Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate

Could More Controlled Burns Have Stopped the L.A. Fires?

They can be an effective wildfire prevention tool — but not always.

A burning match and a forest.
Heatmap Illustration/Getty Images

Once the fires stop burning in Los Angeles and the city picks itself up from the rubble, the chorus of voices asking how such a disaster could have been prevented will rise. In California, the answer to that desperate query is so often “better forestry management practices,” and in particular “more controlled burns.” But that’s not always the full story, and in the case of the historically destructive L.A. fires, many experts doubt that prescribed burns and better vegetation management would have mattered much at all.

Controlled burns are intentionally set and supervised by land managers to clear out excess fuels such as shrubs, trees, and logs to reduce wildfire risk. Many habitats also require fire to thrive, and so ensuring they burn in a controlled manner is a win-win for natural ecosystems and the man-made environment. But controlled burns also pose a series of challenges. For one, complex permitting processes and restrictions around when and where burns are allowed can deter agencies from attempting them. Community backlash is also an issue, as residents are often concerned about air quality as well as the possibility of the prescribed fires spiraling out of control. Land management agencies also worry about the liability risks of a controlled burn getting out of hand.

Many of the state’s largest and most destructive fires — including the Camp Fire in 2018, lightning complex fires in 2020, and Dixie Fire in 2021 — started in forests, and would therefore have likely been severely curtailed had the state done more controlled burns. According to ProPublica, anywhere between 4.4 million and 11.8 million acres used to burn annually in prehistoric California. By 2017, overzealous fire suppression efforts driven by regulatory barriers and short-term risk aversion had caused that number to drop to 13,000 acres. While the state has increased the amount of prescribed fire in recent years, the backlog of fuel is enormous.

But the L.A. fires didn’t start or spread in a forest. The largest blaze, in the Pacific Palisades neighborhood, ignited in a chaparral environment full of shrubs that have been growing for about 50 years. Jon Keeley, a research scientist with the U.S. Geological Survey and an adjunct professor at the University of California, Los Angeles, said that’s not enough time for this particular environment to build up an “unnatural accumulation of fuels.”

“That’s well within the historical fire frequency for that landscape,” Keeley told my colleague, Emily Pontecorvo, for her reporting on what started the fires. Generally, he said, these chaparral environments should burn every 30 to 130 years, with coastal areas like Pacific Palisades falling on the longer end of that spectrum. “Fuels are not really the issue in these big fires — it’s the extreme winds. You can do prescription burning in chaparral and have essentially no impact on Santa Ana wind-driven fires.”

Get the best of Heatmap in your inbox daily.

* indicates required
  • We still don’t know what ignited the L.A. fires, and thus whether a human, utility, or other mysterious source is to blame. But the combination of factors that led to the blazes — wet periods that allowed for abundant vegetation growth followed by drought and intensely powerful winds — are simply a perilously bad combination. Firebreaks, strips of land where vegetation is reduced or removed, can often prove helpful, and they do exist in the L.A. hillsides. But as Matthew Hurteau, a professor at the University of New Mexico and director of the Center for Fire Resilient Ecosystems and Society, told me bluntly, “When you have 100-mile-an-hour winds pushing fire, there’s not a hell of a lot that’s going to stop it.”

    Hurteau told me that he thinks of the primary drivers of destructive fires as a triangle, with fuels, climate, and the built environment representing the three points. “We’re definitely on the built environment, climate side of that triangle for these particular fires around Los Angeles,” Hurteau explained, meaning that the wildland-urban interface combined with drought and winds are the primary culprits. But in more heavily forested, mountainous areas of Northern California, “you get the climate and fuels side of the triangle,” Hurteau said.

    Embers can travel impressive distances in the wind, as evidenced by footage of past fires jumping expansive freeways in Southern California. So, as Hurteau put it, “short of mowing whole hillsides down to nothing and keeping them that way,” there’s little vegetation management work to be done at the wildland-urban interface, where houses bump up against undeveloped lands.

    Not everyone agrees, though. When I spoke to Susan Prichard, a fire ecologist and research scientist at the University of Washington School of Environmental and Forest Sciences, she told me that while prescribed burns close to suburban areas can be contentious and challenging, citizens can do a lot on their own to manage fuel risk. “Neighborhoods can come together and do the appropriate fuel reduction in and around their homes, and that makes a huge difference in wildfires,” she told me. “Landscaping in and around homes matters, even if you have 100-mile-an-hour winds with a lot of embers.”

    Prichard recommends residents work with their neighbors to remove burnable vegetation and organic waste, and to get rid of so-called “ember traps” such as double fencing that can route fires straight to homes. Prichard pointed to research by Crystal Kolden, a “pyrogeographer” and associate professor at the University of California Merced, whose work focuses on understanding wildfire intersections with the human environment. Kolden has argued that proper vegetation management could have greatly lessened the impact of the L.A. fires. As she recently wrote on Bluesky, “These places will see fire again. I have no doubt. But I also know that you can rebuild and manage the land so that next time the houses won’t burn down. I’ve seen it work.”

    Keeley pointed to the 2017 Thomas Fire in Ventura and Santa Barbara Counties, however, as an example of the futility of firebreaks and prescribed burns in extreme situations. That fire also ignited outside of what’s normally considered fire season, in December. “There were thousands of acres that had been prescribed burned near the eastern edge of that fire perimeter in the decade prior to ignition,” Keeley explained to Emily. “Once that fire was ignited, the winds were so powerful it just blew the embers right across the prescribed burn area and resulted in one of the largest wildfires that we’ve had in Southern California.”

    Kolden, however, reads the Thomas Fire as a more optimistic story. As she wrote in a case report on the fire published in 2019, “Despite the extreme wind conditions and interviewee estimates of potentially hundreds of homes being consumed, only seven primary residences were destroyed by the Thomas Fire, and firefighters indicated that pre-fire mitigation activities played a clear, central role in the outcomes observed.” While the paper didn’t focus on controlled burns, mitigation activities discussed include reducing vegetation around homes and roads, as well as common-sense actions such as increasing community planning and preparedness, public education around fire safety, and arguably most importantly, adopting and enforcing fire-resistant building codes.

    So while blaming decades of forestry mismanagement for major fires is frequently accurate, in Southern California the villains in this narrative can be trickier to pin down. Is it the fault of the winds? The droughts? The humans who want to live in beautiful but acutely fire-prone areas? The planning agencies that allow people to fulfill those risky dreams?

    Prichard still maintains that counties and the state government can be doing a whole lot more to encourage fuel reduction. “That might not be prescribed burning, that might actually be ongoing mastication of some of the really big chaparral, so that it’s not possible for really tall, developed, even senescent vegetation — meaning having a lot of dead material in it — to burn that big right next to homes.”

    From Hurteau’s perspective though, far and away the most effective solution would be simply building structures to be much more fire-resilient than they are today. “Society has chosen to build into a very flammable environment,” Hurteau put it. California’s population has increased over 160% since the 1950’s, far outpacing the country overall and pushing development further and further out into areas that border forests, chaparral, and grasslands. “As people rebuild after what’s going to be great tragedy, how do you re-envision the built environment so that this becomes less likely to occur in the future?”

    Green

    You’re out of free articles.

    Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
    To continue reading
    Create a free account or sign in to unlock more free articles.
    or
    Please enter an email address
    By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
    Climate Tech

    Will Virtual Power Plants Ever Really Be a Thing?

    Boosters say that the energy demand from data centers make VPPs a necessary tool, but big challenges still remain.

    Linked clean energy.
    Heatmap Illustration/Getty Images

    The story of electricity in the modern economy is one of large, centralized generation sources — fossil-fuel power plants, solar farms, nuclear reactors, and the like. But devices in our homes, yards, and driveways — from smart thermostats to electric vehicles and air-source heat pumps — can also act as mini-power plants or adjust a home’s energy usage in real time. Link thousands of these resources together to respond to spikes in energy demand or shift electricity load to off-peak hours, and you’ve got what the industry calls a virtual power plant, or VPP.

    The theoretical potential of VPPs to maximize the use of existing energy infrastructure — thereby reducing the need to build additional poles, wires, and power plants — has long been recognized. But there are significant coordination challenges between equipment manufacturers, software platforms, and grid operators that have made them both impractical and impracticable. Electricity markets weren’t designed for individual consumers to function as localized power producers. The VPP model also often conflicts with utility incentives that favor infrastructure investments. And some say it would be simpler and more equitable for utilities to build their own battery storage systems to serve the grid directly.

    Keep reading...Show less
    Blue
    AM Briefing

    Mercury Rules in Retrograde

    On the real copper gap, Illinois’ atomic mojo, and offshore headwinds

    Smokestacks.
    Heatmap Illustration/Getty Images

    Current conditions: The deadliest avalanche in modern California history killed at least eight skiers near Lake Tahoe • Strong winds are raising the wildfire risk across vast swaths of the northern Plains, from Montana to the Dakotas, and the Southwest, especially New Mexico, Texas, and Oklahoma • Nairobi is bracing for days more of rain as the Kenyan capital battles severe flooding.

    THE TOP FIVE

    1. After nuking carbon regulations, EPA guts mercury limits on coal plants

    Last week, the Environmental Protection Agency repealed the “endangerment finding” that undergirds all federal greenhouse gas regulations, effectively eliminating the justification for curbs on carbon dioxide from tailpipes or smokestacks. That was great news for the nation’s shrinking fleet of coal-fired power plants. Now there’s even more help on the way from the Trump administration. The agency plans to curb rules on how much hazard pollutants, including mercury, coal plants are allowed to emit, The New York Times reported Wednesday, citing leaked internal documents. Senior EPA officials are reportedly expected to announce the regulatory change during a trip to Louisville, Kentucky on Friday. While coal plant owners will no doubt welcome less restrictive regulations, the effort may not do much to keep some of the nation’s dirtiest stations running. Despite the Trump administration’s orders to keep coal generators open past retirement, as Heatmap’s Matthew Zeitlin wrote in November, the plants keep breaking down.

    Keep reading...Show less
    Yellow
    Ideas

    The Energy Transition Won’t Work Without Coal Towns

    A senior scholar at Columbia University’s Center on Global Energy Policy on what Trump has lost by dismantling Biden’s energy resilience strategy.

    Joe Biden inside a coal miner.
    Heatmap Illustration/Getty Images

    A fossil fuel superpower cannot sustain deep emissions reductions if doing so drives up costs for vulnerable consumers, undercuts strategic domestic industries, or threatens the survival of communities that depend on fossil fuel production. That makes America’s climate problem an economic problem.

    Or at least that was the theory behind Biden-era climate policy. The agenda embedded in major legislation — including the Infrastructure Investment and Jobs Act and the Inflation Reduction Act — combined direct emissions-reduction tools like clean energy tax credits with a broader set of policies aimed at reshaping the U.S. economy to support long-term decarbonization. At a minimum, this mix of emissions-reducing and transformation-inducing policies promised a valuable test of political economy: whether sustained investments in both clean energy industries and in the most vulnerable households and communities could help build the economic and institutional foundations for a faster and less disruptive energy transition.

    Keep reading...Show less
    Blue