You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Twenty-five years ago, computers were on the verge of destroying America’s energy system.
Or, at least, that’s what lots of smart people seemed to think.
In a 1999 Forbes article, a pair of conservative lawyers, Peter Huber and Mark Mills, warned that personal computers and the internet were about to overwhelm the fragile U.S. grid.
Information technology already devoured 8% to 13% of total U.S. power demand, Huber and Mills claimed, and that share would only rise over time. “It’s now reasonable to project,” they wrote, “that half of the electric grid will be powering the digital-Internet economy within the next decade.” (Emphasis mine.)
Over the next 18 months, investment banks including JP Morgan and Credit Suisse repeated the Forbes estimate of internet-driven power demand, advising their customers to pile into utilities and other electricity-adjacent stocks. Although it was unrelated, California’s simultaneous blackout crisis deepened the sense of panic. For a moment, experts were convinced: Data centers and computers would drain the country’s energy resources.
They could not have been more wrong. In fact, Huber and Mills had drastically mismeasured the amount of electricity used by PCs and the internet. Computing ate up perhaps 3% of total U.S. electricity in 1999, not the roughly 10% they had claimed. And instead of staring down a period of explosive growth, the U.S. electric grid was in reality facing a long stagnation. Over the next two decades, America’s electricity demand did not grow rapidly — or even, really, at all. Instead, it flatlined for the first time since World War II. The 2000s and 2010s were the first decades without “load growth,” the utility industry’s jargon for rising power demand, since perhaps the discovery of electricity itself.
Now that lull is ending — and a new wave of tech-driven concerns has overtaken the electricity industry. According to its supporters and critics alike, generative artificial intelligence like ChatGPT is about to devour huge amounts of electricity, enough to threaten the grid itself. “We still don’t appreciate the energy needs of this technology,” Sam Altman, the CEO of OpenAI, has said, arguing that the world needs a clean energy breakthrough to meet AI’s voracious energy needs. (He is investing in nuclear fusion and fission companies to meet this demand.) The Washington Post captured the zeitgeist with a recent story: America, it said, “is running out of power.”
But … is it actually? There is no question that America’s electricity demand is rising once again and that load growth, long in abeyance, has finally returned to the grid: The boom in new factories and the ongoing adoption of electric vehicles will see to that. And you shouldn’t bet against the continued growth of data centers, which have increased in size and number since the 1990s. But there is surprisingly little evidence that AI, specifically, is driving surging electricity demand. And there are big risks — for utility customers and for the planet — by treating AI-driven electricity demand as an emergency.
There is, to be clear, no shortage of predictions that AI will cause electricity demand to rise. According to a recent Reuters report, nine of the country’s 10 largest utilities are now citing the “surge” in power demand from data centers when arguing to regulators that they should build more power. Morgan Stanley projects that power use from data centers “is expected to triple globally this year,” according to the same report. The International Energy Agency more modestly — but still shockingly — suggests that electricity use from data centers, AI, and cryptocurrency could double by 2026.
These concerns have also come from environmentalists. A recent report from the Climate Action Against Disinformation Commission, a left-wing alliance of groups including Friends of the Earth and Greenpeace, warned that AI will require “massive amounts of energy and water” and called for aggressive regulation.
That report focused on the risks of an AI-addled social media public sphere, which progressives fear will be filled with climate-change-denying propaganda by AI-powered bots. But in an interview, Michael Khoo, an author of the report and a researcher at Friends of the Earth, told me that studying AI made him much more frightened about its energy use.
AI is such an power-suck that it “is causing America to run out of energy,” Khoo said. “I think that’s going to be much more disruptive than the disinformation conversation in the mid-term.” He sketched a scenario where Altman and Mark Zuckerberg can outbid ordinary households for electrons as AI proliferates across the economy. “I can see people going without power,” he said, “and there being massive social unrest.”
These predictions aren’t happening in a vacuum. At the same time that investment bankers and environmentalists have fretted over a potential electricity shortage, utilities across the South have proposed a de facto solution: a massive buildout of new natural-gas power plants.
Citing the return of load growth, utilities across the South are trying to go around normal regulatory channels and build a slew of new natural-gas-burning power plants. Across at least six states, utilities have already won — or are trying to win — permission from local governments to fast-track more than 10,000 megawatts of new gas-fired power plants so that they can meet the surge in demand.
These requests have popped up across the region, pushed by vertically integrated monopoly power companies. Georgia Power won a tentative agreement to build 1,400 new megawatts of gas capacity, Canary reported. In the Carolinas, Duke Energy has asked to build 9,000 megawatts of new gas capacity, triple what it previously requested. The Tennessee Valley Authority has plans to add 6,600 megawatts of new capacity to its grid.
This buildout is big enough to endanger the country’s climate targets. Although these utilities are also building new renewable and battery farms, and shutting down coal plants, the planned surge in carbon emissions from natural gas plants would erase the reductions from those changes, according to a Southern Environmental Law Center analysis. Duke Energy has already said that it will not meet its 2030 climate goal in order to conduct the gas expansion.
In the popular press, AI’s voracious energy demand is sometimes said to be a major driver of this planned gas boom. But evidence for that proposition is slim, and the utilities have said only that data center expansion is one of several reasons for the boom. The Southeast’s population is growing, and the region is experiencing a manufacturing renaissance, due in part to the new car, battery, and solar panel factories subsidized by Biden’s climate law. Utilities in the South also face a particular challenge coping with the coldest winter mornings because so many homes and offices use inefficient and power-hungry space heaters.
Indeed, it’s hard to talk about the drivers of load growth with any specificity — and it’s hard to know whether load growth will actually happen in all corners of the South.
Utilities compete against each other to secure big-name customers — much like local governments compete with sweetheart tax deals — so when a utility asks regulators to build more capacity, it doesn’t reveal where potential power demand is coming from. (In other words, it doesn’t reveal who it believes will eventually buy that power.) A company might float plans to build the same data center or factory in multiple states to shop around for the best rates, which means the same underlying gigawatts of demand may be appearing in several different utilities’ resource plans at the same time. In other words, utilities are unlikely to actually see all of the demand they’re now projecting.
Even if we did know exactly how many gigawatts of new demand each utility would see, it’s almost impossible to say how much of it is coming from AI. Utilities don’t say how much of their future projected power demand will come from planned factories versus data centers. Nor do they say what each data center does and whether it trains AI (or mines Bitcoin, which remains a far bigger energy suck).
The risk of focusing on AI, specifically, as a driver of load growth is that because it’s a hot new technology — one with national security implications, no less — it can rhetorically justify expensive emergency action that is actually not necessary at all. Utilities may very well need to build more power capacity in the years to come. But does that need constitute an emergency? Does it justify seeking special permission from their statehouses or regulators to build more gas, instead of going through the regular planning process? Is it worth accelerating approvals for new gas plants? Probably not. The real danger, in other words, is not that we’ll run out of power. It’s that we’ll build too much of the wrong kind.
At the same time, we might have been led astray by overly dire predictions of AI’s energy use. Jonathan Koomey, a researcher who studies how the internet and data centers use energy (and the namesake of Koomey’s Law) told me that many estimates of Nvidia’s most important AI chips assume that their energy use is the same as their advertised “rated” power. In reality, Nvidia chips probably use half of that amount, he said, because chipmakers engineer their chips to withstand more electricity than is necessary for safety reasons.
And this is just the current generation of chips: Nvidia’s next generation of AI-training chips, called “Blackwell,” use 25 times less energy to do the same amount of computation as the previous generation of chips.
Koomey helped defuse the last panic over energy use by showing that the estimates Huber and Mills relied on were wildly incorrect. Estimates now suggest that the internet used less than 1% of total U.S. electricity by the late 1990s, not 13% as they claimed. Those percentages stayed roughly the same through 2008, he later found, even as data centers grew and computers proliferated across the economy. That’s the same year, remember, that Huber and Mills predicted that the internet would consume half of American energy.
These bad predictions were extremely convenient. Mills was a scientific advisor to the Greening Earth Society, a fossil-fuel-industry-funded group that alleged carbon dioxide pollution would actually improve the global environment. He aimed to show that climate and environmental policy would conflict with the continued growth of the internet.
“Many electricity policy proposals are on a collision course with demand forces,” Mills said in a Greening Earth press release at the time. “While many environmentalists want to substantially reduce coal use in making electricity, there is no chance of meeting future economically-driven and Internet-accelerated electric demand without retaining and expanding the coal component.” Hence the headline of the Forbes piece: “The PCs are coming — Dig more coal.”
What makes today’s AI-induced fear frenzy different from 1999 is that the alarmed projections are not just coming from businesses and banks like Morgan Stanley, but from environmentalists like Friends of the Earth. Yet neither their estimates of near-term, AI-driven power shortages — nor the analysis from Morgan Stanley that U.S. data-center use could soon triple within a year — make sense given what we know about data centers, Koomey said. It is not logistically possible to triple data centers’ electricity use in one year. “There just aren’t enough people to build data centers, and it takes longer than a year to build a new data center anyway,” he said. “There aren’t enough generators, there aren’t enough transformers — the backlog for some equipment is 24 months. It’s a supply chain constraint.”
Look around and you might notice that we have many more servers and computers today than we did in 1999 — not to mention smartphones and tablets, which didn’t even exist then — and yet computing doesn’t devour half of American energy. It doesn’t even get close. Today, computers use 1% to 4% of total U.S. power demand, depending on which estimate you trust. That’s about the same share of total U.S. electricity demand that they used in the late 1990s and mid-2000s.
It may well be that AI devours more energy in years to come, but utilities probably do not need to deal with it by building more gas. They could install more batteries, build new power lines, or even pay some customers to reduce their electricity usage during certain peak events, such as cold winter storms.
There are some places where AI-driven energy demand could be a problem — Koomey cited Ireland and Loudon County, Virginia, as two epicenters. But even there, building more natural gas is not the sole way to cope with load growth.
“The problem with this debate is everybody is kind of right,” Daniel Tait, who researches Southern utilities for the Energy and Policy Institute, a consumer watchdog, told me. “Yes, AI will increase load a little bit, but probably not as much as you think. Yes, load is growing, but maybe not as much as you say. Yes, we do need to build stuff, but maybe not the stuff that you want.”
There are real risks if AI’s energy demands get overstated and utilities go on a gas-driven bender. The first is for the planet: Utilities might overbuild gas plants now, run them even though they’re non-economic, and blow through their climate goals.
“Utilities — especially the vertically integrated monopoles in the South — have every incentive to overstate load growth, and they have a pattern of having done that consistently,” Gudrun Thompson, a senior attorney at the Southern Environmental Law Center, told me. In 2017, the Rocky Mountain Institute, an energy think tank, found in 2017 that utilities systematically overestimated their peak demand when compiling forecasts. This makes sense: Utilities would rather build too much capacity than wind up with too little, especially when they can pass along the associated costs to rate-payers.
But the second risk is that utilities could burn through the public’s willingness to pay for grid upgrades. Over the next few years, utilities should make dozens of updates to their systems. They have to build new renewables, new batteries, and new clean 24/7 power, such as nuclear or geothermal. They will have to link their grids to their neighbors’ by building new transmission lines. All of that will be expensive, and it could require the kind of investment that raises electricity rates. But the public and politicians can accept only so many rate hikes before they rebel, and there’s a risk that utilities spend through that fuzzy budget on unnecessary and wasteful projects now, not on the projects that they’ll need in the future.
There is no question that AI will use more electricity in the years to come. But so will EVs, new factories, and other sources of demand. America is on track to use more electricity. If that becomes a crisis, it will be one of our own making.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
From the Inflation Reduction Act to the Trump mega-law, here are 20 years of changes in one easy-to-read cheat sheet.
The landmark Republican reconciliation bill, which President Trump signed on July 4, has shattered the tax credits that served as the centerpiece of the country’s clean energy and climate policy.
Starting as soon as October, the law — which Trump has dubbed the One Big Beautiful Bill Act — will cut off incentives for Americans to install solar panels, purchase electric vehicles, or make energy efficiency improvements to their homes. It’s projected to raise household energy costs while increasing America’s carbon emissions by 190 million metric tons a year by 2030, according to the REPEAT Project at Princeton University.
The loss of these incentives will in part offset the continuation of tax cuts that largely benefit wealthy Americans. But the law as a whole won’t come close to paying for those cuts in their entirety. The legislation is expected to swell federal deficits by nearly $3.8 trillion over the next 10 years, according to the Tax Foundation, a nonpartisan think tank. This explosive deficit expansion could make it more difficult for the Federal Reserve to cut interest rates, possibly further constraining energy development.
President Trump has described the law as ending Democrats’ “green new scam,” and conservative lawmakers have celebrated the termination of Biden-era energy programs. The law is particularly devastating for programs encouraging electric vehicle sales, as well as wind and solar energy deployment.
But the act is more complicated than a simple repeal of Democrats’ 2022 Inflation Reduction Act. In one case, Trump’s big law ends a federal energy incentive that has been in place, in some form, since the 1990s. In others, Republicans have tied up existing energy incentives with new restrictions, regulations, and red tape.
Some parts of the IRA have even remained intact. GOP lawmakers opted to preserve Biden’s big expansion of incentives to support nuclear energy and advanced geothermal development. That said, the Trump administration could still gut these tax credits by making them effectively unusable through executive action.
It can be confusing to keep the One Big Beautiful Bill Act’s many changes to federal energy law in your head — even for experts. That’s why Heatmap News is excited to publish this new reference “cheat sheet”on the past, present, and future of federal energy tax credits, compiled by an all-star collection of analysts and researchers.
The summary takes each clean energy-related provision in the U.S. tax code and summarizes how (and whether) it existed in the 2000s and 2010s, how the Inflation Reduction Act changed it, and how the new OBBBA will change it again. It was compiled by Shane Londagin, a policy advisor at the think tank Third Way; Luke Bassett, a former Biden administration official and Senate Energy committee staffer; Avi Zevin, a former Biden official and a partner at the energy law firm Roselle LLP; and researchers at the REPEAT Project, an energy analysis group at Princeton University. (Note that I co-host the podcast Shift Key with Jesse Jenkins, who leads the REPEAT Project.)
You can find the full summary below.
On presidential proclamations, Pentagon pollution, and cancelled transmission
Current conditions: Over 1,000 people have evacuated the region of Seosan in South Korea following its heaviest rainfall since 1904 • Forecasts now point toward the “surprising return” of La Niña this fall • More than 30 million people from Louisiana through the Appalachians are at risk of flash flooding this weekend due to an incoming tropical rainstorm.
The Hugh L. Spurlock Generating Station in Maysville, Kentucky.Jeff Swensen/Getty Images
President Trump on Thursday signed four proclamations allowing certain highly polluting industries to bypass regulations established by the Biden administration. In addition to chemical manufacturers that help produce semiconductors and medical device sterilizers, the proclamations singled out coal-fired power plants and taconite iron ore processing facilities for two years of exemptions. Taconite is a low-grade iron ore primarily mined in the Upper Peninsula of Michigan and northern Minnesota, which is then processed for use in the production of iron and steel. Trump justified the move by arguing that compliance with the current emissions rule for coal-fired power plants raises the “unacceptable risk” of shutdowns, “eliminating thousands of jobs, placing our electrical grid at risk, and threatening broader, harmful economic and energy security effects,” while the iron processing emissions rule “risks forcing shutdowns, reducing domestic production, and undermining the nation’s ability to supply steel for defense, energy, and critical manufacturing.”
The proclamations allow industries to comply with the Environmental Protection Agency standards that predate former President Joe Biden’s tenure. Trump justified the pause by claiming the former administration had mandated compliance with “standards that rely on emissions-control technologies that have not been demonstrated to work.” Researchers have previously found that air pollutants related to coal power plants cause nearly 3,000 attributable deaths per year. Taconite iron ore processing facilities produce harmful acid gases, including hydrogen chloride and hydrogen fluoride, as well as mercury, which have been linked to numerous adverse health effects.
Separately, the House passed Trump’s $9 billion rescissions package late last night, which includes cuts to international climate, energy, and environmental programs like the Clean Technology Fund. Republicans Brian Fitzpatrick of Pennsylvania and Mike Turner of Ohio joined Democrats in objecting to the bill. Trump is expected to sign the package Friday. An additional rescissions package is expected “soon.”
The Pentagon’s 2026 budget will enable the Department of Defense’s planet-warming emissions to grow by an additional 26 megatons, or about the equivalent of 68 gas power plants, a new analysis by the Climate and Community Institute found. The U.S. military was already the single largest institutional polluter in the world due to its “vast global operations — from jet fuel consumption and overseas deployments to domestic base maintenance,” as well as its manufacturing of weapons and vehicles, the think tank notes. With the passage of the One Big Beautiful Bill Act, the Pentagon’s budget will exceed $1 trillion in 2026, representing a 17% increase over 2024. Its emissions, in turn, could grow to the point that if the DOD were its own country, it’d be the 38th largest polluter in the world, producing more CO2 emissions than the Netherlands, Bangladesh, or Venezuela. But “the Pentagon’s true climate impact will almost certainly be worse” than what the researchers found, The Guardian notes, “as the calculation does not include emissions generated from future supplemental funding such as the billions of dollars appropriated separately for military equipment for Israel and Ukraine in recent years.”
Get Heatmap AM directly in your inbox every morning:
New York’s Public Service Commission decided Thursday against moving forward with a major transmission project that would have had the capacity to deliver at least 4,770 megawatts of offshore wind power to New York City by the early 2030s. The commissioners said they were unable to justify “charging ratepayers for the multibillion-dollar project when feds are stymying” offshore wind, New York Focus’ Colin Kinniburgh reported on Bluesky. “We will continue to press forward regarding infrastructure needs for offshore wind in the future once the federal government resumes leasing and permitting for wind energy generation projects,” PSC chair Rory Christian said.
The canceled Public Policy Transmission Need determination was not specific to a particular offshore wind project, but rather was intended to match New York’s general offshore wind ambitions when it was approved in 2023. But as Heatmap has previously reported, Trump’s crusade against offshore wind has been a “worst case scenario” for the industry since day one, and, per ABC News 10, effectively “eliminates any reason for building new power lines in the first place.”
Microsoft has inked a deal to purchase 4.9 million metric tons of durable carbon dioxide removal from Vaulted Deep, a waste management startup, for an undisclosed amount. The companies boasted that the deal, which runs through 2038, represents “the second-largest carbon removal deal to date.” Vaulted Deep, an Xprize Carbon runner-up, diverts organic waste from landfills and incinerators by injecting it into wells thousands of feet underground using fracking technologies, which it says ensures over 1,000 years of durability, TechCrunch reports. Since Vaulted’s launch in the summer of 2023, the Houston-based company has removed 18,000 metric tons of carbon dioxide. Microsoft, meanwhile, has slipped behind its 2020 goal to remove more carbon from the atmosphere than it generates by the end of the decade due to its rush to build out data centers.
The Environmental Protection Agency’s reorganization and downsizing are set to continue, with the agency offering another round of buyouts and early retirements to staffers in offices it aims to restructure, Politico reports. Among the affected offices are the Office of Enforcement and Compliance Assurance, which the EPA said it seeks to tweak to “better address pollution problems that impact American communities by re-aligning enforcement with the law to deliver economic prosperity and ensure compliance with agency regulations,” as well as the Office of Land and Emergency Management, which works on Superfund and disaster response issues. The Office of Research and Development, the Office of Mission Support, and the Office of the Chief Financial Officer are also affected.
Separately, in a preliminary decision earlier this week, the agency moved to block the state of Colorado from closing its six remaining coal-fired power plants by 2031. Colorado was attempting to codify the retirement dates in its Regional Haze Plan, which is typically used to protect the air quality of federal wilderness and national parks; however, the EPA rejected the proposal, according to CPR News. “We believe that the Clean Air Act does not give anybody the authority to shut down coal generation plants against the owner’s will,” Cyrus Western, the administrator of EPA Region 8, said. Jeremy Nichols, a senior advocate for the Center of Biological Diversity’s environmental health program, claimed the EPA’s move shows the limits of what climate-conscious states can do on their own. “We may have state rules, but they won't be federally approved,” Nichols told CPR.
“There are so many developers and so many projects in so many places of the world that there are examples where either something goes wrong with a project or a developer doesn’t follow best practices. I think those have a lot more staying power in the public perception of renewable energy than the many successful projects that go without a hiccup and don’t bother people.” —Heatmap Pro’s Charlie Clynes, in conversation with Jael Holzman about his new project tracking all of the nation’s county-level restrictions on renewable energy.
New York City may very well be the epicenter of this particular fight.
It’s official: the Moss Landing battery fire has galvanized a gigantic pipeline of opposition to energy storage systems across the country.
As I’ve chronicled extensively throughout this year, Moss Landing was a technological outlier that used outdated battery technology. But the January incident played into existing fears and anxieties across the U.S. about the dangers of large battery fires generally, latent from years of e-scooters and cellphones ablaze from faulty lithium-ion tech. Concerned residents fighting projects in their backyards have successfully seized upon the fact that there’s no known way to quickly extinguish big fires at energy storage sites, and are winning particularly in wildfire-prone areas.
How successful was Moss Landing at enlivening opponents of energy storage? Since the California disaster six months ago, more than 6 gigawatts of BESS has received opposition from activists explicitly tying their campaigns to the incident, Heatmap Pro® researcher Charlie Clynes told me in an interview earlier this month.
Matt Eisenson of Columbia University’s Sabin Center for Climate Law agreed that there’s been a spike in opposition, telling me that we are currently seeing “more instances of opposition to battery storage than we have in past years.” And while Eisenson said he couldn’t speak to the impacts of the fire specifically on that rise, he acknowledged that the disaster set “a harmful precedent” at the same time “battery storage is becoming much more present.”
“The type of fire that occurred there is unlikely to occur with modern technology, but the Moss Landing example [now] tends to come up across the country,” Eisenson said.
Some of the fresh opposition is in rural agricultural communities such as Grundy County, Illinois, which just banned energy storage systems indefinitely “until the science is settled.” But the most crucial place to watch seems to be New York City, for two reasons: One, it’s where a lot of energy storage is being developed all at once; and two, it has a hyper-saturated media market where criticism can receive more national media attention than it would in other parts of the country.
Someone who’s felt this pressure firsthand is Nick Lombardi, senior vice president of project development for battery storage company NineDot Energy. NineDot and other battery storage developers had spent years laying the groundwork in New York City to build out the energy storage necessary for the city to meet its net-zero climate goals. More recently they’ve faced crowds of protestors against a battery storage facility in Queens, and in Staten Island endured hecklers at public meetings.
“We’ve been developing projects in New York City for a few years now, and for a long time we didn’t run into opposition to our projects or really any sort of meaningful negative coverage in the press. All of that really changed about six months ago,” Lombardi said.
The battery storage developer insists that opposition to the technology is not popular and represents a fringe group. Lombardi told me that the company has more than 50 battery storage sites in development across New York City, and only faced “durable opposition” at “three or four sites.” The company also told me it has yet to receive the kind of email complaint flood that would demonstrate widespread opposition.
This is visible in the politicians who’ve picked up the anti-BESS mantle: GOP mayoral candidate Curtis Sliwa’s become a champion for the cause, but mayor Eric Adams’ “City of Yes” campaign itself would provide for the construction of these facilities. (While Democratic mayoral nominee Zohran Mamdani has not focused on BESS, it’s quite unlikely the climate hawkish democratic socialist would try to derail these projects.)
Lombardi told me he now views Moss Landing as a “catalyst” for opposition in the NYC metro area. “Suddenly there’s national headlines about what’s happening,” he told me. “There were incidents in the past that were in the news, but Moss Landing was headline news for a while, and that combined with the fact people knew it was happening in their city combined to create a new level of awareness.”
He added that six months after the blaze, it feels like developers in the city have a better handle on the situation. “We’ve spent a lot of time in reaction to that to make sure we’re organized and making sure we’re in contact with elected officials, community officials, [and] coordinated with utilities,” Lombardi said.