You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
And make a meaningful difference in the fight against climate change, while you’re at it.
Welcome to
Decarbonize Your Life, Heatmap’s special report that aims to help you make decisions in your own life that are better for the climate, better for you, and better for the world we all live in.
This is our attempt, in other words, to assist you in living something like a normal life while also making progress in the fight against climate change. That means making smarter and more informed decisions about how climate change affects your life — and about how your life affects climate change. The point is not what you shouldn’t do (although there is some of that). It’s about what you should do to exert the most leverage on the global economic system and, hopefully, nudge things toward decarbonization just a little bit faster.
We certainly think we’ve hit upon a better way to think about climate action, but you don’t have to take our word for it. Keep reading here for more on how (and why) we think about decarbonizing your life — or just skip ahead to our recommendations.
At this point, everyone knows that individual action won’t solve climate change. Didn’t BP invent the term “carbon footprint” in 2004 so as to distract from fossil fuel companies’ guilt and greed?
As the journalist Rachel Cohen has observed, around the 2010s it became unpopular to believe that individual action could help address any major social problem. And sure, it’s true that only collective action — achieved through something like the political system — will let us eventually manage climate change at the global level.
But at Heatmap, we believe that that isn’t quite the whole story. Just because politics and collective action are the only things that can solve climate change doesn’t mean they are the only things that can do something about climate change. What’s more, the problem of carbon emissions — and the stickiness of fossil fuels — emerges from a tight knot of chemical efficiency, political power, and logistical lock-in. If individual consumers can pry at that knot, can make it a little easier to imagine a post-fossil energy system, then they can realize a zero-carbon world a little sooner.
That way of thinking about climate change, however, requires us to think somewhat differently about how to take individual action in the first place. Often, when you read about how to fight climate change as a person or family, the advice assumes that you want to reduce your responsibility for climate change. You’re advised to turn down the thermostat in the winter (or turn it up in the summer), shut off the lights when you leave the room, and compost.
This advice assumes that the reader’s goal is to personally exculpate themselves or their family from global warming — and to assuage their own guilt for participating in a polluting system.
At its most sophisticated, this advice can be valuable insofar as it can help you cut your marginal carbon emissions. The most precise versions of these recommendations often speak in terms of emissions abatement: They might advise, say, that switching to a plant-based diet could save 0.8 tons of carbon emissions a year.
You’ll see some of that kind of recommendation in this project: It’s a valid way to think about individual actions, and it works especially well in some domains, such as food. But it’s not, in our view, the best way of thinking about individual action to fight climate change.
That’s because it is essentially impossible to exculpate yourself from climate change. That’s not being fatalistic. It’s just a fact. Simply by living in the year 2024, your life is enmeshed in a sprawling economic network that devours fossil fuels as its great lifestyle subsidy. Look out the nearest window — do you see cars, asphalt, power lines, sidewalks, buildings? Do you see steel-framed structures or a plane cutting its way across the sky? None of those things could exist without fossil fuels. And unless you’re looking into wild and unkempt wilderness (if so, lucky you!), then even the plants and grass out your window, the food in your pantry, grew up on fertilizer that was manufactured with fossil fuels. If you live in a rich or middle-income country, buy goods and clothes, eat food, use electricity, or even leave your house by any means other than walking, then you are responsible, to some degree, for climate change.
Trying to zero out your personal carbon footprint, in other words, is a fool’s errand. What you can do, however, is maximize the degree to which you’re building a new, post-fossil-fuel world.
To be clear, we don’t mean that in a woo-woo way. We’re not saying you should imagine a kumbaya world where we all hold hands and take public transit to the nearest all-volunteer renewable-powered co-op. We’re saying that there are real, already existing products and technologies that must become a bigger part of today’s built environment if we are to have any hope of solving climate change. What you can do — and what we recommend in this guide — is help take those technologies from the fringes into the center of everyday life. If you want to decarbonize the whole planet, you should think about decarbonizing your life.
What we have tried to do here is not focus on how to reduce your marginal emissions — the number of tons that you, personally, are responsible for pumping into the environment. Instead, we’re trying to help you understand how to focus on high-leverage actions — the kinds of choices that can drive change throughout the energy system. That’s why in this guide you’ll find advice on how to switch to an EV, buy zero-carbon electricity, make your home more energy-efficient, and electrify your appliances. We also recommend these in the order that we think they’ll be most effective — to learn more about how we reached that ranking, read about our methodology here.
The kind of shifts we advise in this guide, to be clear, won’t solve climate change on their own. But they will help you alter the systems in which you’re enmeshed, and they’ll make you a smarter climate citizen.
Flying is maybe the trickiest climate question. Although it makes up a relatively small share of both global and U.S. emissions — about 2% each — it is among the most climate-polluting activities many Americans will do on a minute-to-minute basis. (Although if you live in a dense and walkable city like New York, San Francisco, or Washington, D.C., but travel frequently, then flying may make up a large share of your emissions.) It is probably also the most difficult “everyday” activity to decarbonize.
There is no practical substitute for long-distance or transcontinental flying. Today, only one ocean liner regularly makes the journey from New York to London, and it departs from each city only once a month. And unless you hitch a ride on a container ship, there is literally no slow boat to China. If you want to travel abroad, then you must fly. Even within the United States, there is essentially no substitute for long-distance flights. Europeans and East Asians can rely on superior long-distance rail systems, but America’s extensive road network, unusually high infrastructure costs, sclerotic rail agency, and chronic lack of transit investment mean that Americans are stuck with flying or driving.
Commercial aviation is a miracle of the modern world: It facilitates a level of global connectedness and international communication that earlier generations could only dream of. Affordable and long-distance passenger flight is, in many ways, the crowning achievement of our highly technical society, and it allows for the amount of global immigration and mass tourism that defines the modern world. (If you have a private jet, of course, stop using it. Because so few people take each flight, private jets are uniquely destructive for the climate, emitting every seven hours what the average American emits all year.)
Fossil fuels’ weight and energy density is ideal for flying. There is, right now, no drop-in replacement for jet fuel that is being produced at scale. So while we have some advice about how to mitigate your climate pollution from flying, it won’t make up a large part of this guide. Reduce the number of flights you take if you can, sure, and take more direct flights if possible. But the truth is that for now, there are smarter and more high-leverage decisions that you can make.
Only decarbonization can get us closer to tackling climate change once and for all. Our belief at Heatmap is that if you care about climate change, then decarbonization — and not mere emissions reductions — should be your guiding star. If you want to follow that star, then read on.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The foreign entities of concern rules in the One Big Beautiful Bill would place gigantic new burdens on developers.
Trump campaigned on cutting red tape for energy development. At the start of his second term, he signed an executive order titled, “Unleashing Prosperity Through Deregulation,” promising to kill 10 regulations for each new one he enacted.
The order deems federal regulations an “ever-expanding morass” that “imposes massive costs on the lives of millions of Americans, creates a substantial restraint on our economic growth and ability to build and innovate, and hampers our global competitiveness.” It goes on to say that these regulations “are often difficult for the average person or business to understand,” that they are so complicated that they ultimately increase the cost of compliance, as well as the risks of non-compliance.
Reading this now, the passage echoes the comments I’ve heard from industry groups and tax law experts describing the incredibly complex foreign entities of concern rules that Congress — with the full-throated backing of the Trump administration — is about to impose on clean energy projects and manufacturers. Under the One Big Beautiful Bill Act, wind and solar, as well as utility-scale energy storage, geothermal, nuclear, and all kinds of manufacturing projects will have to abide by restrictions on their Chinese material inputs and contractual or financial ties with Chinese entities in order to qualify for tax credits.
“Foreign entity of concern” is a U.S. government term referring to entities that are “owned by, controlled by, or subject to the jurisdiction or direction of” any of four countries — Russia, Iran, North Korea, and most importantly for clean energy technology, China.
Trump’s tax bill requires companies to meet increasingly strict limits on the amount of material from China they use in their projects and products. A battery factory starting production next year, for example, would have to ensure that 60% of the value of the materials that make up its products have no connection to China. By 2030, the threshold would rise to 85%. The bill lays out similar benchmarks and timelines for clean electricity projects, as well as other kinds of manufacturing.
But how companies should calculate these percentages is not self-evident. The bill also forbids companies from collecting the tax credits if they have business relationships with “specified foreign entities” or “foreign-influenced entities,” terms with complicated definitions that will likely require guidance from the Treasury for companies to be sure they pass the test.
Regulatory uncertainty could stifle development until further guidance is released, but how long that takes will depend on if and when the Trump administration prioritizes getting it done. The One Big Beautiful Bill Act contains a lot of other new tax-related provisions that were central to the Trump campaign, including a tax exemption for tips, which are likely much higher on the department’s to-do list.
Tax credit implementation was a top priority for the Biden administration, and even with much higher staffing levels than the department currently has, it took the Treasury 18 months to publish initial guidance on foreign entities of concern rules for the Inflation Reduction Act’s electric vehicle tax credit. “These things are so unbelievably complicated,” Rachel McCleery, a former senior advisor at the Treasury under Biden, told me.
McCleery questioned whether larger, publicly-owned companies would be able to proceed with major investments in things like battery manufacturing plants until that guidance is out. She gave the example of a company planning to pump out 100,000 batteries per year and claim the per-kilowatt-hour advanced manufacturing tax credit. “That’s going to look like a pretty big number in claims, so you have to be able to confidently and assuredly tell your shareholder, Yep, we’re good, we qualify, and that requires a certification” by a tax counsel, she said. To McCleery, there’s an open question as to whether any tax counsel “would even provide a tax opinion for publicly-traded companies to claim credits of this size without guidance.”
John Cornwell, the director of policy at the Good Energy Collective, which conducts research and advocacy for nuclear power, echoed McCleery’s concerns. “Without very clear guidelines from the Treasury and IRS, until those guidelines are in place, that is going to restrict financing and investment,” Cornwell told me.
Understanding what the law requires will be the first challenge. But following it will involve tracking down supply chain data that may not exist, finding alternative suppliers that may not be able to fill the demand, and establishing extensive documentation of the origins of components sourced through webs of suppliers, sub-suppliers, and materials processors.
The Good Energy Collective put out an issue brief this week describing the myriad hurdles nuclear developers will face in trying to adhere to the tax credit rules. Nuclear plants contain thousands of components, and documenting the origin of everything from “steam generators to smaller items like specialized fasteners, gaskets, and electronic components will introduce substantial and costly administrative burdens,” it says. Additionally the critical minerals used in nuclear projects “often pass through multiple processing stages across different countries before final assembly,” and there are no established industry standards for supply chain documentation.
Beyond the documentation headache, even just finding the materials could be an issue. China dominates the market for specialized nuclear-grade materials manufacturing and precision component fabrication, the report says, and alternative suppliers are likely to charge premiums. Establishing new supply chains will take years, but Trump’s bill will begin enforcing the sourcing rules in 2026. The rules will prove even more difficult for companies trying to build first-of-a-kind advanced nuclear projects, as those rely on more highly specialized supply chains dominated by China.
These challenges may be surmountable, but that will depend, again, on what the Treasury decides, and when. The Department’s guidance could limit the types of components companies have to account for and simplify the documentation process, or it could not. But while companies wait for certainty, they may also be racking up interest. “The longer there are delays, that can have a substantial risk of project success,” Cornwell said.
And companies don’t have forever. Each of the credits comes with a phase-out schedule. Wind manufacturers can only claim the credits until 2028. Other manufacturers have until 2030. Credits for clean power projects will start to phase down in 2034. “Given the fact that a lot of these credits start lapsing in the next few years, there’s a very good chance that, because guidance has not yet come out, you’re actually looking at a much smaller time frame than than what is listed in the bill,” Skip Estes, the government affairs director for Securing America’s Energy Future, or SAFE, told me.
Another issue SAFE has raised is that the way these rules are set up, the foreign sourcing requirements will get more expensive and difficult to comply with as the value of the tax credits goes down. “Our concern is that that’s going to encourage companies to forego the credit altogether and just continue buying from the lowest common denominator, which is typically a Chinese state-owned or -influenced monopoly,” Estes said.
McCleery had another prediction — the regulations will be so burdensome that companies will simply set up shop elsewhere. “I think every industry will certainly be rethinking their future U.S. investments, right? They’ll go overseas, they’ll go to Canada, which dumped a ton of carrots and sticks into industry after we passed the IRA,” she said.
“The irony is that Republicans have historically been the party of deregulation, creating business friendly environments. This is completely opposite, right?”
On the budget debate, MethaneSAT’s untimely demise, and Nvidia
Current conditions: The northwestern U.S. faces “above average significant wildfire potential” for July • A month’s worth of rain fell over just 12 hours in China’s Hubei province, forcing evacuations • The top floor of the Eiffel Tower is closed today due to extreme heat.
The Senate finally passed its version of Trump’s One Big Beautiful Bill Act Tuesday morning, sending the tax package back to the House in hopes of delivering it to Trump by the July 4 holiday. The excise tax on renewables that had been stuffed into the bill over the weekend was removed after Senator Lisa Murkowski of Alaska struck a deal with the Senate leadership designed to secure her vote. In her piece examining exactly what’s in the bill, Heatmap’s Emily Pontecorvo explains that even without the excise tax, the bill would “gum up the works for clean energy projects across the spectrum due to new phase-out schedules for tax credits and fast-approaching deadlines to meet complex foreign sourcing rules.” Debate on the legislation begins on the House floor today. House Speaker Mike Johnson has said he doesn’t like the legislation, and a handful of other Republicans have already signaled they won’t vote for it.
The Environmental Protection Agency this week sent the White House a proposal that is expected to severely weaken the federal government’s ability to rein in planet-warming pollution. Details of the proposal, titled “Greenhouse Gas Endangerment Finding and Motor Vehicle Reconsideration,” aren’t clear yet, but EPA Administrator Lee Zeldin has reportedly been urging the Trump administration to repeal the 2009 “endangerment finding,” which explicitly identified greenhouse gases as a public health threat and gave the EPA the authority to regulate them. Striking down that finding would “free EPA from the legal obligation to regulate climate pollution from most sources, including power plants, cars and trucks, and virtually any other source,” wrote Alex Guillén at Politico. The title of the proposal suggests it aims to roll back EPA tailpipe emissions standards, as well.
Get Heatmap AM directly in your inbox every morning:
So long, MethaneSAT, we hardly knew ye. The Environmental Defense Fund said Tuesday that it had lost contact with its $88 million methane-detecting satellite, and that the spacecraft was “likely not recoverable.” The team is still trying to figure out exactly what happened. MethaneSAT launched into orbit last March and was collecting data about methane pollution from global fossil fuel infrastructure. “Thanks to MethaneSAT, we have gained critical insight about the distribution and volume of methane being released from oil and gas production areas,” EDF said. “We have also developed an unprecedented capability to interpret the measurements from space and translate them into volumes of methane released. This capacity will be valuable to other missions.“ The good news is that MethaneSAT was far from the only methane-tracking satellite in orbit.
Nvidia is backing a D.C.-based startup called Emerald AI that “enables AI data centers to flexibly adjust their power consumption from the electricity grid on demand.” Its goal is to make the grid more reliable while still meeting the growing energy demands of AI computing. The startup emerged from stealth this week with a $24.5 million seed round led by Radical Ventures and including funding from Nvidia. Emerald AI’s platform “acts as a smart mediator between the grid and a data center,” Nvidia explains. A field test of the software during a grid stress event in Phoenix, Arizona, demonstrated a 25% reduction in the energy consumption of AI workloads over three hours. “Renewable energy, which is intermittent and variable, is easier to add to a grid if that grid has lots of shock absorbers that can shift with changes in power supply,” said Ayse Coskun, Emerald AI’s chief scientist and a professor at Boston University. “Data centers can become some of those shock absorbers.”
In case you missed it: California Governor Gavin Newsom on Monday rolled back the state’s landmark Environmental Quality Act. The law, which had been in place since 1970, required environmental reviews for construction projects and had become a target for those looking to alleviate the state’s housing crisis. The change “means most urban developers will no longer have to study, predict, and mitigate the ways that new housing might affect local traffic, air pollution, flora and fauna, noise levels, groundwater quality, and objects of historic or archeological significance,” explainedCal Matters. On the other hand, it could also mean that much-needed housing projects get approved more quickly.
Tesla is expected to report its Q2 deliveries today, and analysts are projecting a year-over-year drop somewhere from 11% to 13%.
Jesse teaches Rob the basics of energy, power, and what it all has to do with the grid.
What is the difference between energy and power? How does the power grid work? And what’s the difference between a megawatt and a megawatt-hour?
On this week’s episode, we answer those questions and many, many more. This is the start of a new series: Shift Key Summer School. It’s a series of introductory “lecture conversations” meant to cover the basics of energy and the power grid for listeners of every experience level and background. In less than an hour, we try to get you up to speed on how to think about energy, power, horsepower, volts, amps, and what uses (approximately) 1 watt-hour, 1 kilowatt-hour, 1 megawatt-hour, and 1 gigawatt-hour.
Shift Key is hosted by Jesse Jenkins, a professor of energy systems engineering at Princeton University, and Robinson Meyer, Heatmap’s executive editor.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, YouTube, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Jesse Jenkins: Let’s start with the joule. The joule is the SI unit for both work and energy. And the basic definition of energy is the ability to do work — not work in a job, but like work in the physics sense, meaning we are moving or displacing an object around. So a joule is defined as 1 newton-meter, among other things. It has an electrical equivalent, too. A newton is a unit of force, and force is accelerating a mass, from basic physics, over some distance in this case. So 1 meter of distance.
So we can break that down further, right? And we can describe the newton as 1 kilogram accelerated at 1 meter per second, squared. And then the work part is over a distance of one meter. So that kind of gives us a sense of something you feel. A kilogram, right, that’s 2.2 pounds. I don’t know, it’s like … I’m trying to think of something in my life that weighs a kilogram. Rob, can you think of something? A couple pounds of food, I guess. A liter of water weighs a kilogram by definition, as well. So if you’ve got like a liter bottle of soda, there’s your kilogram.
Then I want to move it over a meter. So I have a distance I’m displacing it. And then the question is, how fast do I want to do that? How quickly do I want to accelerate that movement? And that’s the acceleration part. And so from there, you kind of get a physical sense of this. If something requires more energy, if I’m moving more mass around, or if I’m moving that mass over a longer distance — 1 meter versus 100 meters versus a kilometer, right? — or if I want to accelerate that mass faster over that distance, so zero to 60 in three seconds versus zero to 60 in 10 seconds in your car, that’s going to take more energy.
Robinson Meyer: I am looking up what weighs … Oh, here we go: A 13-inch MacBook Air weighs about, a little more than a kilogram.
Jenkins: So your laptop. If you want to throw your laptop over a meter, accelerating at a pace of 1 meter per second, squared …
Meyer: That’s about a joule.
Jenkins: … that’s about a joule.
Mentioned:
This episode of Shift Key is sponsored by …
The Yale Center for Business and the Environment’s online clean energy programs equip you with tangible skills and powerful networks—and you can continue working while learning. In just five hours a week, propel your career and make a difference.
Music for Shift Key is by Adam Kromelow.