy so many tiny cars, like the so-called Kei cars. It means they can have smaller garages. Even if the law didn’t exist though, owning a car in Japan without having a dedicated parking space for it would be a nightmare. Under a nationwide law passed in 1957, overnight street parking of any sort is completely illegal. So if you were to somehow buy a car with no place to store it, you could not simply park it on the street, because it would get towed the next morning, and you would get fined 200,000 yen (around $1,700). In fact, most street parking of any sort is illegal. There are a few exceptions, but more than 95 percent of Japanese streets have no street parking at all, even during the day.
This, rather than any beautiful architecture, explains why Tokyo’s streets feel so pleasant to walk down, or indeed to look at. There are no cars filling them up. It also means that land is actually valued properly. If you want to own a car, it means that you also have to own (or at least rent) the requisite land to keep it. In rural areas or smaller towns, this is not a huge deal, because land is relatively cheap, and so a permit might only cost 8,000 to 9,000 yen, or about $75 a month. But in Tokyo, the cost will be at least four times that. Garages in American cities can cost that much too, but in Japan there is no cheap street parking option, as in much of New York or Chicago. Most apartment buildings are constructed without any parking at all, because the developers can use the space more efficiently for housing. Only around 42 percent of condominium buildings have parking spaces for residents. Similarly, even if you own a parking space, it is almost never free to park anywhere you might take your car. Parking in Tokyo typically costs 1,000 yen an hour, or around $8.50.
This is a big disincentive to driving. Sorensen told me that when he lived in Tokyo, some wealthy friends of his owned a top-end BMW, which they replaced every few years, because they were car nuts. But because they did not have anywhere to park it near their home, if they wanted to use it, they had to take public transport (or a taxi) to get to it at its garage. As a result, they simply did not use their car very much. In their day-to- day life, they used the trains, the same as everybody else, or took taxis, because that was cheaper than picking up the car. This sort of thing probably helps to explain why the Japanese, despite relatively high levels of car ownership, do not actually drive very far. Car owners in Japan typically drive around 6,000 kilometers per year. That is about half what the average British car owner drives, and less than a third of what the average American does.
Parking rules are not, however, the limit of what keeps cars out of Tokyo. Arguably, an even bigger reason is how infrastructure has been funded in Japan. That is, by the market, rather than directly by taxes. In the 1950s and ’60s, much like Europe and the United States, Japan began building expressways. But unlike in Europe and America, it was starting from a considerably more difficult place. In 1957, Ralph J. Watkins, an American economist who had been invited to advise the Japanese government, reported that “the roads of Japan are incredibly bad. No other industrial nation has so completely neglected its highway system.” Just 23 percent of roads were paved, including just two-thirds of the only highway linking Osaka, Japan’s historical economic hub, to Tokyo.
But unlike America, the idea of making them free never seemed to cross politicians’ minds, probably because Japan in the postwar era was not the world’s richest country. Capital was not freely available. To build the roads, the national government formed corporations such as the Shuto Kōsoku-dōro Kabushiki-gaisha, or Metropolitan Expressway Company, which was formed in greater Tokyo in 1959. These corporations took out vast amounts of debt, which they had to repay, so that the Japanese taxpayer would not be burdened. That meant that tolls were imposed from the very beginning. The tolls had to cover not just the construction cost, but also maintenance and interest on the loans. Today, to drive on the Shuto Expressway costs from 300 to 1,320 yen, or $2.50 to $11 for a “standard-size” automobile. Overall, tolls in Japan are the most expensive in the world — around three times higher than the level charged on the private autoroutes in France, or on average, about 3,000 yen per 100 kilometers ($22 to drive 62 miles).
What that meant was that, from the beginning, roads did not have an unfair advantage in their competition with other forms of transport. And so in Japan, unlike in almost the entire rest of the rich world, the postwar era saw the construction of enormous amounts of rail infrastructure. Indeed, at a time when America and Britain were nationalizing and cutting their railways to cope with falling demand for train travel, in Japan, the national railway company was pouring investment into the system. The world’s first high-speed railway, the Tokaido Shinkansen, was opened in 1964 to coincide with the Tokyo Olympics, with a top speed of 210 kilometers per hour. That was almost double what trains elsewhere mostly managed. From 1964 to 1999, the number of passengers using the Shinkansen grew from 11 million annually to more than 300 million.
Sorensen told me about how in the 1950s and ’60s, the trains were a huge point of national pride for the Japanese government, a bit like car industries were elsewhere. “And justifiably! It was a fantastic invention. To say we can make electric rail go twice as fast. What an achievement.” Thanks to that, the railways ministry became a huge power center in government, rather than a neglected backwater as it often had become elsewhere. In rail, the Japanese “built up expertise in engineering, in bureaucratic resources and capacities, and political clout that just lasted,” he told me. “Whereas the road-building sector was weak.” Elsewhere, building roads became a self-reinforcing process, because as more was poured into constructing them, more people bought cars and demanded more roads. That did not happen in Japan. Instead, the growth in railway infrastructure led to growth in, well, more railway infrastructure.
If you visit Tokyo now, what you will find is that the most hectic, crowded places in the city are all around the train and subway stations. The reason is that Japan’s railway companies (the national firm was privatized in the 1980s) do not only provide railways. They are also big real estate investors. A bit like the firm that built the Metropolitan Railway in the 1930s in Britain, when Japan’s railway firms expanded service, they paid for it by building on the land around the stations. In practice, what that means is that they built lots of apartments, department stores, and supermarkets near (and directly above) railway stations, so that people can get straight off the train and get home quickly. That makes the trains more efficient, because people can get where they need to go without having to walk or travel to and from stations especially far. But it also means that the railways are incredibly profitable, because unlike in the West, they are able to profit from the improvement in land value that they create.
What this adds up to is that Tokyo is one of very few cities on Earth where travel by car is not actively subsidized, and funnily neither is public transport, and yet both work well, when appropriate. However, Tokyo is not completely alone. Several big cities across Asia have managed to avoid the catastrophe (cartastrophe?) that befell much of the western world. Hong Kong manages it nearly as well as Tokyo; there are just 76 cars per 1,000 people in the city state. So too does Singapore, with around 120 per 1,000 people. What those cities have in common, which makes them rather different from Japan, is a shortage of land and a relentless, centralized leadership that recognized early on that cars were a waste of space.
Unfortunately, replicating the Asian model in countries in Europe, America, or Australia from scratch will not be easy. We are starting with so many cars on our roads to begin with, that imposing the sorts of curbs on car ownership that I listed above is almost certainly a political nonstarter. Just look at what happens when politicians in America or Britain try to take away even a modest amount of street parking, or increase the tax on gasoline. People are already invested in cars, sadly. And thanks to that, there is also a chicken-and-egg problem. Because people are invested in cars, they live in places where the sort of public transport that makes life possible for the majority of people in Tokyo is simply not realistic. As it is, constructing rail infrastructure like Japan’s is an extraordinarily difficult task. Look at the difficulties encountered in things like building Britain’s new high-speed train link, or California’s, for example.
And yet it is worth paying attention to Tokyo precisely because it shows that vast numbers of cars are not necessary to daily life. What Tokyo shows is that it is possible for enormous cities to work rather well without being overloaded by traffic congestion. Actually, Tokyo works better than big cities anywhere else. That is why it has managed to grow so large. The trend all over the world for decades now has been toward greater wealth concentrating in the biggest metropolises. The cost of living in somewhere like New York, London, or Paris used to be marginally higher than living in a more modest city. That is no longer the case. And it reflects the fact that the benefits of living in big cities are enormous. The jobs are better, but so too are the restaurants, the cultural activities, the dating opportunities, and almost anything else you can think of. People are willing to pay for it. The high cost of living is a price signal — that is, the fact that people are willing to pay it is an indicator of the value they put on it.
Especially in this post-pandemic era where many jobs can be done from anywhere, lots of New Yorkers could easily decamp to, say, a pretty village upstate, and save a fortune in rent, or cash in on their property values. Actually, hundreds of thousands do every year (well, not only to upstate). But they are replaced by newcomers for the simple reason that New York City is, if you set aside the cost, a pretty great place to live. And yet, if everyone who would like to live in a big city is to be able to, those cities need to be able to grow more. But if they continue to grow with the assumption that the car will be the default way of getting around for a significant proportion of residents, then they will be strangled by congestion long before they ever reach anything like Tokyo’s success. People often say that London or New York are too crowded, but they are wrong. They are only too crowded if you think that it is normal for people to need space not just for them but also for the two tons of metal that they use to get around.
The sheer anger of motorists might mean that banning overnight parking on residential streets proves difficult. But if we want to be bold, some of Tokyo’s other measures are more realistic. We could, for example, do a lot more to build more housing around public transport, and use the money generated to help contribute to the network. According to the Centre for Cities, a British think tank, there are 47,000 hectares of undeveloped land (mostly farmland) within a 10-minute walk of a railway station close to London or another big city. That is enough space to build two million homes, more than half of which would be within a 45-minute commute to or from London. The reason we do not develop the land at the moment is because it is mostly Metropolitan Green Belt, a zoning restriction created in the late 1940s by the Town and Country Planning Act intended to contain cities and stop them sprawling outward. But the problem with it as it works in Britain at the moment is that it does not stop sprawl — it just pushes it further away from cities, into places where there really is no hope of not using a car.
Developing the green belt too would not be popular. People have an affection for fields near their homes, and they do not necessarily want the trains they use to be even more crowded. But there are projects that show it is possible to overcome NIMBYism. In Los Angeles in 2016, voters approved the Transit Oriented Communities Incentive Program, which creates special zoning laws in areas half a mile from a major transit stop (typically, in L.A., a light rail station). This being Los Angeles, it is fairly modest. One of the rules is that the mandatory parking minimums applied are restricted to a maximum of 0.5 car parking spaces per bedroom, and total parking is not meant to exceed more than one space per apartment, which is still rather a lot of parking. But nonetheless, it does allow developers to increase the density of homes near public transport, and it has encouraged developers to build around 20,000 new homes near public transport that probably would not have been constructed otherwise. These are small but real improvements.
Ultimately, no city will be transformed into Tokyo overnight, nor should any be, at least unless a majority of the population decides that they would like it. I am trying to persuade them; for now, not everyone is as enamored with the Japanese capital as I am. But NIMBYism and other political problems can be gradually overturned, if the arguments are made in the right way, even in the most automotive cities.
This article was excerpted from Daniel Knowles’ book Carmageddon: How Cars Make Life Worse and What to Do About It, published by Abrams Press ©2023.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Any household savings will barely make a dent in the added costs from Trump’s many tariffs.
Donald Trump’s tariffs — the “fentanyl” levies on Canada, China, and Mexico, the “reciprocal” tariffs on nearly every country (and some uninhabited islands), and the global 10% tariff — will almost certainly cause consumer goods on average to get more expensive. The Yale Budget Lab estimates that in combination, the tariffs Trump has announced so far in his second term will cause prices to rise 2.3%, reducing purchasing power by $3,800 per year per household.
But there’s one very important consumer good that seems due to decline in price.
Trump administration officials — including the president himself — have touted cheaper oil to suggest that the economic response to the tariffs hasn’t been all bad. On Sunday, Secretary of the Treasury Scott Bessent told NBC, “Oil prices went down almost 15% in two days, which impacts working Americans much more than the stock market does.”
Trump picked up this line on Truth Social Monday morning. “Oil prices are down, interest rates are down (the slow moving Fed should cut rates!), food prices are down, there is NO INFLATION,” he wrote. He then spent the day posting quotes from Fox Business commentators echoing that idea, first Maria Bartiromo (“Rates are plummeting, oil prices are plummeting, deregulation is happening. President Trump is not going to bend”) then Charles Payne (“What we’re not talking about is, oil was $76, now it’s $65. Gasoline prices are going to plummet”).
But according to Neil Dutta, head of economic research at Renaissance Macro Research, pointing to falling oil prices as a stimulus is just another example of the “4D chess” theory, under which some market participants attribute motives to Trump’s trade policy beyond his stated goal of reducing trade deficits to as near zero (or surplus!) as possible.
Instead, oil markets are primarily “responding to the recession risk that comes from the tariff and the trade war,” Dutta told me. “That is the main story.” In short, oil markets see less global trade and less global production, and therefore falling demand for oil. The effect on household consumption, he said, was a “second order effect.”
It is true that falling oil prices will help “stabilize consumption,” Dutta told me (although they could also devastate America’s own oil industry). “It helps. It’ll provide some lift to real income growth for consumers, because they’re not spending as much on gasoline.” But “to fully offset the trade war effects, you basically need to get oil down to zero.”
That’s confirmed by some simple and extremely back of the envelope math. In 2023, households on average consumed about 700 gallons of gasoline per year, based on Energy Information Administration calculations that the average gasoline price in 2023 was $3.52, while the Bureau of Labor Statistics put average household gasoline expenditures at about $2,450.
Let’s generously assume that due to the tariffs and Trump’s regulatory and diplomatic efforts, gas prices drop from the $3.26 they were at on Monday, according to AAA, to $2.60, the average price in 2019. (GasBuddy petroleum analyst Patrick De Haanwrote Monday that the tariffs combined with OPEC+ production hikes could lead gas prices “to fall below $3 per gallon.”)
Let’s also assume that this drop in gas prices does not cause people to drive more or buy less fuel-efficient vehicles. In that case, those same 700 gallons cost the average American $1,820, which would generate annual savings of $630 on average per household. If we went to the lowest price since the Russian invasion of Ukraine, about $3 per gallon, total consumption of 700 gallons would cost a household about $2,100, saving $350 per household per year.
That being said, $1,820 is a pretty low level for annual gasoline consumption. In 2021, as the economy was recovering from the Covid recession and before gas prices popped, annual gasoline expenditures only got as low as $1,948; in 2020 — when oil prices dropped to literally negative dollars per barrel and gas prices got down to $1.85 a gallon — annual expenditures were just over $1,500.
In any case, if you remember the opening paragraphs of this story, even the most generous estimated savings would go nowhere near surmounting the overall rise in prices forecast by the Yale Budget Lab. $630 is less than $3,800! (JPMorgan has forecast a more mild increase in prices of 1% to 1.5%, but agrees that prices will likely rise and purchasing power will decline.)
But maybe look at it this way: You might be able to drive a little more than you expected to, even as your costs elsewhere are going up. Just please be careful! You don’t want to get into a bad accident and have to replace your car: New car prices are expected to rise by several thousand dollars due to Trump’s tariffs.
With cars about to get more expensive, it might be time to start tinkering.
More than a decade ago, when I was a young editor at Popular Mechanics, we got a Nissan Leaf. It was a big deal. The magazine had always kept long-term test cars to give readers a full report of how they drove over weeks and months. A true test of the first true production electric vehicle from a major car company felt like a watershed moment: The future was finally beginning. They even installed a destination charger in the basement of the Hearst Corporation’s Manhattan skyscraper.
That Leaf was a bit of a lump, aesthetically and mechanically. It looked like a potato, got about 100 miles of range, and delivered only 110 horsepower or so via its electric motors. This made the O.G. Leaf a scapegoat for Top Gear-style car enthusiasts eager to slander EVs as low-testosterone automobiles of the meek, forced upon an unwilling population of drivers. Once the rise of Tesla in the 2010s had smashed that paradigm and led lots of people to see electric vehicles as sexy and powerful, the original Leaf faded from the public imagination, a relic of the earliest days of the new EV revolution.
Yet lots of those cars are still around. I see a few prowling my workplace parking garage or roaming the streets of Los Angeles. With the faded performance of their old batteries, these long-running EVs aren’t good for much but short-distance city driving. Ignore the outdated battery pack for a second, though, and what surrounds that unit is a perfectly serviceable EV.
That’s exactly what a new brand of EV restorers see. Last week, car site The Autopiancovered DIYers who are scooping up cheap old Leafs, some costing as little as $3,000, and swapping in affordable Chinese-made 62 kilowatt-hour battery units in place of the original 24 kilowatt-hour units to instantly boost the car’s range to about 250 miles. One restorer bought a new battery on the Chinese site Alibaba for $6,000 ($4,500, plus $1,500 to ship that beast across the sea).
The possibility of the (relatively) simple battery swap is a longtime EV owner’s daydream. In the earlier days of the electrification race, many manufacturers and drivers saw simple and quick battery exchange as the solution for EV road-tripping. Instead of waiting half an hour for a battery to recharge, you’d swap your depleted unit for a fully charged one and be on your way. Even Tesla tested this approach last decade before settling for good on the Supercharger network of fast-charging stations.
There are still companies experimenting with battery swaps, but this technology lost. Other EV startups and legacy car companies that followed Nissan and Tesla into making production EVs embraced the rechargeable lithium-ion battery that is meant to be refilled at a fast-charging station and is not designed to be easily removed from the vehicle. Buy an electric vehicle and you’re buying a big battery with a long warranty but no clear plan for replacement. The companies imagine their EVs as something like a smartphone: It’s far from impossible to replace the battery and give the car a new life, but most people won’t bother and will simply move on to a new car when they can’t take the limitations of their old one anymore.
I think about this impasse a lot. My 2019 Tesla Model 3 began its life with a nominal 240 miles of range. Now that the vehicle has nearly six years and 70,000 miles on it, its maximum range is down to just 200, while its functional range at highway speed is much less than that. I don’t want to sink money into another vehicle, which means living with an EV’s range that diminishes as the years go by.
But what if, one day, I replaced its battery? Even if it costs thousands of dollars to achieve, a big range boost via a new battery would make an older EV feel new again, and at a cost that’s still far less than financing a whole new car. The thought is even more compelling in the age of Trump-imposed tariffs that will raise already-expensive new vehicles to a place that’s simply out of reach for many people (though new battery units will be heavily tariffed, too).
This is no simple weekend task. Car enthusiasts have been swapping parts and modifying gas-burning vehicles since the dawn of the automotive age, but modern EVs aren’t exactly made with the garage mechanic in mind. Because so few EVs are on the road, there is a dearth of qualified mechanics and not a huge population of people with the savvy to conduct major surgery on an electric car without electrocuting themselves. A battery-replacing owner would need to acquire not only the correct pack but also potentially adapters and other equipment necessary to make the new battery play nice with the older car. Some Nissan Leaf modifiers are finding their replacement packs aren’t exactly the same size, shape or weight, The Autopian says, meaning they need things like spacers to make the battery sit in just the right place.
A new battery isn’t a fix-all either. The motors and other electrical components wear down and will need to be replaced eventually, too. A man in Norway who drove his Tesla more than a million miles has replaced at least four battery packs and 14 motors, turning his EV into a sort of car of Theseus.
Crucially, though, EVs are much simpler, mechanically, than combustion-powered cars, what with the latter’s belts and spark plugs and thousands of moving parts. The car that surrounds a depleted battery pack might be in perfectly good shape to keep on running for thousands of miles to come if the owner were to install a new unit, one that could potentially give the EV more driving range than it had when it was new.
The battery swap is still the domain of serious top-tier DIYers, and not for the mildly interested or faint of heart. But it is a sign of things to come. A market for very affordable used Teslas is booming as owners ditch their cars at any cost to distance themselves from Elon Musk. Old Leafs, Chevy Bolts and other EVs from the 2010s can be had for cheap. The generation of early vehicles that came with an unacceptably low 100 to 150 miles of range would look a lot more enticing if you imagine today’s battery packs swapped into them. The possibility of a like-new old EV will look more and more promising, especially as millions of Americans realize they can no longer afford a new car.
On the shifting energy mix, tariff impacts, and carbon capture
Current conditions: Europe just experienced its warmest March since record-keeping began 47 years ago • It’s 105 degrees Fahrenheit in India’s capital Delhi where heat warnings are in effect • The risk of severe flooding remains high across much of the Mississippi and Ohio Valleys.
The severe weather outbreak that has brought tornadoes, extreme rainfall, hail, and flash flooding to states across the central U.S. over the past week has already caused between $80 billion and $90 billion in damages and economic losses, according to a preliminary estimate from AccuWeather. The true toll is likely to be costlier because some areas have yet to report their damages, and the flooding is ongoing. “A rare atmospheric river continually resupplying a firehose of deep tropical moisture into the central U.S., combined with a series of storms traversing the same area in rapid succession, created a ‘perfect storm’ for catastrophic flooding and devastating tornadoes,” said AccuWeather’s chief meteorologist Jonathan Porter. The estimate takes into account damages to buildings and infrastructure, as well as secondary effects like supply chain and shipping disruptions, extended power outages, and travel delays. So far 23 people are known to have died in the storms. “This is the third preliminary estimate for total damage and economic loss that AccuWeather experts have issued so far this year,” the outlet noted in a release, “outpacing the frequency of major, costly weather disasters since AccuWeather began issuing estimates in 2017.”
AccuWeather
Low-emission energy sources accounted for 41% of global electricity generation in 2024, up from 39.4% in 2023, according to energy think tank Ember’s annual Global Electricity Review. That includes renewables as well as nuclear. If nuclear is left out of the equation, renewables alone made up 32% of power generation last year. Overall, renewables added a record 858 terawatt hours, nearly 50% more than the previous record set in 2022. Hydro was the largest source of low-carbon power, followed by nuclear. But wind and solar combined overtook hydro last year, while nuclear’s share of the energy mix reached a 45-year low. More solar capacity was installed in 2024 than in any other single year.
Ember
The report notes that demand for electricity rose thanks to heat waves and air conditioning use. This resulted in a slight, 1.4% annual increase in fossil-fuel power generation and pushed power-sector emissions to a new all-time high of 14.5 billion metric tons. “Clean electricity generation met 96% of the demand growth not caused by hotter temperatures,” the report said.
President Trump’s new tariffs will have a “limited” effect on the amount of solar components the U.S. imports from Asia because the U.S. already imposes tariffs on these products, according to a report from research firm BMI. That said, the U.S. still relies heavily on imported solar cells, and the new fees are likely to raise costs for domestic manufacturers and developers, which will ultimately be passed on to buyers and could slow solar growth. “Since the U.S.’s manufacturing capacity is insufficient to meet demand for solar, wind, and grid components, we do expect that costs will increase for developers due to the tariffs which will now be imposed upon these components,” BMI wrote.
In other tariff news, the British government is adjusting its 2030 target of ending the sale of new internal combustion engine cars to ease some of the pain from President Trump’s new 25% auto tariffs. Under the U.K.’s new EV mandate, carmakers will be able to sell new hybrids through 2035 (whereas the previous version of the rules banned them by 2030), and gas and diesel vans can also be sold through 2035. The changes also carve out exemptions for luxury supercar brands like McLaren and Aston Martin, which will be allowed to keep selling new ICE vehicles beyond 2030 because, the government says, they produce so few. The goal is to “help ease the transition and give industry more time to prepare.” British Transport Secretary Heidi Alexander insisted the changes have been “carefully calibrated” and their impact on carbon emissions is “negligible.” As The New York Timesnoted, the U.S. is the largest single-country export market for British cars.
The Environmental Protection Agency has approved Occidental Petroleum’s application to capture and sequester carbon dioxide at its direct air capture facility in Texas, and issued permits that will allow the company to drill and inject the gas more than one mile underground. The Stratos DAC plant is being developed by Occidental subsidiary 1PointFive. As Heatmap’s Katie Brigham has reported, Stratos is designed to remove up to 500,000 metric tons of CO2 annually and set to come online later this year. Its success (or failure) could shape the future of DAC investment at a time when the Trump administration is hollowing out the Department of Energy’s nascent Carbon Dioxide Removal team and casting doubt over the future of the DOE’s $3.5 billion Regional Direct Air Capture Hubs program. While Stratos is not a part of the hubs program, it will use the same technology as Occidental’s South Texas DAC hub.
The Bezos Earth Fund and the Global Methane Hub are launching a $27 million effort to fund research into selectively breeding cattle that emit less methane.