Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Economy

The Startup Making the Weather a Hot Investment

Brightband emerges from stealth to commercialize AI-weather forecasting.

AI weather forecasting.
Heatmap Illustration/Getty Images

The weather has never been hotter.

The past few years have seen a boom in the weather prediction industry, with AI-based weather models from the likes of Google DeepMind, Huawei, and Nvidia consistently outperforming traditional models. Most of that work has been research-oriented, but today the startup Brightband emerged from stealth with $10 million in Series A funding and a unique plan to commercialize generative AI weather modeling. Instead of trying to go up against Weather.com, Brightband is tailoring models to specific industries such as insurance, finance, agriculture, energy, and transportation. The round was led by Prelude Ventures.

Weather forecasting has traditionally been the domain of the public sector, with the most widely used models coming from the U.S. National Weather Service and the European Center for Medium-Range Weather Forecasts. Brightband’s CEO Julian Green told me that private companies haven’t been able to break in “because it has cost so much to have billion dollar supercomputers,” which are required to run today’s so-called “numerical” weather models.

These models rely on complex atmospheric equations based on the laws of physics to predict future weather patterns, and because of their computational intensity, are usually only updated four times daily. It’s possible then that AI-based weather prediction could thus actually reduce energy demand — because while it takes a lot of energy to train an AI model, after that’s done, generating forecasts is simple. “So instead of six hours to have a forecast, it takes under a second. Instead of using a billion dollar supercomputer, you’re using a laptop,” Green told me.

AI models like Brightband’s are trained on decades worth of past weather data, and when fed a snapshot of current conditions, can predict what will come next, much like ChatGPT does with text. “Think about the weather AI prediction problem as predicting the next frame in a radar sequence,” Green told me.

He said that customizing forecasts for particular industries will also be as simple as querying a large language model. A wind farm operator could, for example, “just take an attached file of historical wind energy production, and throw it in there and say, hey, tell me what the wind energy is going to be like next week.” Likewise folks in the aviation industry could have the model tell them if their plane’s wings are likely to ice up, utilities could get detailed insight into expected energy demand and generation, and finance companies could get up-to-the-minute information about weather-sensitive commodities. Previously, companies would’ve had to build their own forecasting teams or hire third-party advisors to get such specific predictions.

Brightband wants to further differentiate itself from the types of models that tech companies have already built by using only raw data inputs to generate its forecasts, from sources such as satellites, weather balloons, and radar systems. Perhaps surprisingly, this is not the way that most models currently work. Because there are data gaps, such as over oceans and in the developing world, the datasets used to train today’s AI weather models, Green explained, “smear the available data over a three-dimensional grid of the globe,” diluting the accuracy of both the real-time weather and presumably the resulting forecasts.

It’s hard to say how much more accurate using only raw data inputs will be, because “that’s what nobody has done yet,” Green told me. Data gaps are still an issue of course, but Green told me that Brightband’s approach will also allow the company to better analyze when and where filling these gaps would add the most value.

Brightband says it hopes to publish a paper by year’s end with an open-source version of its forecast model, alongside evaluation tools to assess its performance.

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Technology

The World’s First Commercial Fusion Plant Will Be in Virginia

Commonwealth Fusion Systems will build it in collaboration with Dominion Energy Virginia.

Commonwealth Fusion Systems.
Heatmap Illustration/Getty Images, Commonwealth Fusion Systems

Commonwealth Fusion Systems, the buzziest and most well-funded company in the increasingly buzzy and well-funded fusion sector, announced today that it will build a commercial fusion power plant in Chesterfield County, Virginia — a first for both the company and the world. CFS will independently finance, build, own, and operate the 400-megawatt plant, which will produce enough energy to power about 150,000 homes sometime “in the early 2030s.”

All this will happen in collaboration with Dominion Energy Virginia, which serves electricity to more than 2.7 million homes and businesses. While Dominion isn’t contributing monetarily, it is providing CFS with the leasing rights for the proposed site, which it owns, as well as development and technical expertise. The plant itself will cost billions to develop and build.

Keep reading...Show less
Yellow
Climate

The Long-Awaited LNG Study Is Out

And the predictable battle lines are already being drawn.

LNG transport.
Heatmap Illustration/Getty Images

The Department of Energy on Tuesday published the results of its long-awaited analysis of the economic and environmental implications of expanding U.S. exports of liquified natural gas. The study was the culmination of a year-long process after President Biden paused approvals of new LNG export terminals in January so that the agency could update the underlying assumptions it uses to determine whether new facilities are in the “public interest.”

Though the resulting assessment stops short of advising against approving new projects, it finds that additional U.S. LNG export terminals beyond what has already been approved would likely raise natural gas prices for U.S. consumers and increase global greenhouse gas emissions.

Keep reading...Show less
Green
Electric Vehicles

Why Not Put Solar Panels on EVs?

It’s tough to generate enough power to make them worth it, but two new companies are trying.

Solar panels on a car.
Heatmap Illustration/Getty Images

Here’s something to chew on over the holiday break: The top of a car is wasted space. Sure, you can put a sunroof there to let in a little light and breeze or install a roof rack to take your surfboard to the beach. But for the most part, the roof is just a field of metal to keep the elements out of the cabin.

In an electric vehicle, that square footage could have a job. What if solar panels embedded in the roof generated juice to recharge the battery as the car flies down the highway or sits in the middle of a parking lot, blasted by the summertime sun? It’s an idea that’s starting to get more traction. It’s about time.

Keep reading...Show less
Blue