Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate

Everyone Wants Nuclear Now

But will anyone pay for it?

A nuclear grand opening.
Heatmap Illustration/Getty Images

Secretary of Energy Jennifer Granholm has become something of a one-woman band lately, traveling the country promoting nuclear energy. In Las Vegas at the American Nuclear Society annual conference last week, she told the audience, “We’re looking at a chance to build new nuclear at a scale not seen since the ’70s and ’80s.” A few weeks earlier she paid a visit to the Vogtle nuclear plant outside of Augusta, Georgia, site of the first new nuclear project to start construction this century “It’s time to cash in on our investments by building more, more of these facilities,” she told an audience there.

Unlike the past few decades, when nuclear power plants were more likely to shut down than be built amidst sluggish growth in electricity demand, any new nuclear power — whether from a new plant, one that’s producing new power on top of its regular output, or one that’s re-opening — is likely to be bought up eagerly these days by utilities and big energy buyers with decarbonization mandates. States and the federal government are more than happy to pony up the dollars to keep existing nuclear plants running. Technology companies will even pay a premium for clean power. Amazon, for instance, bought a data center adjacent to a nuclear plant despite despite having no nuclear strategy to speak of.

What brought about this abrupt about-face of enthusiasm? In spite of the rapid expansion of wind and solar and the recent boom in batteries, with electricity demand rising, it’s hard to turn down any green electrons. And with all that solar and wind comes a need for “clean firm” power, sources of electricity that can operate when other sources aren’t. The Department of Energy estimates that a decarbonized economy will require 700 to 900 gigawatts of clean firm power by 2050, about four times what is currently on the grid.

While a number of power sources fit this bill — long-duration batteries, geothermal, hydrogen — there is already a massive preexisting nuclear fleet, and the technology for nuclear power is well-proven, even if growing costs and decades of environmental opposition arrested the industry’s growth in the United States for decades.

“Demand has changed significantly,” Kenneth Petersen, the outgoing president of the American Nuclear Society, told me. With tech companies willing to pay additional for clean, reliable power, “demand is going up, and you’re getting a premium for that.”

While nuclear power has faced stiff opposition from environmental groups for decades, the crashing price of natural gas in the 2010s combined with the growth and falling cost of renewables made it difficult for some existing plants to stay in business, especially in regions of the country with “restructured” energy markets, where the plants were competing with whatever the cheapest source of power was on the grid. Despite the fact that these plants were producing large and steady amounts of carbon-free power, electricity markets at the time didn’t particularly value either of these attributes.

States with aggressive decarbonization goals simply could not reasonably meet them considering that nuclear plants shutting down tends to result in more burning of natural gas and more greenhouse gas emissions. The Bipartisan Infrastructure Law provided another pot of funding for existing nuclear, and so in markets like New Jersey, New York, Connecticut, Illinois, and California, nuclear plants receive some combination of state and federal dollars to stay online.

Constellation Energy, which has a 21 reactor nuclear fleet, saw its stock price shoot up earlier this year when it upped its forecast for revenue growth citing the strong demand and government support for its clean electrons. Its shares have risen almost 90 percent on the year.

“When you hear utilities talk about restarting a reactor, yep, it’s a huge effort. And they’re confident that they can sell the offtake of that,” Petersen told me. In the case of the Palisades nuclear plant in Michigan, which shut down in 2022 and is now in the process of re-opening, there is already a power purchase agreement with a group of rural utilities on the table.

Nuclear is the third biggest electricity source in the U.S. currently, and the largest non-carbon emitting one. As Secretary Granholm likes to remind the public — and the industry — nuclear power hasn’t had more explicit support than it has now in decades. That has come in the form of tax credits for energy output, an overhauled regulatory process for advanced reactors, and explicit funding for early-stage projects.

But Granholm isn’t the only public official talking to anyone who will listen about America’s nuclear industry.

Tim Echols, the vice chairman of Georgia Public Service Commission, the regulator that oversaw Southern Company’s Vogtle project, has been warning other state regulators about embarking on a new nuclear project without explicit cost protection from the federal government. The third and fourth Vogtle reactors started construction in 2013, about a decade after the planning process began; the final reactor was completed and started putting power on the grid in April, some $35 billion later (the project was originally expected to cost $14 billion).

And that was a successful project. A similar project in South Carolina was never completed and took down the utility, SCANA, that planned it, even resulting in a two-year federal prison sentence for its chief executive, who was convicted of having “intentionally defrauded ratepayers while overseeing and managing SCANA’s operations — including the construction of two reactors at the V.C. Summer Nuclear Station.” Westinghouse, which designed the reactor in operation at Vogtle, known as the AP1000, itself went bankrupt in 2016.

Echols is proud of Vogtle now. “Finishing those AP1000s at Vogtle changed everything,” Echols told me in an email. “People are looking past the overruns and celebrating this as a great accomplishment.”

But he’s pretty sure no one else should do it like Georgia did, with a utility using ratepayer funds for a nuclear project of uncertain cost and duration. “So many of my colleague regulators in other states don’t feel there are enough financial protections in place yet — and that is holding them back,” Echols told me. “The very real possibility of bankruptcy exists on any of these nuclear projects, and I am not comfortable moving forward with some catastrophic protection — and only the federal government can provide that.”

Granholm and other DOE officials including Jigar Shah, head of the Loan Programs Office, have expressed puzzlement at this view. At the ANS conference, Granholm pointed to “billions and billions and billions” that the federal government is offering in terms of loan guarantees (from which Vogtle benefitted under presidents Obama and Trump) and investment tax credits that, according to the Breakthrough Institute’s Adam Stein, could amount to “around 60% cost overrun protection” when combined with DOE loans.

It’s unlikely that Republicans would be more interested in this level of cost protection than Democrats. Shelly Moore Capito, the West Virginia Republican who helped shepherd a recent nuclear regulatory reform bill through Congress, told Politico, “I don’t think the government should be in the business of giving backstop.”

Echols conceded that Shah “is right in saying the deal is better than it was when we started our AP1000s,” but still said the possibility of bankruptcy was too daunting for state utility regulators.

While technology companies that want to buy clean electrons have demurred about actually financing construction of next generation “advanced” nuclear plants, Echols predicted that “companies like Dow, Microsoft, or Google build a [small modular reactor] before any utility in America can finish another AP1000,” referring to the reactor model at Vogtle, which is about one gigawatt per reactor, compared to the few hundred megawatts contemplated by designs for small modular reactors.

Dow is currently working on a gas-cooled reactor project with X-energy that would provide both power and industrial steam. The reactor would operate at a higher temperature than the light water reactors that dominate the U.S. nuclear fleet. TerraPower, the Bill Gates backed startup that has received billions of dollars in federal support, started construction on the non-nuclear portion of its Natrium plant in Wyoming earlier this year, while a number of other advanced reactor projects are at various stages of design and preparation. There’s only one design that’s received certification from the NRC, however, and the company behind it, NuScale, saw its one active project to build a plant collapse due to rising costs.

As Breakthrough’s Stein told me, “It’s not really going to be a question of large LWR vs. SMR or water-based SMR vs advanced. We’re going to need a mix of technology to get to net zero, just like we need a mix of nuclear and non-nuclear. “The nuclear space is not nearly as homogenous as photovoltaic space — it’s not all one technology with different advantages that can fit different niches.”

Much of the Department of Energy’s work in past years has been in funding and supporting the development of these “advanced” reactors, which are supposed to be more efficient and safer than existing light-water reactor designs and can serve more discrete purposes, including industrial processes like steam. Last week, Granholm announced almost $1 billion of money from the Bipartisan Infrastructure Law for the construction of small modular reactors. The ADVANCE Act, which passed the Senate last week, was designed to help make reviews of these reactor designs faster, cheaper and more focused.

“I think the Vogtle experience and what that means for ratepayers makes it very, very unlikely that another utility is going to step up and ratebase a big first-of-its-kind, firm, flexible generation technology,” Jeff Navin, a former Department of Energy official and partner at the public affairs firm representing TerraPower, told me. “The challenges facing financing nuclear are the same challenges that you're going to face with carbon capture, with large-scale hydrogen production, with enhanced geothermal, with all of these others technologies that we all know we need to have to solve climate change. But we don't really know how to finance these things.”

Many analysts think that if we get advanced reactors, it will likely be sometime in the early 2030s. “Optimistically, maybe 2032 we should have a couple of these things up and running,” Jacopo Buongiorno, a nuclear engineering professor at MIT, told me. “All the industry needs is one winner, and the floodgates might open.”

Yellow

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Energy

The Grid Survived The Storm. Now Comes The Cold.

With historic lows projected for the next two weeks — and more snow potentially on the way — the big strain may be yet to come.

Storm effects.
Heatmap Illustration/Getty Images

Winter Storm Fern made the final stand of its 2,300-mile arc across the United States on Monday as it finished dumping 17 inches of “light, fluffy” snow over parts of Maine. In its wake, the storm has left hundreds of thousands without power, killed more than a dozen people, and driven temperatures to historic lows.

The grid largely held up over the weekend, but the bigger challenge may still be to come. That’s because prolonged low temperatures are forecasted across much of the country this week and next, piling strain onto heating and electricity systems already operating at or close to their limits.

Keep reading...Show less
Blue
AM Briefing

White Out

On deep-sea mining, New York nuclear, and kestrel symbiosis

Icy power lines.
Heatmap Illustration/Getty Images

Current conditions: Winter Storm Fern buried broad swaths of the country, from Oklahoma City to Boston • Intense flooding in Zimbabwe and Mozambique have killed more than 100 people • South Australia’s heat wave is raging on, raising temperatures as high as 113 degrees Fahrenheit.


THE TOP FIVE

1. America’s big snow storm buckles the grid, leaving 1 million without power

The United States’ aging grid infrastructure faces a test every time the weather intensifies, whether that’s heat domes, hurricanes, or snow storms. The good news is that pipeline winterization efforts that followed the deadly blackouts in 2021’s Winter Storm Uri made some progress in keeping everything running in the cold. The bad news is that nearly a million American households still lost power amid the storm. Tennessee, Mississippi, and Louisiana were the worst hit, with hundreds of thousands of households left in the dark, according to live data on the Power Outage tracker website. Georgia and Texas followed close behind, with roughly 75,000 customers facing blackouts. Kentucky had the next-most outages, with more than 50,000 households disconnected from the grid, followed by South Carolina, West Virginia, North Carolina, Virginia, and Alabama. Given the prevalence of electric heating in the typically-warmer Southeast, the outages risked leaving the blackout region without heat. Gas wasn’t entirely reliable, however. The deep freeze in Texas halted operations at roughly 10% of the Gulf Coast’s petrochemical facilities and refineries, Bloomberg reported.

Keep reading...Show less
Blue
Climate

Climate Change Won’t Make Winter Storms Less Deadly

In some ways, fossil fuels make snowstorms like the one currently bearing down on the U.S. even more dangerous.

A snowflake with a tombstone.
Heatmap Illustration/Getty Images

The relationship between fossil fuels and severe weather is often presented as a cause-and-effect: Burning coal, oil, and gas for heat and energy forces carbon molecules into a reaction with oxygen in the air to form carbon dioxide, which in turn traps heat in the atmosphere and gradually warms our planet. That imbalance, in many cases, makes the weather more extreme.

But this relationship also goes the other way: We use fossil fuels to make ourselves more comfortable — and in some cases, keep us alive — during extreme weather events. Our dependence on oil and gas creates a grim ouroboros: As those events get more extreme, we need more fuel.

Keep reading...Show less
Blue