You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Twenty-five years ago, computers were on the verge of destroying America’s energy system.
Or, at least, that’s what lots of smart people seemed to think.
In a 1999 Forbes article, a pair of conservative lawyers, Peter Huber and Mark Mills, warned that personal computers and the internet were about to overwhelm the fragile U.S. grid.
Information technology already devoured 8% to 13% of total U.S. power demand, Huber and Mills claimed, and that share would only rise over time. “It’s now reasonable to project,” they wrote, “that half of the electric grid will be powering the digital-Internet economy within the next decade.” (Emphasis mine.)
Over the next 18 months, investment banks including JP Morgan and Credit Suisse repeated the Forbes estimate of internet-driven power demand, advising their customers to pile into utilities and other electricity-adjacent stocks. Although it was unrelated, California’s simultaneous blackout crisis deepened the sense of panic. For a moment, experts were convinced: Data centers and computers would drain the country’s energy resources.
They could not have been more wrong. In fact, Huber and Mills had drastically mismeasured the amount of electricity used by PCs and the internet. Computing ate up perhaps 3% of total U.S. electricity in 1999, not the roughly 10% they had claimed. And instead of staring down a period of explosive growth, the U.S. electric grid was in reality facing a long stagnation. Over the next two decades, America’s electricity demand did not grow rapidly — or even, really, at all. Instead, it flatlined for the first time since World War II. The 2000s and 2010s were the first decades without “load growth,” the utility industry’s jargon for rising power demand, since perhaps the discovery of electricity itself.
Now that lull is ending — and a new wave of tech-driven concerns has overtaken the electricity industry. According to its supporters and critics alike, generative artificial intelligence like ChatGPT is about to devour huge amounts of electricity, enough to threaten the grid itself. “We still don’t appreciate the energy needs of this technology,” Sam Altman, the CEO of OpenAI, has said, arguing that the world needs a clean energy breakthrough to meet AI’s voracious energy needs. (He is investing in nuclear fusion and fission companies to meet this demand.) The Washington Post captured the zeitgeist with a recent story: America, it said, “is running out of power.”
But … is it actually? There is no question that America’s electricity demand is rising once again and that load growth, long in abeyance, has finally returned to the grid: The boom in new factories and the ongoing adoption of electric vehicles will see to that. And you shouldn’t bet against the continued growth of data centers, which have increased in size and number since the 1990s. But there is surprisingly little evidence that AI, specifically, is driving surging electricity demand. And there are big risks — for utility customers and for the planet — by treating AI-driven electricity demand as an emergency.
There is, to be clear, no shortage of predictions that AI will cause electricity demand to rise. According to a recent Reuters report, nine of the country’s 10 largest utilities are now citing the “surge” in power demand from data centers when arguing to regulators that they should build more power. Morgan Stanley projects that power use from data centers “is expected to triple globally this year,” according to the same report. The International Energy Agency more modestly — but still shockingly — suggests that electricity use from data centers, AI, and cryptocurrency could double by 2026.
These concerns have also come from environmentalists. A recent report from the Climate Action Against Disinformation Commission, a left-wing alliance of groups including Friends of the Earth and Greenpeace, warned that AI will require “massive amounts of energy and water” and called for aggressive regulation.
That report focused on the risks of an AI-addled social media public sphere, which progressives fear will be filled with climate-change-denying propaganda by AI-powered bots. But in an interview, Michael Khoo, an author of the report and a researcher at Friends of the Earth, told me that studying AI made him much more frightened about its energy use.
AI is such an power-suck that it “is causing America to run out of energy,” Khoo said. “I think that’s going to be much more disruptive than the disinformation conversation in the mid-term.” He sketched a scenario where Altman and Mark Zuckerberg can outbid ordinary households for electrons as AI proliferates across the economy. “I can see people going without power,” he said, “and there being massive social unrest.”
These predictions aren’t happening in a vacuum. At the same time that investment bankers and environmentalists have fretted over a potential electricity shortage, utilities across the South have proposed a de facto solution: a massive buildout of new natural-gas power plants.
Citing the return of load growth, utilities across the South are trying to go around normal regulatory channels and build a slew of new natural-gas-burning power plants. Across at least six states, utilities have already won — or are trying to win — permission from local governments to fast-track more than 10,000 megawatts of new gas-fired power plants so that they can meet the surge in demand.
These requests have popped up across the region, pushed by vertically integrated monopoly power companies. Georgia Power won a tentative agreement to build 1,400 new megawatts of gas capacity, Canary reported. In the Carolinas, Duke Energy has asked to build 9,000 megawatts of new gas capacity, triple what it previously requested. The Tennessee Valley Authority has plans to add 6,600 megawatts of new capacity to its grid.
This buildout is big enough to endanger the country’s climate targets. Although these utilities are also building new renewable and battery farms, and shutting down coal plants, the planned surge in carbon emissions from natural gas plants would erase the reductions from those changes, according to a Southern Environmental Law Center analysis. Duke Energy has already said that it will not meet its 2030 climate goal in order to conduct the gas expansion.
In the popular press, AI’s voracious energy demand is sometimes said to be a major driver of this planned gas boom. But evidence for that proposition is slim, and the utilities have said only that data center expansion is one of several reasons for the boom. The Southeast’s population is growing, and the region is experiencing a manufacturing renaissance, due in part to the new car, battery, and solar panel factories subsidized by Biden’s climate law. Utilities in the South also face a particular challenge coping with the coldest winter mornings because so many homes and offices use inefficient and power-hungry space heaters.
Indeed, it’s hard to talk about the drivers of load growth with any specificity — and it’s hard to know whether load growth will actually happen in all corners of the South.
Utilities compete against each other to secure big-name customers — much like local governments compete with sweetheart tax deals — so when a utility asks regulators to build more capacity, it doesn’t reveal where potential power demand is coming from. (In other words, it doesn’t reveal who it believes will eventually buy that power.) A company might float plans to build the same data center or factory in multiple states to shop around for the best rates, which means the same underlying gigawatts of demand may be appearing in several different utilities’ resource plans at the same time. In other words, utilities are unlikely to actually see all of the demand they’re now projecting.
Even if we did know exactly how many gigawatts of new demand each utility would see, it’s almost impossible to say how much of it is coming from AI. Utilities don’t say how much of their future projected power demand will come from planned factories versus data centers. Nor do they say what each data center does and whether it trains AI (or mines Bitcoin, which remains a far bigger energy suck).
The risk of focusing on AI, specifically, as a driver of load growth is that because it’s a hot new technology — one with national security implications, no less — it can rhetorically justify expensive emergency action that is actually not necessary at all. Utilities may very well need to build more power capacity in the years to come. But does that need constitute an emergency? Does it justify seeking special permission from their statehouses or regulators to build more gas, instead of going through the regular planning process? Is it worth accelerating approvals for new gas plants? Probably not. The real danger, in other words, is not that we’ll run out of power. It’s that we’ll build too much of the wrong kind.
At the same time, we might have been led astray by overly dire predictions of AI’s energy use. Jonathan Koomey, a researcher who studies how the internet and data centers use energy (and the namesake of Koomey’s Law) told me that many estimates of Nvidia’s most important AI chips assume that their energy use is the same as their advertised “rated” power. In reality, Nvidia chips probably use half of that amount, he said, because chipmakers engineer their chips to withstand more electricity than is necessary for safety reasons.
And this is just the current generation of chips: Nvidia’s next generation of AI-training chips, called “Blackwell,” use 25 times less energy to do the same amount of computation as the previous generation of chips.
Koomey helped defuse the last panic over energy use by showing that the estimates Huber and Mills relied on were wildly incorrect. Estimates now suggest that the internet used less than 1% of total U.S. electricity by the late 1990s, not 13% as they claimed. Those percentages stayed roughly the same through 2008, he later found, even as data centers grew and computers proliferated across the economy. That’s the same year, remember, that Huber and Mills predicted that the internet would consume half of American energy.
These bad predictions were extremely convenient. Mills was a scientific advisor to the Greening Earth Society, a fossil-fuel-industry-funded group that alleged carbon dioxide pollution would actually improve the global environment. He aimed to show that climate and environmental policy would conflict with the continued growth of the internet.
“Many electricity policy proposals are on a collision course with demand forces,” Mills said in a Greening Earth press release at the time. “While many environmentalists want to substantially reduce coal use in making electricity, there is no chance of meeting future economically-driven and Internet-accelerated electric demand without retaining and expanding the coal component.” Hence the headline of the Forbes piece: “The PCs are coming — Dig more coal.”
What makes today’s AI-induced fear frenzy different from 1999 is that the alarmed projections are not just coming from businesses and banks like Morgan Stanley, but from environmentalists like Friends of the Earth. Yet neither their estimates of near-term, AI-driven power shortages — nor the analysis from Morgan Stanley that U.S. data-center use could soon triple within a year — make sense given what we know about data centers, Koomey said. It is not logistically possible to triple data centers’ electricity use in one year. “There just aren’t enough people to build data centers, and it takes longer than a year to build a new data center anyway,” he said. “There aren’t enough generators, there aren’t enough transformers — the backlog for some equipment is 24 months. It’s a supply chain constraint.”
Look around and you might notice that we have many more servers and computers today than we did in 1999 — not to mention smartphones and tablets, which didn’t even exist then — and yet computing doesn’t devour half of American energy. It doesn’t even get close. Today, computers use 1% to 4% of total U.S. power demand, depending on which estimate you trust. That’s about the same share of total U.S. electricity demand that they used in the late 1990s and mid-2000s.
It may well be that AI devours more energy in years to come, but utilities probably do not need to deal with it by building more gas. They could install more batteries, build new power lines, or even pay some customers to reduce their electricity usage during certain peak events, such as cold winter storms.
There are some places where AI-driven energy demand could be a problem — Koomey cited Ireland and Loudon County, Virginia, as two epicenters. But even there, building more natural gas is not the sole way to cope with load growth.
“The problem with this debate is everybody is kind of right,” Daniel Tait, who researches Southern utilities for the Energy and Policy Institute, a consumer watchdog, told me. “Yes, AI will increase load a little bit, but probably not as much as you think. Yes, load is growing, but maybe not as much as you say. Yes, we do need to build stuff, but maybe not the stuff that you want.”
There are real risks if AI’s energy demands get overstated and utilities go on a gas-driven bender. The first is for the planet: Utilities might overbuild gas plants now, run them even though they’re non-economic, and blow through their climate goals.
“Utilities — especially the vertically integrated monopoles in the South — have every incentive to overstate load growth, and they have a pattern of having done that consistently,” Gudrun Thompson, a senior attorney at the Southern Environmental Law Center, told me. In 2017, the Rocky Mountain Institute, an energy think tank, found in 2017 that utilities systematically overestimated their peak demand when compiling forecasts. This makes sense: Utilities would rather build too much capacity than wind up with too little, especially when they can pass along the associated costs to rate-payers.
But the second risk is that utilities could burn through the public’s willingness to pay for grid upgrades. Over the next few years, utilities should make dozens of updates to their systems. They have to build new renewables, new batteries, and new clean 24/7 power, such as nuclear or geothermal. They will have to link their grids to their neighbors’ by building new transmission lines. All of that will be expensive, and it could require the kind of investment that raises electricity rates. But the public and politicians can accept only so many rate hikes before they rebel, and there’s a risk that utilities spend through that fuzzy budget on unnecessary and wasteful projects now, not on the projects that they’ll need in the future.
There is no question that AI will use more electricity in the years to come. But so will EVs, new factories, and other sources of demand. America is on track to use more electricity. If that becomes a crisis, it will be one of our own making.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
On Neil Jacobs’ confirmation hearing, OBBBA costs, and Saudi Aramco
Current conditions: Temperatures are climbing toward 100 degrees Fahrenheit in central and eastern Texas, complicating recovery efforts after the floods • More than 10,000 people have been evacuated in southwestern China due to flooding from the remnants of Typhoon Danas • Mebane, North Carolina, has less than two days of drinking water left after its water treatment plant sustained damage from Tropical Storm Chantal.
Neil Jacobs, President Trump’s nominee to head the National Oceanic and Atmospheric Administration, fielded questions from the Senate Commerce, Science, and Transportation Committee on Wednesday about how to prevent future catastrophes like the Texas floods, Politico reports. “If confirmed, I want to ensure that staffing weather service offices is a top priority,” Jacobs said, even as the administration has cut more than 2,000 staff positions this year. Jacobs also told senators that he supports the president’s 2026 budget, which would further cut $2.2 billion from NOAA, including funding for the maintenance of weather models that accurately forecast the Texas storms. During the hearing, Jacobs acknowledged that humans have an “influence” on the climate, and said he’d direct NOAA to embrace “new technologies” and partner with industry “to advance global observing systems.”
Jacobs previously served as the acting NOAA administrator from 2019 through the end of Trump’s first term, and is perhaps best remembered for his role in the “Sharpiegate” press conference, in which he modified a map of Hurricane Dorian’s storm track to match Trump’s mistaken claim that it would hit southern Alabama. The NOAA Science Council subsequently investigated Jacobs and found he had violated the organization’s scientific integrity policy.
The Republican budget reconciliation bill could increase household energy costs by $170 per year by 2035 and $353 per year by 2040, according to a new analysis by Evergreen Action, a climate policy group. “Biden-era provisions, now cut by the GOP spending plan, were making it more affordable for families to install solar panels to lower utility bills,” the report found. The law also cut building energy efficiency credits that had helped Americans reduce their bills by an estimated $1,250 per year. Instead, the One Big Beautiful Bill Act will increase wholesale electricity prices almost 75% by 2035, as well as eliminate 760,000 jobs by the end of the decade. Separately, an analysis by the nonpartisan think tank Center for American Progress found that the OBBBA could increase average electricity costs by $110 per household as soon as next year, and up to $200 annually in some states.
EIA
Saudi Arabia’s state-owned oil company Saudi Aramco is in talks with Commonwealth LNG in Louisiana to buy liquified natural gas, Reuters reports. The discussion is reportedly for 2 million tons per year of the facility’s 9.4 million-ton annual export capacity, which would help “cement Aramco’s push into the global LNG market as it accelerates efforts to diversify beyond crude oil exports” and be the “strongest signal yet that Aramco intends to take a material position in the U.S. LNG sector,” OilPrice.com notes. LNG demand is expected to grow 50% globally by 2030, but as my colleague Emily Pontecorvo has reported, President Trump’s tariffs could make it harder for LNG projects still in early development, like Commonwealth, to succeed. “For the moment, U.S. LNG is still interesting,” Anne-Sophie Corbeau, a research scholar focused on natural gas at Columbia University’s Center on Global Energy Policy, told Emily. “But if costs increase too much, maybe people will start to wonder.”
Ford confirmed this week that its $3 billion electric vehicle battery plant in Michigan will still qualify for federal tax credits due to eleventh-hour tweaks to the bill’s language, The New York Times reports. Though Ford had said it would build its factory regardless of what happened to the credits, the company’s executive chairman had previously called them “crucial” to the construction of the facility and the employment of the 1,700 people expected to work there. Ford’s battery plant is located in Michigan’s Calhoun County, which Trump won by a margin of 56%. The last-minute tweaks to save the credits to the benefit of Ford “suggest that at least some Republican lawmakers were aware that cuts in the bill would strike their constituents the hardest,” the Times writes.
Italy and Spain are on track to shutter their last remaining mainland coal power plants in the next several months, marking “a major milestone in Europe’s transition to a predominantly renewables-based power system by 2035,” Beyond Fossil Fuels reported Wednesday. To date, 15 European countries now have coal-free grids following Ireland’s move away from coal in 2025.
Italy is set to complete its transition from coal by the end of the summer with the closure of its last two plants, in keeping with the government’s 2017 phase-out target of 2025. Two coal plants in Sardinia will remain operational until 2028 due to complications with an undersea grid connection cable. In Spain, the nation’s largest coal plant will be entirely converted to fossil gas by the end of the year, while two smaller plants are also on track to shut down in the immediate future. Once they do, Spain’s only coal-power plant will be in the Balearic Islands, with an expected phase-out date of 2030.
“Climate change makes this a battle with a ratchet. There are some things you just can’t come back from. The ratchet has clicked, and there is no return. So it is urgent — it is time for us all to wake up and fight.” — Senator Sheldon Whitehouse of Rhode Island in his 300th climate speech on the Senate floor Wednesday night.
Some of the Loan Programs Office’s signature programs are hollowed-out shells.
With a stroke of President Trump’s Sharpie, the One Big Beautiful Bill Act is now law, stripping the Department of Energy’s Loan Programs Office of much of its lending power. The law rescinds unobligated credit subsidies for a number of the office’s key programs, including portions of the $3.6 billion allocated to the Loan Guarantee Program, $5 billion for the Energy Infrastructure Reinvestment Program, $3 billion for the Advanced Technology Vehicle Manufacturing Program, and $75 million for the Tribal Energy Loan Guarantee Program.
Just three years ago, the Inflation Reduction Act supercharged LPO, originally established in 2005 to help stand up innovative new clean energy technologies that weren’t yet considered bankable for the private sector, expanding its lending authority to roughly $400 billion. While OBBBA leaves much of the office’s theoretical lending authority intact, eliminating credit subsidies means that it no longer really has the tools to make use of those dollars.
Credit subsidies represent the expected cost to the government of providing a loan or a loan guarantee — including the possibility of a default — and thus how much money Congress must set aside to cover these potential losses. So by axing these subsidies, Congress is effectively limiting the amount of lending that the LPO can undertake, given that many third-party lenders would be reluctant to finance riskier, more novel, or larger projects in the absence of federal credit support.
“The LPO is statutorily allowed to take loans on its books to finance these projects in these categories, but it has no credit subsidy by which to take the risk required to do so,” Advait Arun, senior associate of energy finance at the Center for Public Enterprise and a Heatmap contributor, told me.
The particular programs that have been eliminated support new and improved energy technologies, clean energy infrastructure, fuel efficient vehicles, and help native communities access energy project financing. The long-running Loan Guarantee Program and the advanced vehicles program in particular are behind some of the best known LPO efforts, supporting companies such as Tesla, Ford, and NextEra Energy, and projects such as Georgia’s Vogtle nuclear reactors, the Thacker Pass lithium mine, and Shepherd’s Flat, one of the world’s largest wind farms.
The Loan Guarantees Program is “the big Kahuna,” Arun told me. “This is the longest-standing program of the LPO. So to see this defunded is like, you’re decapitating the LPO’s crown jewel.”
The program only has about $11 million left over in credit subsidies, consisting of funding that it received prior to the IRA’s appropriations. That won’t be enough to make any meaningful loans, Arun said, and is more likely to be used to “keep a skeleton crew online” for any remaining administrative tasks.
Then there’s the Energy Infrastructure Reinvestment Program, which the IRA stood up with a whopping $250 billion in lending authority to transition and transform existing fossil fuel infrastructure for clean energy purposes. Now, OBBBA has axed the program’s remaining $5 billion in credit subsidies and replaced it with $1 billion in new subsidies for projects that “retool, repower, repurpose, or replace” existing energy infrastructure, with a focus on expanding capacity and output as opposed to decarbonizing the economy. It also refashioned the program as the predictably-named “Energy Dominance Financing” initiative.
The new-old program — which the law extended through 2028 — no longer requires LPO-funded infrastructure to reduce or sequester emissions, broadening the office’s lending authority to include support for fossil fuel and critical minerals projects. It also adds language encouraging the LPO to “support or enable the provision of known or forecastable electric supply,” which Arun fears is a “backend way of penalizing the addition of renewable energy” on previously developed land.
“Under the Trump administration’s direction, [the LPO] can use that term, ‘known and forecastable,’ to actually just say, well, guess what? Renewables are not known or forecastable because they are intermittent due to the weather,” Arun told me. So while government and private industry were once excited about, say, turning sites originally developed for coal mining or coal ash disposal into solar and battery facilities, those days are probably over.
Carbon capture in particular stands to suffer from this reprogramming, Arun said, explaining that while the Biden LPO saw potential in adding carbon capture to natural gas and coal plants, its current incarnation will no longer allocate funding in any meaningful amount “because reducing emissions is no longer part of the LPO’s mandate.” Some policymakers and clean energy developers had also hoped that excess renewable energy would make it economically feasible to power the production of hydrogen fuel with renewable energy. But with this law — and really each passing day under Trump — a mass buildout of solar and wind seems less and less likely, making it doubtful that green hydrogen will move down the cost curve.
As bleak as this looks, it’s better than it could have been. There was no guarantee that Trump would keep the LPO around at all. Even in this denuded state, the office can still fund the expansion of existing nuclear projects, and perhaps even the buildout of transmission lines or battery projects on brownfield sites, Arun said, depending on how LPO’s leadership ends up interpreting what it means to “increase the capacity output of operating infrastructure.”
But in many ways, what happened with the LPO looks like another instance of the Trump administration picking winners and losers: Yes to clean, firm energy and fossil fuels, no to solar, wind, and electric vehicles.
Take the Advanced Technology Vehicle Manufacturing Program, for example. OBBBA nixed both its credit subsidies and its tens of billions of dollars in lending authority. That’s hardly a surprise, given that the Bush administration created the program in 2007 explicitly to support the domestic development and manufacture of fuel-efficient vehicles and components. But it means that unlike the LPO programs for which lending authority still stands, even if Congress wanted to, it could not redesign the advanced vehicles program to serve a more Trump-aligned purpose. Safer, I suppose, to cut off any opening for funding EVs and hybrids.
The latest LPO rescissions add to the growing list of reasons the private sector has to be wary of the consistently inconsistent landscape for federal funding, Arun told me. He worries that slashing the LPO’s authority at the same time as there’s so much uncertainty around tax credit eligibility will lead some companies to forgo federal funding opportunities altogether.
“We’ll see if private developers even want to play around with the LPO,” Arun told me, “given the uncertainty around the rest of the federal landscape here.”
Electric vehicle batteries are more efficient at lower speeds — which, with electricity prices rising, could make us finally slow down.
The contours of a 30-year-old TV commercial linger in my head. The spot, whose production value matched that of local access programming, aired on the Armed Forces Network in the 1990s when the Air Force had stationed my father overseas. In the lo-fi video, two identical military green vehicles are given the same amount of fuel and the same course to drive. The truck traveling 10 miles per hour faster takes the lead, then sputters to a stop when it runs out of gas. The slower one eventually zips by, a mechanical tortoise triumphant over the hare. The message was clear: slow down and save energy.
That a car uses a lot more energy to go fast is nothing new. Anyone who remembers the 55 miles per hour national speed limit of the 1970s and 80s put in place to counter oil shortages knows this logic all too well. But in the time of electric vehicles, when driving too fast slashes a car’s range and burns through increasingly expensive electricity, the speed penalty is front and center again. And maybe that’s not a bad thing.
You certainly can notice the cost of lead-footedness in a gasoline-powered car. It’s simpler today, when lots of vehicles have digital displays that show the miles per gallon you’re getting, than in the old days when you had to do the math yourself. An EV puts the hard efficiency math right in front of you. Battery life is often displayed in terms of estimated miles of range remaining, and those miles evaporate before your eyes if you climb a mountain or accelerate like a drag racer.
This is no academic concern, like trying to boost one’s fuel efficiency through hypermiling techniques such as gentle acceleration, downhill coasting, and killing the AC. In six years of owning a Tesla Model 3, I’ve pushed its range limits trying to reach far-flung national parks and other destinations where fast chargers are scarce. I’ve found myself in numerous situations where I’ve set the cruise control at exactly the speed limit or slightly below to make sure the car would reach the one and only charging depot in the vicinity. For particularly close calls, I’ve puttered white-knuckled with one eye on Tesla’s in-car energy app — and felt my stomach drop when I found myself underperforming its expectations.
Fortunately, slow works. Three years ago I managed a comfortable round-trip from what was then the closest Tesla Supercharger to Crater Lake National Park by driving there down a 55-mile-per-hour two-lane highway; at freeway speed, my little battery probably wouldn’t have made it. Today, my fully charged Model 3 might make it something like 130 to 140 miles at interstate speed, depending on elevation. Go a little slower and it comes close to matching the 200 miles of supposed range.
Fear is the speed-killer, sure. The chance of being stranded with a dead battery is enough for any driver to be scared straight into observing the posted limit. But having all that data at the ready had already started to affect my driving habits even when there was no danger of stranding myself. It’s hard to watch the range drop when you slam the accelerator without thinking of the Interstellar meme about how much this little maneuver is going to cost us. With the price of electricity at the fast charger rising, I’m much more conscious of wasting a few kilowatt-hours by being in a hurry.
The difference is stunningly clear in the kind of controlled range tests that car sites and EV influencers have been conducting. For example, the State of Charge YouTube channel recently drove the Cadillac Escalade IQ, the fully electric version of the status SUV that is officially rated at 465 miles of range. Driven at exactly 70 miles per hour until it ran out of juice, the big EV exceeded that estimate by traveling 481 miles. With the speedometer held at 60 miles per hour, however, the vehicle went 607 miles — more than 100 miles more.
Granted, the Caddy’s comically large 205 kilowatt-hour battery — more than three times as big as the one in my little Tesla — does the lion’s share of the work in allowing it to go so very many miles. A peek into State of Charge’s data, though, makes it clear what 10 miles per hour can do. Dropping from 70 miles per hour to 60 caused the car’s miles per kilowatt-hour figure to rise from 2.1 to 2.6 or 2.7.
That’s not to say EV ownership turns every driver into an energy-obsessed hypermiler. One blessing of the huge batteries that go into Cadillac EVs and Rivians is freeing their drivers from some of the mental burden of range calculations. With driving ranges reaching well above 300 miles, you’re going to make it to the next plug even if you drive like a maniac.
Even so, the increased awareness of the cost of electricity might make some of us reconsider the casual speeding we all do just to take a few minutes off the trip. That’s a good thing for public safety: Big EV batteries make these vehicles heavier than other cars, on average, and thus potentially more dangerous in auto accidents. And slowing down will be especially relevant as electricity prices outpace inflation. Consumer electricity prices are up nearly 5% over last year and are poised to get worse: The budget reconciliation bill signed by President Trump last week won’t help, as one projection sees it leading to an increase in annual energy bills of up to $290 by 2035.
To be honest, the biggest problem of slowing down a little isn’t really the extra time it takes to get someplace. It’s trying to conserve in a world where 5 to 10 miles per hour over the speed limit is the expectation. I once had to cross 140 miles of wind-swept New Mexico expanse from Albuquerque to Gallup on a single charge, a task that required driving 55 miles per hour in a 65 zone of the interstate, holding on tight as semi trucks flew past me in revved aggravation. We made it. But if you really want to make your electrons go farther, then be prepared to become the target of road rage by the hasty and the aggrieved.