Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate Tech

ChemFinity Raises $7 Million For Critical Mineral Recycling

The Berkeley-based startup has a chemical refining method it hopes can integrate with other existing recycling operations.

Minerals and recycling.
Heatmap Illustration/Getty Images

Critical minerals are essential to the world’s most powerful clean energy technologies, from batteries and electric vehicles to power lines, wind turbines, and solar panels. But the vast majority of the U.S. mineral supply comes from countries such as China, putting supply chains for a whole host of decarbonization technologies at geopolitical and economic risk.

Recycling minerals domestically would go a long way toward solving this problem, which is exactly what ChemFinity, a new startup spun out of the University of California, Berkeley, is trying to do. The company claims its critical mineral recovery system will be three times cheaper, 99% cleaner, and 10 times faster than existing approaches found in the mining and recycling industries. And it just got its first big boost of investor confidence, raising a $7 million seed round led by the climate tech firms At One Ventures and Overture Ventures.

“We basically act like a black box where recyclers or scrap yards or even other refiners can send their feedstock to us,” Adam Uliana, ChemFinity’s co-founder and CEO, told me. “We act like a black box that spits out pure metal.”

It works like this: After a customer sends ChemFinity its feedstock — anything from a circuit board to a catalytic converter to recently mined metal ore will do — the material goes into a chemical solution that dissolves the metals to be recovered, separating them from the solid feedstock. That liquid is then pumped through ChemFinity’s sorbent filters, which capture target minerals “like metal-selective Brita filters.”

The core breakthrough is a new polymer used in these filters that Uliana and his co-founder designed while PhD students in Chemical Engineering at Berkeley. The novel material is made of innumerable mineral-trapping pores smaller than the width of a hair, making it “so porous that 1 gram of the material — like a spoonful of the material — can have the same surface area internally as that of a football field,” Uliana told me. This allows the filters to capture an astonishing amount of metal using very little polymer.

Crucially, the pores are customized for each specific mineral. “You can tune the size of these pores, the shapes of these pores, the chemistries of these pores, and it basically acts like a cage, or like an atomic catcher’s mitt, just for that individual metal,” Uliana explained. After that atomic mitt traps the minerals, a proprietary liquid solution flows through the mineral-filled polymer, stripping off the minerals so that they can be recovered. The company can then reuse the porous sorbent without performance loss.

Uliana told me this method is orders of magnitude more efficient than what exists on the market today — even when compared to the most successful and innovative startups in the space such as Redwood Materials, which recycles lithium-ion battery minerals. That’s because refining typically requires more than a dozen steps and extremely high temperatures, as systems remove impurities one by one, gradually concentrating a mineral until it’s pure enough for commercial viability.

ChemFinity’s process, on the other hand, operates at room temperature. And because its filter is so selective, there are far fewer steps overall. “If we’re able to successfully scale this, it’s really unprecedented unit economics,” Uliana said. He sees potential for other companies like Redwood to adopt the startup’s refining technology as part of a larger operation.

But that’s a ways down the road. ChemFinity isn’t prioritizing battery recycling to begin with, instead focusing on recovering and refining precious metals such as gold, silver, and platinum. These minerals are all over the e-waste from consumer electronics —- things like circuit boards, connectors, memory chips, capacitors, and switches all contain precious metals.

They’re a good group of minerals to go to market with, Uliana explained, both because they’re expensive and difficult to purify. “These metals have extremely high value. So you don’t necessarily need to be quite as large-scale as if you were recovering copper from a copper tailing,” he told me. The flip side, though, is “that these are some of the hardest minerals to separate.” So if ChemFinity proves capable of refining these at scale, it will be a pivotal proof point as the startup looks to apply its process to more than 20 critical minerals across the periodic table.

With this first influx of funding, the company is looking to scale production of its novel sorbent material from a few kilograms to about 100 kilograms per day as it sets up initial pilots. And while ChemFinity’s first customers could range from manufacturers of clean tech to metal traders and jewelers, the company says its materials breakthrough could have applications in an even wider array of sectors, from wastewater treatment to carbon capture and petrochemical processing.

Because if ChemFinity has, as Uliana told me, truly created the “that perfect cage, just for one mineral at a time,” there really is a world of opportunity out there.

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Climate Tech

If Natron Couldn’t Make Batteries in the U.S., Can Anyone?

The failure of the once-promising sodium-ion manufacturer caused a chill among industry observers. But its problems may have been more its own.

An out of business battery pack.
Heatmap Illustration/Natron, Getty Images

When the promising and well funded sodium-ion battery company Natron Energy announced that it was shutting down operations a few weeks ago, early post-mortems pinned its failure on the challenge of finding a viable market for this alternate battery chemistry. Some went so far as to foreclose on the possibility of manufacturing batteries in the U.S. for the time being.

But that’s not the takeaway for many industry insiders — including some who are skeptical of sodium-ion’s market potential. Adrian Yao, for instance, is the founder of the lithium-ion battery company EnPower and current PhD student in materials science and engineering at Stanford. He authored a paper earlier this year outlining the many unresolved hurdles these batteries must clear to compete with lithium-iron-phosphate batteries, also known as LFP. A cheaper, more efficient variant on the standard lithium-ion chemistry, LFP has started to overtake the dominant lithium-ion chemistry in the electric vehicle sector, and is now the dominant technology for energy storage systems.

Keep reading...Show less
Green
Electric Vehicles

For EVs, Charging Speed Is the New Range

They may not refuel as quickly as gas cars, but it’s getting faster all the time to recharge an electric car.

A clock with lightning hands.
Heatmap Illustration/Getty Images

A family of four pulls their Hyundai Ioniq 5 into a roadside stop, plugs in, and sits down to order some food. By the time it arrives, they realize their EV has added enough charge that they can continue their journey. Instead of eating a leisurely meal, they get their grub to go and jump back in the car.

The message of this ad, which ran incessantly on some of my streaming services this summer, is a telling evolution in how EVs are marketed. The game-changing feature is not power or range, but rather charging speed, which gets the EV driver back on the road quickly rather than forcing them to find new and creative ways to kill time until the battery is ready. Marketing now frequently highlights an electric car’s ability to add a whole lot of miles in just 15 to 20 minutes of charge time.

Keep reading...Show less
Yellow
AM Briefing

Mass Firings

On the need for geoengineering, Britain’s retreat, and Biden’s energy chief

The White House.
Heatmap Illustration/Getty Images

Current conditions: Hurricane Gabrielle has strengthened into a Category 4 storm in the Atlantic, bringing hurricane conditions to the Azores before losing wind intensity over Europe • Heavy rains are whipping the eastern U.S. • Typhoon Ragasa downed more than 10,000 trees in Yangjiang, in southern China, before moving on toward Vietnam.

THE TOP FIVE

1. White House orders agencies to prepare for mass firings

The White House Office of Management and Budget directed federal agencies to prepare to reduce personnel during a potential government shutdown, targeting employees who work for programs that are not legally required to continue, Politico reported Wednesday, citing a memo from the agency.

Keep reading...Show less
Blue