You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The decarbonization benefits abound.
Electric vehicles? Really?
Is it really true that Heatmap looked at every way that you can decarbonize your life, meditated upon the politics, did the math, and concluded … that you should buy an EV? Are EVs really that important to fighting climate change?
You’ll find more thorough answers to all those questions throughout Decarbonize Your Life (plus our guide to buying an EV), but the short answer is: Yes. If you really need a car, then switching from a gas car to an electric vehicle (or at least a plug-in hybrid) is the most important step you can take to combat climate change. And it’s not only good for your personal carbon footprint, it’s good for the entire energy system.
Here is why we make that recommendation — and why you should trust us:
The best reason to use an electric vehicle is the most straightforward one: Driving an EV produces fewer greenhouse gases than driving a gasoline- or diesel-burning car. The Department of Energy estimates that the average EV operating in the U.S. produces 2,727 pounds of carbon dioxide pollution each year, while the average gasoline-burning car emits 12,594 pounds of carbon dioxide. Even a conventional hybrid vehicle — like a Toyota Prius — emits 6,800 pounds of CO2, or roughly 2.5 times as much as an EV.
These gains hold almost regardless of how you analyze the question. Even in states where coal makes up a large share of the power grid — such as West Virginia, Wyoming, or Missouri — EVs produce half as much CO2 as gasoline vehicles, according to the DOE. That’s because EVs are much more energy efficient than internal combustion vehicles. So even though coal is a dirtier energy source than gasoline or diesel, EVs need to use far less of it (in the form of electricity) to drive an additional mile.
EVs retain this carbon advantage even when you take into account their full “lifecycle” emissions — the cost of mining minerals, refining them, building a battery, and shipping a vehicle to its final destination. Across the full lifetime of a vehicle, EVs will release 57% to 68% less climate pollution than internal-combustion cars in the United States, according to a landmark analysis from the International Council on Clean Transportation. (As the publication Carbon Brief has shown, many analyses of EVs versus gas cars fail to take into account the full lifecycle emissions of the fossil-fuel system: the carbon pollution produced by extracting, refining, and transporting a gallon of gasoline.)
Even if you only care about emissions math, two more important reasons justify switching to an EV.
First, when you switch to an EV, you cut down enormously on the marginal environmental cost of driving an additional mile. Most of an EV’s environmental harm is “front-loaded” in its lifetime; that is, it is associated with the cost of producing and selling that vehicle. (Most electronics, including smartphones and laptops, have a similarly front-loaded carbon cost.)
But the carbon emissions of driving an additional mile are relatively low. In other words, converting an additional kilowatt of electricity into a mile on the road is relatively benign for the climate.
That’s not the case for an internal combustion vehicle. In a conventional gasoline- or diesel-powered car, every additional mile you drive requires you to burn more fossil fuels.
Don’t overthink it: There is no way to operate a gasoline or diesel car without burning more fossil fuels. Conventional ICE cars are machines that turn fossil fuels into (1) miles on the road and (2) greenhouse gas pollution. This means that — importantly — using an internal combustion vehicle, or even a conventional hybrid vehicle, will never be climate-friendly.
That’s why the Intergovernmental Panel on Climate Change has concluded that switching to an electrified transportation system — in other words, switching from gas cars to EVs — is “likely crucial” for cutting climate pollution and meeting the Paris Agreement goals. As the International Council on Clean Transportation concluded recently, “There is no realistic pathway for deep decarbonization of combustion engine vehicles.”
This calculus is likely to improve over time. Over the past decade, the U.S. power grid’s climate pollution has plunged while emissions from the transportation sector have slightly risen; we anticipate that, over the next decade, the U.S. power grid’s greenhouse gas emissions are likely to decline at least moderately. Energy experts also expect more renewables to get built, and that natural gas will continue to drive coal off of the grid. These changes mean that the per-mile cost of driving an EV will likely fall. (If you’re in the market for an EV, Heatmap is here to guide you.)
When you switch to an EV, you do something else, too — something that may sound self-evident but is actually quite important: You increase demand for EVs and for the EV ecosystem.
To be painfully direct about why this is important, this means that you stop spending so much money into the gasoline-powered driving system — the network of car dealers, gas stations, and oil companies that subsist on fossil fuels — and begin paying for products and services from the car dealerships, charging stations, and automakers who have invested in the new, low-carbon future.
This is more important than it may seem at first. In the United States, automakers have struggled to ramp up their EV production in part because consumers haven’t been buying their EVs. EVs are a manufactured good, and the world is betting on their continued technological improvement. The more EVs get made at a company or industry level, the cheaper they should get. When you buy an EV, you prime the pump for further improvements in that manufacturing chain.
Under the Biden administration, the Environmental Protection Agency has adopted rules that could make EVs more than half of all new cars sold by 2032. But those rules are somewhat flexible — automakers could also meet them by selling a lot of conventional and plug-in hybrids — and they are under legal threat. If Donald Trump wins this year’s presidential election, then he will almost certainly roll them back, much as he reversed the Obama administration’s less ambitious car rules. And even if Kamala Harris wins, then the zealously conservative Supreme Court could easily throw out the rules.
Under most future scenarios, in other words, American consumers will have considerable power over how rapidly the country switches to electric vehicles. Even in a world where the federal government keeps subsidizing EV manufacturing and offers a $7,500 tax credit for EV buyers, the country’s transition to EVs will still depend on ordinary American families deciding to make a change and buy the cars.
So if you want to decarbonize your life, switching to an EV — provided that you drive enough for it to make sense — is one of the most important steps that you can take.
When you switch to an electric vehicle, you are doing several things. First, you are cutting off a source of demand for the oil industry. Second, you are creating a new source of demand for the EV industry. Third, you are generating new demand for the companies and infrastructure — such as charging stations — that will be needed for the entire transition.
Buying an EV is a climate decision that makes sense if you want to cut your carbon footprint and if you want to change the American energy system. That’s why it’s Heatmap’s No. 1 recommendation for how to decarbonize your life.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Rob and Jesse revisit the basics of the ultra-clogged electricity interconnection queue.
Shift Key is off for Labor Day, so we’re running this classic episode.
The power grid is straining as new data centers, factories, and electric vehicles come online. For the first time in 15 years, American electricity demand is rising again.
The easiest option is to meet that new demand with new supply — new power plants. But in many parts of the country, it can take years to hook up new wind, solar, and batteries to the grid. The reason why is a clogged and broken system called the interconnection queue.
On this week’s episode of Shift Key, which first aired in 2024, Jesse and Rob speak with two experts about how to understand — and how to fix — what is perhaps the biggest obstacle to deploying more renewables on the U.S. power grid.
Tyler Norris is a doctoral student at Duke University’s Nicholas School of the Environment. He was formerly vice president of development at Cypress Creek Renewables, and he served on North Carolina Governor Roy Cooper’s Carbon Policy Working Group. Claire Wayner is a senior associate at RMI’s carbon-free electricity program, where she works on the clean and competitive grids team.
Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, YouTube, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: So, Tyler, you’ve been proposing on Twitter — or on X, I suppose — kind of one weird trick that would improve the interconnection process and make us deploy a lot more clean energy faster and save people the billions of dollars we were just talking about.
What is it? Please enlighten us.
Tyler Norris: So as mentioned, Texas is adding clean electricity much faster than every other market — and not just clean electricity, every form of generation capacity you can imagine. And the reason they’re able to do that is because they’re not subjecting those generators to all those severe conditions that I mentioned earlier and then allocating the cost of upgrading the grid to those generators upfront.
Instead, they’re attempting to proactively plan the system in response to generators that show up and send that market signal regarding where there may be opportunities to upgrade the grid. And it works, of course, because Texas is an energy-only electricity market, so they’re not studying the projects for their capacity value, so there’s some simplifications that make it more viable.
That said, even outside ERCOT, there’s a lot we could do to make this what we call energy-only interconnection option more viable for generators, and I think it could offer a lot of benefits. It’s much lower cost. It’s much faster to get projects online. It can contribute to production cost savings. It also provides a reserve of generators that can be upgraded to capacity resources if and when network capacity becomes available. And it can actually contribute to reliability and reduce the risk of shedding load during reliability events, even though they’re not formally qualified as what we call capacity resources
Meyer: Can you give us an example of what you mean? What is ERCOT actually doing here?
Norris: So it means that the Texas grid operator is willing to curtail generators as necessary to avoid any reliability impacts on the system. And so they’re basically, they’re managing the system in real time. And this does lead to a higher rate of curtailment on average for especially some of these renewable generators. And so that’s an important dimension of it. But there’s a lot of nuance there, too. Even the capacity resources outside of Texas can be curtailed during congestion events.
So they’re not assigning grid upgrades to the projects upfront. They’re instead looking at where the generators show up and connect to the system and then identifying the most valuable grid upgrades from a cost and a reliability standpoint and prioritizing those.
Mentioned:
Tyler’s study on “energy only” interconnection rules
Matthew Zeitlin on the big problems with PJM — and on Tyler’s research into flexible loads
FERC Order 2023 on Improvements to Generator Interconnection Procedures and Agreements
Advanced Energy United report on “Unlocking America's Energy: How to Efficiently Connect New Generation to the Grid
NRDC: “PJM’s Capacity Auction: The Real Story”
Rob’s downshift; Jesse’s upshift.
This episode of Shift Key is sponsored by …
Accelerate your clean energy career with Yale’s online certificate programs. Gain real-world skills, build strong networks, and keep working while you learn. Explore the year-long Financing and Deploying Clean Energy program or the 5-month Clean and Equitable Energy Development program. Learn more here.
Join clean energy leaders at RE+ 25, September 8–11 in Las Vegas. Explore opportunities to meet rising energy demand with the latest in solar, storage, EVs, and more at North America’s largest energy event. Save 20% with code HEATMAP20 at re-plus.com.
Music for Shift Key is by Adam Kromelow.
On Trump’s latest wind target, new critical minerals, and methane maps
Current conditions: In the Atlantic, Tropical Storm Fernand is heading northward toward Bermuda • In the Pacific, Tropic Storm Juliette is active about 520 miles southwest of Baja California, with winds of up to 65 miles per hour • Temperatures are surging past 100 degrees Fahrenheit in South Korea.
Renewable investments dim in the U.S.Brandon Bell/Getty Images
In the United States, investments in renewable energy fell by 36% — equal to $20.5 billion — compared to the second half of last year, according to new data from the consultancy BloombergNEF. The drop “reflects a rush of construction toward the end of last year as developers sought to lock in lucrative tax credits, followed by a sharp drop this year as policy conditions worsened,” the report stated. The European Union, on the other hand, ratcheted up spending on renewables by 63% — or nearly $30 billion — in the first half of this year compared to the second half of 2024. Drawing an even sharper contrast, investments into both onshore and offshore wind made up the bulk of the growth in Europe as the Trump administration has placed the harshest restrictions on wind turbines of any other energy source.
Overall, global investment into clean energy rose 10% in the first half of 2025 compared to the same period in 2024. That included a worldwide increase in wind investments of 24% and a jump in new solar investment of 5%.
The U.S. Geological Survey released its latest list of critical minerals on Monday. The report highlights some shifts in U.S. production and concerns in Washington over potential supply disruptions from supposedly friendly powers. While the analysis identifies China as the biggest threat to the U.S. economy in 46 of the 84 commodities studied, “Canada and South Africa both show up as potential points of disruption across eight imports,” Farrell Gregory, a non-resident fellow at the Foundation for American Innovation, wrote on X. “Interestingly, Canada is identified as having a high-risk for disruption, more than South Africa and Russia.”
There were new bright spots in the report. The USGS removed tellurium, a silvery brittle metal used in semiconductors, from the list of risk resources it was added to in 2022. That’s because a new Rio Tinto mine transformed the U.S. from an importer into a net exporter in recent years.
It could have been worse. The Treasury guidance issued Friday dictating what wind and solar projects will be eligible for federal tax credits could have effectively banned developers from tapping the write-offs set to start phasing out next July. In the weeks before the Internal Revenue Service released its rules, GOP lawmakers from states with thriving wind and solar industries, including Senators John Curtis of Utah and Chuck Grassley of Iowa, publicly lobbied for laxer rules as part of what they pitched as the all-of-the-above “energy dominance” strategy on which Trump campaigned. Grassley went so far as to block two of Trump’s Treasury nominees “until I can be certain that such rules and regulations adhere to the law and congressional intent,” as Heatmap’s Matthew Zeitlin covered earlier in August.
Since the guidance came out on Friday, both Grassley and Curtis have put out positive statements backing the plan. “I appreciate the work of Secretary [Scott] Bessent and his staff in balancing various concerns and perspectives to address the President’s executive order on wind and solar projects,” Curtis said, according to E&E News. Calling renewables “an essential part of the ‘all of the above’ energy equation,” Grassley’s statement said the guidance “seems to offer a viable path forward for the wind and solar industries to continue to meet increased energy demand” and “reflects some of the concerns Congress and industry leaders have raised.”
Gas power plants are booming in the U.S. as demand surges, but the growth doesn’t yet mark a fundamental shift away from renewables, clean-energy analyst Michael Thomas wrote in a post on his Substack newsletter, Distilled. “If there were to be an unprecedented pivot to gas, you’d expect Texas to be ground zero for it,” he said. “The state has done everything it can to prop up fossil fuel power in recent years. It’s also one of the most permissive when it comes to environmental regulations and permitting.” Despite major growth in the past year, he wrote, gas made up just 10% of proposed new project capacity in Texas so far this year. The remaining 90% of capacity came from solar, wind, and battery projects. Last year alone, renewable and storage developers proposed 100 gigawatts of clean capacity — seven times more than gas developers proposed.
A new map allowing users to track risks from natural gas super-emitters launched Tuesday from the independent energy science and policy institute PSE Healthy Energy. The Methane Risk Map is a web tool with clickable markers representing individual methane super-emitting events throughout the U.S. Selecting one, as Heatmap’s Emily Pontecorvo wrote, “opens up a heatmap and information panel that shows the concentration of benzene, methane, and other pollutants present in that particular plume, the modeled distance each one traveled during the event, the demographics of the population exposed, and whether there were any sensitive facilities, such as schools or hospitals, in the exposure pathway.”
Though methane, the primary component of natural gas, is an extremely potent greenhouse gas and can pose an explosive risk at high concentrations, other components in unrefined natural gas present more direct public health risks. These include carcinogens like benzene and other health-harming substances, including toluene.
The grid-tech startup Splight has raised nearly $13 million to fund the commercial scaling of its breakthrough software. Unlike dynamic line rating, which uses weather and temperature data to open up more space on existing power lines to funnel as much as 30% more electricity, Splight claims its "dynamic congestion management” software can double the amount of room for electrons to flow without building new grid infrastructure.
The Methane Risk Map combines satellite and geologic data to visualize chemical exposure from natural gas plumes.
Methane-sniffing satellites have brought unprecedented visibility to “super-emitter” events, when the planet-warming gas gushes into the atmosphere at alarming rates — often from leaky fossil fuel infrastructure.
But those plumes contain more than just methane. Scientists are now using satellite data to look beyond the climate risks and assess the danger of super-emitting wells, tanks, and other assets to nearby communities.
PSE Healthy Energy, an independent energy science and policy institute, unveiled a “Methane Risk Map” on Tuesday that illustrates the spread of health-harming pollutants like benzene and toluene that also emanate from methane super-emitter events.
“The Methane Risk Map translates methane as a climate problem into methane as an air quality and human health issue,” Seth Shonkoff, PSE’s executive director, said during a briefing last week.
The vast majority of what we call “natural gas” is methane, but when it comes out of the ground, it also contains a host of other compounds, including carcinogens. The exact mix varies by location, and also changes as it moves through the oil and gas supply chain.
The Methane Risk Map is a web tool with clickable markers representing individual methane super-emitter events throughout the U.S. Selecting one opens up a heatmap and information panel that shows the concentration of benzene, methane, and other pollutants present in that particular plume, the modeled distance each one traveled during the event, the demographics of the population exposed, and whether there were any sensitive facilities, such as schools or hospitals, in the exposure pathway. It also gives the date the emission event occurred and what kind of equipment it came from, if available, such as a well or a tank.
Courtesy of PSE Healthy Energy
Underlying the map are two relatively new scientific developments. The first, as mentioned earlier, is satellite data. PSE pulls data released by the nonprofit Carbon Mapper, which launched its premiere satellite a year ago. Carbon Mapper’s sensing tools, developed in collaboration with NASA, essentially point a telephoto lens at oil or gas facilities to detect methane super-emitter events and measure how much of the gas is streaming out.
The problem, however, is that the satellite can only detect methane.
To solve that problem, PSE researchers created a database of the composition of natural gas at more than 4,000 facilities, spanning 19 oil- and gas-producing basins. When oil and gas operators apply for air permits, they have to submit facility-specific gas composition data from laboratory reports, often derived from direct samples of the gas. Researchers from PSE Healthy Energy went through thousands of regulatory documents to compile a database based on these reports. They found hazardous pollutants in more than 99% of the samples.
To build the Methane Risk Map, PSE combined methane emission rates from Carbon Mapper with this site-specific gas composition data, then used an air dispersion model to estimate the peak concentrations of each pollutant in the surrounding area after the release and show the area at risk. The map includes risk benchmarks set by state regulators for each pollutant, and shows that hazardous air pollutant levels from these super-emitters often exceed them.
While methane itself isn’t toxic, it can pose a safety risk at high enough concentrations from explosions or fires. So in addition to information about traditional air pollutants, users can also view the extent to which the methane released by an event posed a threat to the surrounding area.
One of the shortcomings of the project, and of methane-mapping efforts in general, is that the data isn’t accessible in real time. Carbon Mapper takes roughly a month from when its satellite spots a super-emitter to process and release the emissions data publicly — then PSE will have to run its own models and update its map. The satellites also represent only a moment in time — they don’t tell you when a leak started or how long it lasted. While the time delay could improve with technological and other advances, fixing the latter would require a lot more satellites.
The Methane Risk Map can’t yet function as an emergency response tool in a public health context, but that also wasn’t quite the intent behind the project. The PSE researchers envision policymakers, regulators, lawyers, and communities using the tool to push for stronger regulations, such as safer setback distances, stricter air quality monitoring requirements, and leak detection and repair rules.
The Environmental Protection Agency finalized stronger rules regulating methane and air pollution from the oil and gas sector in 2023, under the Biden administration. But after Trump took over the federal apparatus, the agency said it was “reconsidering” those rules. Since then, the EPA has extended compliance deadlines for many of the rules.
“As regulatory rollbacks in the climate and air quality arenas occur in the coming months, having this type of defensible data on the risk of these events and the risks they pose to human health will become increasingly important,” Kelsey Bilsback, the principal investigator for the project, said during the briefing.
Right now the map only includes emissions from the “upstream” oil and gas sector, but PSE plans to expand the project to include leaks from the midstream and downstream, too, such as pipelines and end-users.