You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Secretary of Energy Jennifer Granholm has become something of a one-woman band lately, traveling the country promoting nuclear energy. In Las Vegas at the American Nuclear Society annual conference last week, she told the audience, “We’re looking at a chance to build new nuclear at a scale not seen since the ’70s and ’80s.” A few weeks earlier she paid a visit to the Vogtle nuclear plant outside of Augusta, Georgia, site of the first new nuclear project to start construction this century “It’s time to cash in on our investments by building more, more of these facilities,” she told an audience there.
Unlike the past few decades, when nuclear power plants were more likely to shut down than be built amidst sluggish growth in electricity demand, any new nuclear power — whether from a new plant, one that’s producing new power on top of its regular output, or one that’s re-opening — is likely to be bought up eagerly these days by utilities and big energy buyers with decarbonization mandates. States and the federal government are more than happy to pony up the dollars to keep existing nuclear plants running. Technology companies will even pay a premium for clean power. Amazon, for instance, bought a data center adjacent to a nuclear plant despite despite having no nuclear strategy to speak of.
What brought about this abrupt about-face of enthusiasm? In spite of the rapid expansion of wind and solar and the recent boom in batteries, with electricity demand rising, it’s hard to turn down any green electrons. And with all that solar and wind comes a need for “clean firm” power, sources of electricity that can operate when other sources aren’t. The Department of Energy estimates that a decarbonized economy will require 700 to 900 gigawatts of clean firm power by 2050, about four times what is currently on the grid.
While a number of power sources fit this bill — long-duration batteries, geothermal, hydrogen — there is already a massive preexisting nuclear fleet, and the technology for nuclear power is well-proven, even if growing costs and decades of environmental opposition arrested the industry’s growth in the United States for decades.
“Demand has changed significantly,” Kenneth Petersen, the outgoing president of the American Nuclear Society, told me. With tech companies willing to pay additional for clean, reliable power, “demand is going up, and you’re getting a premium for that.”
While nuclear power has faced stiff opposition from environmental groups for decades, the crashing price of natural gas in the 2010s combined with the growth and falling cost of renewables made it difficult for some existing plants to stay in business, especially in regions of the country with “restructured” energy markets, where the plants were competing with whatever the cheapest source of power was on the grid. Despite the fact that these plants were producing large and steady amounts of carbon-free power, electricity markets at the time didn’t particularly value either of these attributes.
States with aggressive decarbonization goals simply could not reasonably meet them considering that nuclear plants shutting down tends to result in more burning of natural gas and more greenhouse gas emissions. The Bipartisan Infrastructure Law provided another pot of funding for existing nuclear, and so in markets like New Jersey, New York, Connecticut, Illinois, and California, nuclear plants receive some combination of state and federal dollars to stay online.
Constellation Energy, which has a 21 reactor nuclear fleet, saw its stock price shoot up earlier this year when it upped its forecast for revenue growth citing the strong demand and government support for its clean electrons. Its shares have risen almost 90 percent on the year.
“When you hear utilities talk about restarting a reactor, yep, it’s a huge effort. And they’re confident that they can sell the offtake of that,” Petersen told me. In the case of the Palisades nuclear plant in Michigan, which shut down in 2022 and is now in the process of re-opening, there is already a power purchase agreement with a group of rural utilities on the table.
Nuclear is the third biggest electricity source in the U.S. currently, and the largest non-carbon emitting one. As Secretary Granholm likes to remind the public — and the industry — nuclear power hasn’t had more explicit support than it has now in decades. That has come in the form of tax credits for energy output, an overhauled regulatory process for advanced reactors, and explicit funding for early-stage projects.
But Granholm isn’t the only public official talking to anyone who will listen about America’s nuclear industry.
Tim Echols, the vice chairman of Georgia Public Service Commission, the regulator that oversaw Southern Company’s Vogtle project, has been warning other state regulators about embarking on a new nuclear project without explicit cost protection from the federal government. The third and fourth Vogtle reactors started construction in 2013, about a decade after the planning process began; the final reactor was completed and started putting power on the grid in April, some $35 billion later (the project was originally expected to cost $14 billion).
And that was a successful project. A similar project in South Carolina was never completed and took down the utility, SCANA, that planned it, even resulting in a two-year federal prison sentence for its chief executive, who was convicted of having “intentionally defrauded ratepayers while overseeing and managing SCANA’s operations — including the construction of two reactors at the V.C. Summer Nuclear Station.” Westinghouse, which designed the reactor in operation at Vogtle, known as the AP1000, itself went bankrupt in 2016.
Echols is proud of Vogtle now. “Finishing those AP1000s at Vogtle changed everything,” Echols told me in an email. “People are looking past the overruns and celebrating this as a great accomplishment.”
But he’s pretty sure no one else should do it like Georgia did, with a utility using ratepayer funds for a nuclear project of uncertain cost and duration. “So many of my colleague regulators in other states don’t feel there are enough financial protections in place yet — and that is holding them back,” Echols told me. “The very real possibility of bankruptcy exists on any of these nuclear projects, and I am not comfortable moving forward with some catastrophic protection — and only the federal government can provide that.”
Granholm and other DOE officials including Jigar Shah, head of the Loan Programs Office, have expressed puzzlement at this view. At the ANS conference, Granholm pointed to “billions and billions and billions” that the federal government is offering in terms of loan guarantees (from which Vogtle benefitted under presidents Obama and Trump) and investment tax credits that, according to the Breakthrough Institute’s Adam Stein, could amount to “around 60% cost overrun protection” when combined with DOE loans.
It’s unlikely that Republicans would be more interested in this level of cost protection than Democrats. Shelly Moore Capito, the West Virginia Republican who helped shepherd a recent nuclear regulatory reform bill through Congress, told Politico, “I don’t think the government should be in the business of giving backstop.”
Echols conceded that Shah “is right in saying the deal is better than it was when we started our AP1000s,” but still said the possibility of bankruptcy was too daunting for state utility regulators.
While technology companies that want to buy clean electrons have demurred about actually financing construction of next generation “advanced” nuclear plants, Echols predicted that “companies like Dow, Microsoft, or Google build a [small modular reactor] before any utility in America can finish another AP1000,” referring to the reactor model at Vogtle, which is about one gigawatt per reactor, compared to the few hundred megawatts contemplated by designs for small modular reactors.
Dow is currently working on a gas-cooled reactor project with X-energy that would provide both power and industrial steam. The reactor would operate at a higher temperature than the light water reactors that dominate the U.S. nuclear fleet. TerraPower, the Bill Gates backed startup that has received billions of dollars in federal support, started construction on the non-nuclear portion of its Natrium plant in Wyoming earlier this year, while a number of other advanced reactor projects are at various stages of design and preparation. There’s only one design that’s received certification from the NRC, however, and the company behind it, NuScale, saw its one active project to build a plant collapse due to rising costs.
As Breakthrough’s Stein told me, “It’s not really going to be a question of large LWR vs. SMR or water-based SMR vs advanced. We’re going to need a mix of technology to get to net zero, just like we need a mix of nuclear and non-nuclear. “The nuclear space is not nearly as homogenous as photovoltaic space — it’s not all one technology with different advantages that can fit different niches.”
Much of the Department of Energy’s work in past years has been in funding and supporting the development of these “advanced” reactors, which are supposed to be more efficient and safer than existing light-water reactor designs and can serve more discrete purposes, including industrial processes like steam. Last week, Granholm announced almost $1 billion of money from the Bipartisan Infrastructure Law for the construction of small modular reactors. The ADVANCE Act, which passed the Senate last week, was designed to help make reviews of these reactor designs faster, cheaper and more focused.
“I think the Vogtle experience and what that means for ratepayers makes it very, very unlikely that another utility is going to step up and ratebase a big first-of-its-kind, firm, flexible generation technology,” Jeff Navin, a former Department of Energy official and partner at the public affairs firm representing TerraPower, told me. “The challenges facing financing nuclear are the same challenges that you're going to face with carbon capture, with large-scale hydrogen production, with enhanced geothermal, with all of these others technologies that we all know we need to have to solve climate change. But we don't really know how to finance these things.”
Many analysts think that if we get advanced reactors, it will likely be sometime in the early 2030s. “Optimistically, maybe 2032 we should have a couple of these things up and running,” Jacopo Buongiorno, a nuclear engineering professor at MIT, told me. “All the industry needs is one winner, and the floodgates might open.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The administration seems to be pursuing a “some of the above” strategy with little to no internal logic.
The Department of Energy justified terminating hundreds of congressionally-mandated grants issued by the Biden administration for clean energy projects last week (including for a backup battery at a children’s hospital) by arguing that they were bad investments for the American people.
“Following a thorough, individualized financial review, DOE determined that these projects did not adequately advance the nation’s energy needs, were not economically viable, and would not provide a positive return on investment of taxpayer dollars,” the agency’s press release said.
It’s puzzling, then, that the Trump administration is pouring vast government resources into saving aging coal plants and expediting advanced nuclear projects — two sources of energy that are famously financial black holes.
The Energy Department announced it would invest $625 million to “reinvigorate and expand America’s coal industry” in late September. Earlier this year, the agency also made $900 million available to “unlock commercial deployment of American-made small modular reactors.”
It’s hard to imagine what economic yardsticks would warrant funding to keep coal plants open. The cost of operating a coal plant in the U.S. has increased by nearly 30% since 2021 — faster than inflation — according to research by Energy Innovation. Driving that increase is the cost of coal itself, as well as the fact that the nation’s coal plants are simply getting very old and more expensive to maintain. “You can put all the money you want into a clunker, but at the end of the day, it’s really old, and it’s just going to keep getting more expensive over time, even if you have a short term fix,” Michelle Solomon, a program manager at Energy Innovation who authored the research, told me.
Keeping these plants online — even if they only operate some of the time— inevitably raises electricity bills. That’s because in many of the country’s electricity markets, the cost of power on any given day is determined by the most expensive plant running. On a hot summer day when everyone’s air conditioners are working hard and the grid operator has to tell a coal plant to switch on to meet demand, every electron delivered in the region will suddenly cost the same as coal, even if it was generated essentially for free by the sun or wind.
The Trump administration has also based its support for coal plants on the idea that they are needed for reliability. In theory, coal generation should be available around the clock. But in reality, the plants aren’t necessarily up to the task — and not just because they’re old. Sandy Creek in Texas, which began operating in 2013 and is the newest coal plant in the country, experienced a major failure this past April and is now expected to stay offline until 2027, according to the region’s grid operator. In a report last year, the North American Electric Reliability Corporation warned that outage rates for coal plants are increasing. This is in part due to wear and tear from the way these plants cycle on and off to accommodate renewable energy sources, the report said, but it’s also due to reduced maintenance as plant operators plan to retire the facilities.
“You can do the deferred maintenance. It might keep the plant operating for a bit longer, but at the end of the day, it’s still not going to be the most efficient source of energy, or the cheapest source of energy,” Solomon said.
The contradictions snowball from there. On September 30, the DOE opened a $525 million funding opportunity for coal plants titled “Restoring Reliability: Coal Recommissioning and Modernization,” inviting coal-fired power plants that are scheduled for retirement before 2032 or in rural areas to apply for grants that will help keep them open. The grant paperwork states that grid capacity challenges “are especially acute in regions with constrained transmission and sustained load growth.” Two days later, however, as part of the agency’s mass termination of grants, it canceled more than $1.3 billion in awards from the Grid Deployment Office to upgrade and install new transmission lines to ease those constraints.
The new funding opportunity may ultimately just shuffle awards around from one coal plant to another, or put previously-awarded projects through the time-and-money-intensive process of reapplying for the same funding under a new name. Up to $350 million of the total will go to as many as five coal plants, with initial funding to restart closed plants or to modernize old ones, and later phases designated for carbon capture, utilization, and storage retrofits. The agency said it will use “unobligated” money from three programs that were part of the 2021 Infrastructure Investment and Jobs Act: the Carbon Capture Demonstration Projects Program, the Carbon Capture Large-Scale Pilot Projects, and the Energy Improvements in Rural or Remote Areas Program.
In a seeming act of cognitive dissonance, however, the agency has canceled awards for two coal-fired power plants that the Biden administration made under those same programs. One, a $6.5 million grant to Navajo Transitional Energy Company, a tribal-owned entity that owns a stake in New Mexico’s Four Corners Generating Station, would have funded a study to determine whether adding carbon capture and storage to the plant was economically viable. The other, a $50 million grant to TDA Research that would have helped the company validate its CCS technology at Dry Fork Station, a coal plant in Wyoming, was terminated in May.
Two more may be out the window. A new internal agency list of grants labeled “terminate” that circulated this week included an $8 million grant for the utility Duke Energy to evaluate the feasibility of capturing carbon from its Edwardsport plant in Indiana, and $350 million for Project Tundra, a carbon capture demonstration project at the Milton R. Young Station in North Dakota.
“It’s not internally consistent,” Jack Andreason Cavanaugh, a global fellow at the Columbia University’s Carbon Management Research Initiative, told me. “You’re canceling coal grants, but then you’re giving $630 million to keep them open. You’re also investing a ton of time and money into nuclear — which is great, to be clear — but these small modular reactors haven’t been deployed in the United States, and part of the reason is that they’re currently not economically viable.”
The closest any company has come thus far to deploying a small modular reactor in the U.S. is NuScale, a company that planned to build its first-of-a-kind reactors in Idaho and had secured agreements to sell the power to a group of public utilities in Utah. But between 2015, when it was first proposed, and late 2023, when it died, the project’s budget tripled from $3 billion to more than $9 billion, while its scale was reduced from 600 megawatts to 462 megawatts. Not all of that was inevitable — costs rose dramatically in the final few years due to inflation. The reason NuScale ultimately pulled out of the project is that the cost of electricity it generated was going to be too high for the market to bear.
It’s unclear how heavily the DOE will weigh project financials in the application process for the $900 million for nuclear reactors. In its funding announcement, it specified that the awards would be made “solely based on technical merit.” The agency’s official solicitation paperwork, however, names “financial viability” as one of the key review criteria. Regardless, the Trump administration appears to recognize the value in funding first-of-a-kind, risky technologies when it comes to nuclear, but is not applying the same standards to direct air capture or hydrogen plants.
I asked the Department of Energy to share the criteria it used in the project review process to determine economic viability. In response, spokesperson Ben Dietderich encouraged me to read Wright’s memorandum describing the review process from May. The memo outlines what types of documentation the agency will evaluate to reach a decision, but not the criteria for making that decision.
Solomon agreed that advanced nuclear might one day meet the grid’s growing power needs, but not anytime soon. “Hopefully in the long term, this technology does become a part of our electricity system. But certainly relying on it in the short term has real risks to electricity costs,” she said. “And also reliability, in the sense that the projects might not materialize.”
The collateral damage from the Lava Ridge wind project might now include a proposed 285-mile transmission line initially approved by federal regulators in the 1990s.
The same movement that got Trump to kill the Lava Ridge wind farm Trump killed has appeared to derail a longstanding transmission project that’s supposed to connect sought-after areas for wind energy in Idaho to power-hungry places out West.
The Southwest Intertie Project-North, also known as SWIP-N, is a proposed 285-mile transmission line initially approved by federal regulators in the 1990s. If built, SWIP-N is supposed to feed power from the wind-swept plains of southern Idaho to the Southwest, while shooting electrons – at least some generated from solar power – back up north into Idaho from Nevada, Utah, and Arizona. In California, regulators have identified the line as crucial for getting cleaner wind energy into the state’s grid to meet climate goals.
But on Tuesday, SWIP-N suddenly faced a major setback: The three-person commission representing Jerome County, Idaho – directly in the path of the project – voted to revoke its special use permit, stating the company still lacked proper documentation to meet the terms and conditions of the approval. SWIP-N had the wind at its back as recently as last year, when LS Power expected it to connect to Lava Ridge and other wind farms that have been delayed by Trump’s federal permitting freeze on renewable energy. But now, the transmission line has stuttered along with this potential generation.
At a hearing Tuesday evening, county commissioners said Great Basin Transmission, a subsidiary of LS Power developing the line, would now suddenly need new input, including the blessing of the local highway district and potential feedback from the Federal Aviation Administration. Jerome County Commissioner Charles Howell explained to me Wednesday afternoon that there will still need to be formal steps remanding the permit, and the process will go back to local zoning officials. Great Basin Transmission will then at minimum need to get the sign-offs from local highway officials to satisfy his concerns, as well as those of the other commissioner who voted to rescind the permit, Ben Crouch.
The permit was many years old, and there are outstanding questions about what will happen next procedurally, including what Great Basin Transmission is actually able to do to fight this choice by the commissioners. At minimum, staff for the commission will write a formal decision explaining the reasoning and remand the permit. After that, it’ll be up to Great Basin Transmission to produce the documents that commissioners want. “Even our attorney and staff didn’t have those answers when we asked that after the vote,” Howell said, adding that he hopes the issues can be resolved. “I was on the county commission about when they decided where to site the towers, where to site the right-of-ways. That’s all been there a long time.”
This is the part where I bring up how Jerome County’s decision followed a months-long fight by aggrieved residents who opposed the SWIP-N line, including homeowners who say they didn’t know their properties were in the path of the project. There’s also a significant anti-wind undercurrent, as many who are fighting this transmission line previously fought LS Power’s Lava Ridge wind project, which was blocked by and executive order from President Donald Trump on his first day in office. Jerome County itself passed an ordinance in May requiring any renewable energy facility to get all federal, state, and local approvals before it would sign off on new projects.
Opposition to SWIP-N comes from a similar place as the “Stop Lava Ridge” campaign. Along with viewshed anxieties and property value impacts, SWIP-N, like Lava Ridge, would be within single-digit miles of the Minidoka National Historic Site, a former prison camp that held Japanese-Americans during World War II. In the eyes of its staunchest critics, constructing the wind farm would’ve completely damaged any impact of visiting the site by filling the surroundings of what is otherwise a serene, somber scene. Descendants of Minidoka detainees lobbied politicians at all levels to oppose Lava Ridge, a cause that was ultimately championed by Republican politicians in their fight against the project.
These same descendants of Japanese-American detainees have fought the transmission line, arguing that its construction would inevitably lead to new wind projects. “If approved, the SWIP-N line would enable LS Power and other renewable energy companies to build massive wind projects on federal land in and around Jerome County in future years,” wrote Dan Sakura, the son of a Minidoka prisoner, in a September 15 letter to the commission.
Sakura had been a leading voice in the fight against Lava Ridge. When I asked why he was weighing in on SWIP-N, he told me over text message, “The Lava Ridge wind project poisoned the well for renewable energy projects on federal land in Southern Idaho.”
LS Power did not respond to a request for comment.
It’s worth noting that efforts have already been made to avoid SWIP-N’s impacts to the Minidoka National Historic Site. In 2010, Congress required the Interior Secretary to re-do the review process for the transmission line, which at the time was proposed to go through the historic site. The route rejected by Jerome County would go around.
There is also no guarantee that wind energy will flock to southern Idaho any time soon. Yes, there’s a Trump permitting freeze, and federal wind energy tax credits are winding down. That’s almost certainly why the developers of small nuclear reactors have reportedly coveted the Lava Ridge site for future projects. But there’s also incredible hostility pent up against wind partially driven by the now-defunct LS Power project, for instance in Lincoln County, where officials now have an emergency moratorium banning wind energy while they develop a more permanent restrictive ordinance.
Howell made no bones about his own views on wind farms, telling me he prefers battery storage and nuclear power. “As I stand here in my backyard, if they put up windmills, that’s all I’m going to see for 40 miles,” he said
But Howell did confess to me that he thinks SWIP-N will ultimately be built – if the company is able to get these new sign-offs. What kind of energy flows through a transmission line cannot ultimately affect the decision on the special use permit because, he said, “there are rules.” On top of that, Idaho is going to ultimately need more power no matter what, and at the very least, the state will have to get electrons from elsewhere.
Howell’s “non-political” answer to the fate of SWIP-N, as he put it to me, is that “We live on power, so we gotta have more power.”
The week’s most important news around renewable project fights.
1. Western Nevada — The Esmeralda 7 solar mega-project may be no more.
2. Washoe County, Nevada – Elsewhere in Nevada, the Greenlink North transmission line has been delayed by at least another month.
3. Oconto County, Wisconsin – Solar farm town halls are now sometimes getting too scary for developers to show up at.
4. Apache County, Arizona – In brighter news, this county looks like it will give its first-ever conditional use permit for a large solar farm, EDF Renewables’ Juniper Spring project.
5. Putnam County, Indiana – After hearing about what happened here this week, I’m fearful for any solar developer trying to work in Indiana.
6. Tippecanoe County, Indiana – Two counties to the north of Putnam is a test case for the impacts a backlash on solar energy can have on data centers.