You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Canadian wildfire smoke is returning to the United States this week, triggering air quality alerts around the country. But when I open up my weather app and check the weather conditions in some of the cities that the smoke will hit — New York, Pittsburgh, Chicago, Nashville — the word “smoke” doesn’t appear anywhere. Even the air quality alerts don’t mention it.
Smoke exists in a weird place, weather-wise. Our vocabulary for it is entirely divorced from the usual ways we talk about the outside world; our partly cloudies and rains and snows exist alongside temperatures and wind speeds and dew points that, put together, arm us with a crisp picture of the weather before we ever step outside. Describing smoke, on the other hand, sort of depends upon whom you ask.
The National Weather Service recognizes smoke as a type of weather event, but the agency rarely talks about it that way. The NWS’s observations of those smoky June days in Chicago only mention “haze,” a catch-all term that is generally used in the context of transportation (if it’s hazy, visibility is low). Apple Weather and Accuweather don’t have icons for smoke, but Weather Underground does. For the most part, smoke makes itself known through exactly one metric: the Air Quality Index, which was first created to measure something else entirely and is so separated from the weather that it doesn’t even appear on the NWS’s forecasts.
Experts told me this is by design. Air quality and weather exist on separate, if parallel, tracks: Weather data from the NWS turns into the forecasts we see from TV meteorologists and in the weather apps on our phones. The air quality forecasts turn into the number we see in the EPA’s AirNow app.
“Air quality forecasting is a little bit different from weather forecasting,” said Amy Huff, an atmospheric chemist at the National Oceanic and Atmospheric Administration who used to be an air quality forecaster herself. While the NWS issues weather forecasts, Huff told me that air quality forecasts aren’t conducted at the national level, but by state, local, and tribal environmental agencies. Each of those agencies has different pollutants they’re looking out for, and different thresholds at which they’ll send out air quality alerts. “The process is going to vary, because not everyone is requesting the same thing.”
For the most part, this has worked fine. Local sources of pollution historically have the most impact on air quality, and local environmental agencies know which pollutants are the most relevant to their area. California’s environmental protection agency, for example, forecasts for a wide range of pollutants due to a history of serious air quality issues. Maryland, on the other hand, just forecasts for ozone and PM 2.5 particles (which are present in wildfire smoke).
Get one great climate story in your inbox every day:
Where air quality and weather overlap is through the alerts system. If the local agencies think pollution is going to be bad enough to cause harm, they tell the NWS, which will send out the alert through its system — which is how we see those alerts in our phone’s weather apps.
“The people who pay attention to the air quality on a day-to-day basis historically are the sensitive groups. So if you're a parent of an asthmatic child or you're a senior citizen, you have COPD, you are much more susceptible to the impacts of air quality,” Huff said. “But for the general public, air quality is not really something that historically people are aware of, until there's an event like this.”
For a long time, this made a lot of sense. When air quality monitoring and standards were first set up across the country, regulators were reacting to industrial air pollution that has since reduced dramatically. The fact that air quality is usually good enough in most parts of America to go unremarked-on (outside of wildfire-prone states in the west, at least) means that the regulations worked. This is also why people who live on the West Coast are more familiar with the risks of wildfire smoke: It’s a common enough regional phenomenon that locals know how to talk about and deal with it.
What we’re seeing with the Canadian wildfires is more complicated. Measuring and forecasting pollution from localized sources, including wildfires, is relatively easy. But the Canadian wildfire smoke is getting caught up in the same low pressure systems that usually bring rain around to the Midwest and East Coast — in essence creating a smoke storm. Understanding what’s happening inside those storms is difficult.
“Satellites can detect fires, or we get human reports, so we know where they are location-wise and how much smoke is coming out,” said Shobha Kondragunta, who leads the Aerosols and Atmospheric Composition team at NOAA. “But these fires are injecting smoke into the atmosphere, and these satellites don’t provide the vertical structure of the smoke plume.”
In other words: Smoke is easy to see from above, but it’s hard to tell just how high or low in the air the smoke is sitting. Forecasters can use models to try and predict the smoke’s verticality, but they’re not always accurate, in part because fires themselves are so unpredictable.
“You already have the complexity of predicting the weather, but then you have to add on top of that the difficulty of predicting how a fire is going to behave,” Huff told me. “There’s a lot of things that depends on, like the type of fuel that's burning and what the atmosphere is like around the fire. So it gets complicated quickly trying to predict all these things.”
What they can tell with a fairly good amount of certainty is where that smoke will go as it drifts into weather systems that usually pick up more benign passengers, like the water that eventually turns into rainstorms. So we know when smoke is coming, but we don’t know whether it will be low enough to trigger an air quality alert. It’s like seeing the approach of storm clouds without knowing how much rain will fall.
But conditions can change quickly, and the air quality forecasting system isn’t set up to respond as quickly as weather forecasts are. Many environmental agencies don’t have full-time air quality forecasters, so forecasts can sometimes be delayed simply because there’s nobody around to issue a forecast. Air quality alerts can also trigger automatic operational changes like changes to public transit service and optional telework, and those changes take time to implement. To give agencies and companies time to respond, Kondragunta and Huff told me, some regions mandate that air quality forecasts can’t be updated for 24 or even 48 hours after they’re issued.
When smoke does turn hazardous, it’s usually up to the media to communicate the problem — a system that Huff thinks worked quite well during the June smoke events. “It seemed like people were getting the message and were changing their behavior to protect themselves,” she said. And as more Canadian wildfire smoke has made its way to the United States this summer, local environmental agencies seem to be issuing alerts earlier, as we’ve seen this week.
I can’t help wondering, though, if it’s time to make room for a bit of uncertainty in how we talk about smoke, and to let the word replace “haze” when we know it’s coming — even if we don’t quite know how it will affect air quality. Environmental agencies would still be able to take their time forecasting air quality, but at least people would know that smoke was coming even if an alert is delayed. That would allow them to take precautions like packing a mask just in case the air quality does turn bad, just as they might take an umbrella with them if the forecast called for rain.
As my colleague Robinson Meyer has written, the Canadian wildfire smoke could keep coming until October. And while the American wildfire season has been relatively quiet so far, a rash of Southwest heat waves means it could soon pick up. The future is hazy; our weather forecasts don’t have to be.
Read more about the wildfire smoke:
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Though it might not be as comprehensive or as permanent as renewables advocates have feared, it’s also “just the beginning,” the congressman said.
President-elect Donald Trump’s team is drafting an executive order to “halt offshore wind turbine activities” along the East Coast, working with the office of Republican Rep. Jeff Van Drew of New Jersey, the congressman said in a press release from his office Monday afternoon.
“This executive order is just the beginning,” Van Drew said in a statement. “We will fight tooth and nail to prevent this offshore wind catastrophe from wreaking havoc on the hardworking people who call our coastal towns home.”
The announcement indicates that some in the anti-wind space are leaving open the possibility that Trump’s much-hyped offshore wind ban may be less sweeping than initially suggested.
In its press release, Van Drew’s office said the executive order would “lay the groundwork for permanent measures against the projects,” leaving the door open to only a temporary pause on permitting new projects. The congressman had recently told New Jersey reporters that he anticipates only a six-month moratorium on offshore wind.
The release also stated that the “proposed order” is “expected to be finalized within the first few months of the administration,” which is a far cry from Trump’s promise to stop projects on Day 1. If enacted, a pause would essentially halt all U.S. offshore wind development because the sought-after stretches of national coastline are entirely within federal waters.
Whether this is just caution from Van Drew’s people or a true moderation of Trump’s ambition we’ll soon find out. Inauguration Day is in less than a week.
Imagine for a moment that you’re an aerial firefighter pilot. You have one of the most dangerous jobs in the country, and now you’ve been called in to fight the devastating fires burning in Los Angeles County’s famously tricky, hilly terrain. You’re working long hours — not as long as your colleagues on the ground due to flight time limitations, but the maximum scheduling allows — not to mention the added external pressures you’re also facing. Even the incoming president recently wondered aloud why the fires aren’t under control yet and insinuated that it’s your and your colleagues’ fault.
You’re on a sortie, getting ready for a particularly white-knuckle drop at a low altitude in poor visibility conditions when an object catches your eye outside the cockpit window: an authorized drone dangerously close to your wing.
Aerial firefighters don’t have to imagine this terrifying scenario; they’ve lived it. Last week, a drone punched a hole in the wing of a Québécois “Super Scooper” plane that had traveled down from Canada to fight the fires, grounding Palisades firefighting operations for an agonizing half-hour. Thirty minutes might not seem like much, but it is precious time lost when the Santa Ana winds have already curtailed aerial operations.
“I am shocked by what happened in Los Angeles with the drone,” Anna Lau, a forestry communication coordinator with the Montana Department of Natural Resources and Conservation, told me. The Montana DNRC has also had to contend with unauthorized drones grounding its firefighting planes. “We’re following what’s going on very closely, and it’s shocking to us,” Lau went on. Leaving the skies clear so that firefighters can get on with their work “just seems like a no-brainer, especially when people are actively trying to tackle the situation at hand and fighting to save homes, property, and lives.”
Courtesy of U.S. Forest Service
Although the Super Scooper collision was by far the most egregious case, according to authorities there have been at least 40 “incidents involving drones” in the airspace around L.A. since the fires started. (Notably, the Federal Aviation Administration has not granted any waivers for the air space around Palisades, meaning any drone images you see of the region, including on the news, were “probably shot illegally,” Intelligencer reports.) So far, law enforcement has arrested three people connected to drones flying near the L.A. fires, and the FBI is seeking information regarding the Super Scooper collision.
Such a problem is hardly isolated to these fires, though. The Forest Service reports that drones led to the suspension of or interfered with at least 172 fire responses between 2015 and 2020. Some people, including Mike Fraietta, an FAA-certified drone pilot and the founder of the drone-detection company Gargoyle Systems, believe the true number of interferences is much higher — closer to 400.
Law enforcement likes to say that unauthorized drone use falls into three buckets — clueless, criminal, or careless — and Fraietta was inclined to believe that it’s mostly the former in L.A. Hobbyists and other casual drone operators “don’t know the regulations or that this is a danger,” he said. “There’s a lot of ignorance.” To raise awareness, he suggested law enforcement and the media highlight the steep penalties for flying drones in wildfire no-fly zones, which is punishable by up to 12 months in prison or a fine of $75,000.
“What we’re seeing, particularly in California, is TikTok and Instagram influencers trying to get a shot and get likes,” Fraietta conjectured. In the case of the drone that hit the Super Scooper, it “might have been a case of citizen journalism, like, Well, I have the ability to get this shot and share what’s going on.”
Emergency management teams are waking up, too. Many technologies are on the horizon for drone detection, identification, and deflection, including Wi-Fi jamming, which was used to ground climate activists’ drones at Heathrow Airport in 2019. Jamming is less practical in an emergency situation like the one in L.A., though, where lives could be at stake if people can’t communicate.
Still, the fact of the matter is that firefighters waste precious time dealing with drones when there are far more pressing issues that need their attention. Lau, in Montana, described how even just a 12-minute interruption to firefighting efforts can put a community at risk. “The biggest public awareness message we put out is, ‘If you fly, we can’t,’” she said.
Fraietta, though, noted that drone technology could be used positively in the future, including on wildfire detection and monitoring, prescribed burns, and communicating with firefighters or victims on the ground.
“We don’t want to see this turn into the FAA saying, ‘Hey everyone, no more drones in the United States because of this incident,’” Fraietta said. “You don’t shut down I-95 because a few people are running drugs up and down it, right? Drones are going to be super beneficial to the country long term.”
But critically, in the case of a wildfire, such tools belong in the right hands — not the hands of your neighbor who got a DJI Mini 3 for Christmas. “Their one shot isn’t worth it,” Lau said.
Editor’s note: This story has been updated to reflect that the Québécois firefighting planes are called Super Scoopers, not super soakers.
Plus 3 more outstanding questions about this ongoing emergency.
As Los Angeles continued to battle multiple big blazes ripping through some of the most beloved (and expensive) areas of the city on Friday, a question lingered in the background: What caused the fires in the first place?
Though fires are less common in California during this time of the year, they aren’t unheard of. In early December 2017, power lines sparked the Thomas Fire near Ventura, California, which burned through to mid-January. At the time it was the largest fire in the state since at least the 1930s. Now it’s the ninth-largest. Although that fire was in a more rural area, it ignited for some of the same reasons we’re seeing fires this week.
Read on for everything we know so far about how the fires started.
Six major fires started during the Santa Ana wind event last week:
Officials are investigating the cause of the fires and have not made any public statements yet. Early eyewitness accounts suggest that the Eaton Fire may have started at the base of a transmission tower owned by Southern California Edison. So far, the company has maintained that an analysis of its equipment showed “no interruptions or electrical or operational anomalies until more than one hour after the reported start time of the fire.” A Washington Post investigation found that the Palisades Fire could have risen from the remnants of a fire that burned on New Year’s Eve and reignited.
On Thursday morning, Edward Nordskog, a retired fire investigator from the Los Angeles Sheriff’s Department, told me it was unlikely they had even begun looking into the root of the biggest and most destructive of the fires in the Pacific Palisades. “They don't start an investigation until it's safe to go into the area where the fire started, and it just hasn't been safe until probably today,” he said.
It can take years to determine the cause of a fire. Investigators did not pinpoint the cause of the Thomas Fire until March 2019, more than two years after it started.
But Nordskog doesn’t think it will take very long this time. It’s easier to narrow down the possibilities for an urban fire because there are typically both witnesses and surveillance footage, he told me. He said the most common causes of wildfires in Los Angeles are power lines and those started by unhoused people. They can also be caused by sparks from vehicles or equipment.
At more than 40,000 acres burned total, these fires are unlikely to make the charts for the largest in California history. But because they are burning in urban, densely populated, and expensive areas, they could be some of the most devastating. With an estimated 9,000 structures damaged as of Friday morning, the Eaton and Palisades fires are likely to make the list for most destructive wildfire events in the state.
And they will certainly be at the top for costliest. The Palisades Fire has already been declared a likely contender for the most expensive wildfire in U.S. history. It has destroyed more than 5,000 structures in some of the most expensive zip codes in the country. Between that and the Eaton Fire, Accuweather estimates the damages could reach $57 billion.
While we don’t know the root causes of the ignitions, several factors came together to create perfect fire conditions in Southern California this week.
First, there’s the Santa Ana winds, an annual phenomenon in Southern California, when very dry, high-pressure air gets trapped in the Great Basin and begins escaping westward through mountain passes to lower-pressure areas along the coast. Most of the time, the wind in Los Angeles blows eastward from the ocean, but during a Santa Ana event, it changes direction, picking up speed as it rushes toward the sea.
Jon Keeley, a research scientist with the US Geological Survey and an adjunct professor at the University of California, Los Angeles told me that Santa Ana winds typically blow at maybe 30 to 40 miles per hour, while the winds this week hit upwards of 60 to 70 miles per hour. “More severe than is normal, but not unique,” he said. “We had similar severe winds in 2017 with the Thomas Fire.”
Second, Southern California is currently in the midst of extreme drought. Winter is typically a rainier season, but Los Angeles has seen less than half an inch of rain since July. That means that all the shrubland vegetation in the area is bone-dry. Again, Keeley said, this was not usual, but not unique. Some years are drier than others.
These fires were also not a question of fuel management, Keeley told me. “The fuels are not really the issue in these big fires. It's the extreme winds,” he said. “You can do prescription burning in chaparral and have essentially no impact on Santa Ana wind-driven fires.” As far as he can tell, based on information from CalFire, the Eaton Fire started on an urban street.
While it’s likely that climate change played a role in amplifying the drought, it’s hard to say how big a factor it was. Patrick Brown, a climate scientist at the Breakthrough Institute and adjunct professor at Johns Hopkins University, published a long post on X outlining the factors contributing to the fires, including a chart of historic rainfall during the winter in Los Angeles that shows oscillations between wet and dry years over the past eight decades.
But climate change is expected to make dry years drier and wet years wetter, creating a “hydroclimate whiplash,” as Daniel Swain, a pre-eminent expert on climate change and weather in California puts it. In a thread on Bluesky, Swain wrote that “in 2024, Southern California experienced an exceptional episode of wet-to-dry hydroclimate whiplash.” Last year’s rainy winter fostered abundant plant growth, and the proceeding dryness primed the vegetation for fire.
Get our best story delivered to your inbox every day:
Editor’s note: This story was last update on Monday, January 13, at 10:00 a.m. ET.