Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate

Everything’s Bigger in Texas, Including Hydrogen Emissions

Where natural gas comes from matters for hydrogen production.

Texas pollution.
Heatmap Illustration/Getty Images

Oil giants Exxon and Chevron are among a group of energy companies that could receive up to $1.2 billion in federal grants to make so-called “clean” hydrogen in Texas. Their proposal to produce the clean-burning fuel using natural gas and carbon capture, in addition to other methods, was selected by the Biden administration a year ago to become one of the country’s seven clean hydrogen hubs. But a trio of researchers at the University of Texas at Austin just showed that there’s a dirty paradox at the heart of the plan.

In a study published in the journal Nature Energy on Monday, the researchers show that upstream emissions in the natural gas supply chain in Texas are so high that it’s essentially impossible to make hydrogen from it that would meet federal standards for “clean” hydrogen. But, the authors warn, the government’s proposed method for measuring the carbon intensity of hydrogen overlooks these emissions. That means these Texas hydrogen projects could get millions in public funding in the name of tackling climate change, all while making the problem worse.

“You’re investing so much in developing a hydrogen economy, and then it turns out, 10 years later, half of them are not even low carbon,” Arvind Ravikumar, an associate professor at the University of Texas at Austin and one of the authors of the new paper, told me. “I think that’s a real risk.”

This story might sound familiar. I’ve written extensively about the emissions accounting challenges plaguing another method for making clean hydrogen that requires only water and carbon-free electricity, known as electrolysis. The problem there is that the electric grid still runs largely on fossil fuels, and so plugging in a hydrogen plant will produce indirect emissions, even if the production process itself is clean.

The new study highlights a similar issue with hydrogen made from natural gas. Of course, since this method uses fossil fuels, it’s already substantially more difficult to prove it has any climate benefits at all. In theory, the emissions can be greatly reduced, although likely not entirely eliminated, by capturing the carbon emitted from the plant. The authors show, however, that the more important factor is where the natural gas comes from.

Natural gas is mostly methane, a greenhouse gas more than 80 times more potent than carbon dioxide in the short term, and leaks are notoriously underestimated. But any assessment of the benefits of hydrogen made from methane must take leakage into account, and some natural gas fields are leakier than others.

The paper analyzes a range of scenarios for two hypothetical hydrogen plants — one on the Gulf Coast that sources natural gas from the Permian Basin, and one in Ohio that gets gas from the Marcellus Shale. The Treasury Department’s draft rules for calculating the carbon intensity of hydrogen for the clean hydrogen tax credit say these two plants should assume that a national average of 1% of the natural gas extracted from the ground is leaked into the atmosphere where it warms the planet. But more than a decade of on-the-ground measurements, combined with more recent satellite data, has shown that methane leaks vary widely from well to well and basin to basin.

Using the more accurate, though still approximate, leakage rates of 5.2% in the Permian and 1.25% in the Marcellus, the authors calculated the carbon intensity of hydrogen produced at the two plants under various assumptions. What if the carbon capture system is more effective? Or less effective? What if the capture equipment is powered by renewables? What if we measure the warming effects of methane over 20 years versus over 100 years?

No matter which variable they changed, one result stayed the same: Hydrogen made from Permian Basin gas greatly exceeded the government’s definition of clean hydrogen, i.e. 4 kilograms of CO2 released per kilogram of hydrogen produced. In fact, the emissions from natural gas production in the Permian Basin alone pushed it over that standard. Hydrogen made from Marcellus Shale gas, on the other hand, has the potential to qualify as clean if at least 90% of the carbon at the plant is captured.

The findings suggest that without enormous efforts to reduce those upstream emissions, which come from leaks, venting, and flaring at the wellhead and along the pipeline system, natural gas-based hydrogen projects on the Gulf Coast should not qualify for federal subsidies.

The authors advocate for the Treasury’s final guidelines for calculating the carbon intensity of hydrogen to account for these regional differences. “I think that, to begin with, will make a huge difference in accurately estimating the emissions intensity of these projects,” Ravikumar said. As new methane regulations from the Environmental Protection Agency go into effect, it’s possible that projects that are not eligible today could become eligible in the future. “But the point is, you’ll only know that if you do your carbon accounting accurately across supply chains,” he said.

One problem with this solution is that hydrogen producers have access to another federal tax credit that doesn’t require any analysis of how clean the hydrogen is — up to $85 for every ton of carbon they capture and sequester underground. Indeed, at least one project developer has already said they will go after that subsidy instead of the one for clean hydrogen.

Ravikumar thinks those developers are facing a major risk. “At the end of the day, you’re going to buy hydrogen from these companies explicitly for its low-carbon attributes,” he said. “Right now we did this analysis, but very soon, you’re going to have satellites that are going to look at all these regions and be able to make emissions information publicly available. And once you’re able to do that, you can’t make up numbers on paper.”

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Electric Vehicles

The New Electric Cars Are Boring

Give the people what they want — big, family-friendly EVs.

Boredom and EVs.
Heatmap Illustration/Getty Images, Apple

The star of this year’s Los Angeles Auto Show was the Hyundai Ioniq 9, a rounded-off colossus of an EV that puts Hyundai’s signature EV styling on a three-row SUV cavernous enough to carry seven.

I was reminded of two years ago, when Hyundai stole the L.A. show with a different EV: The reveal of Ioniq 6, its “streamliner” aerodynamic sedan that looked like nothing else on the market. By comparison, Ioniq 9 is a little more banal. It’s a crucial vehicle that will occupy the large end of Hyundai's excellent and growing lineup of electric cars, and one that may sell in impressive numbers to large families that want to go electric. Even with all the sleek touches, though, it’s not quite interesting. But it is big, and at this moment in electric vehicles, big is what’s in.

Keep reading...Show less
Green
Climate

AM Briefing: Hurricane Season Winds Down

On storm damages, EV tax credits, and Black Friday

The Huge Economic Toll of the 2024 Hurricane Season
Heatmap Illustration/Getty Images

Current conditions: Parts of southwest France that were freezing last week are now experiencing record high temperatures • Forecasters are monitoring a storm system that could become Australia’s first named tropical cyclone of this season • The Colorado Rockies could get several feet of snow today and tomorrow.

THE TOP FIVE

1. Damages from 2024 hurricane season estimated at $500 billion

This year’s Atlantic hurricane season caused an estimated $500 billion in damage and economic losses, according to AccuWeather. “For perspective, this would equate to nearly 2% of the nation’s gross domestic product,” said AccuWeather Chief Meteorologist Jon Porter. The figure accounts for long-term economic impacts including job losses, medical costs, drops in tourism, and recovery expenses. “The combination of extremely warm water temperatures, a shift toward a La Niña pattern and favorable conditions for development created the perfect storm for what AccuWeather experts called ‘a supercharged hurricane season,’” said AccuWeather lead hurricane expert Alex DaSilva. “This was an exceptionally powerful and destructive year for hurricanes in America, despite an unusual and historic lull during the climatological peak of the season.”

Keep reading...Show less
Yellow
Climate

First Comes the Hurricane. Then Comes the Fire.

How Hurricane Helene is still putting the Southeast at risk.

Hurricanes and wildfire.
Heatmap Illustration/Getty Images

Less than two months after Hurricane Helene cut a historically devastating course up into the southeastern U.S. from Florida’s Big Bend, drenching a wide swath of states with 20 trillion gallons of rainfall in just five days, experts are warning of another potential threat. The National Interagency Fire Center’s forecast of fire-risk conditions for the coming months has the footprint of Helene highlighted in red, with the heightened concern stretching into the new year.

While the flip from intense precipitation to wildfire warnings might seem strange, experts say it speaks to the weather whiplash we’re now seeing regularly. “What we expect from climate change is this layering of weather extremes creating really dangerous situations,” Robert Scheller, a professor of forestry and environmental resources at North Carolina State University, explained to me.

Keep reading...Show less
Blue