You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Sixty years ago, college kids raced across the country in EVs.

Volkswagen calls its new EV minivan “the electric reincarnation of the iconic Microbus.” But while the ID.Buzz may be a touchscreens-and-LEDs update on the bare-bones icon of the Sixties, it is far from the first electrified take on the VW bus.
On an August morning in 1968, a Volkswagen bus jammed full of Caltech students who had hacked it to run on battery power departed their home base in Pasadena, California. Their destination: Cambridge, Massachusetts, home of rival MIT. At the same moment, MIT students in an electrified Chevy Corvair left the East Coast bound for the West.
“I came up with the crazy idea of a cross-country electric car race between Caltech and MIT,” said Wally Rippel, the student who owned that electrified VW bus and challenged MIT to the 1968 race, while reminiscing about the competition in a lecture at Caltech last Thursday night. [Editor’s note: Caltech is where the author does his day job.] “There would be some interest there, and it would stimulate interest in research at Caltech and MIT.”
The great electric car race of 1968 carried the energy of a world’s fair, offering gawkers along its transcontinental route the chance to see the vehicles of the future. It would be another half-century before the EV finally went mainstream, of course. But the Caltech-MIT competition presaged what electric car builders and drivers would need to overcome, and their race is a reminder that the electric car wasn’t just an idea forsaken soon after the dawn of the automotive industry and then suddenly resurrected by Tesla. All along, engineers and scientists imagined another way.
Climate change is the reason for the whole electric vehicle revolution this century, but it wasn’t the animating force for the EV tinkerers of the ‘60s. Wally Rippel, who owned the Caltech VW bus, and his compatriots were focused on solving smog and air pollution, the car-related environmental calamities of that era. In his Caltech talk, Rippel compared the air quality of that smoggy era to the fire-and-brimstone atmosphere of hell itself. “I don’t think any of you could understand it if you didn’t live in Pasadena in the ‘60s,” he said.
Since 80% of L.A.’s smog came from automotive exhaust, Rippel came to the conclusion that the internal combustion engine should be replaced. The question was, replaced with what? Fuel cells were used during the space race of the 1960s, but they were maddeningly expensive and could provide only 1/20th of the energy he needed to move a car. After seeing electric-powered golf carts around campus, he thought of the electric car.
Just like the climate activists to come, they faced their doubters when the EV race got under way. Team member Dick Rubenstein reminisced in an article about the race: “I remember the service station attendant at Amboy. He thought it was all a joke and asked: 'What do you need an electric car for, anyway? What air pollution?'”
The challenges of long-distance EV driving were all present in 1968. Rippel wondered, like many people do today, how much more electricity the nation would need to power a country full of EVs. After whipping out his slide rule and performing a few calculations, he determined the U.S. would need 20 to 25 percent more electricity, a reasonable goal.
Rippel and company needed charging stations, of course. The Electric Fuel Propulsion Corporation of Michigan worked with utilities to set up 55 charging stations on the route across the country. Now, those stops didn’t look quite like the Tesla Superchargers of today, located in outlet mall parking lots. Rippel explained that some of their stops amounted to nothing more than a connection to a power line tower or a wire coming up from a manhole.
It typically took 45 to 60 minutes to recharge using the onboard 30kW charger that Rippel put in the bus. That’s not that far off from today’s times, even though the students ran lead-acid and nickel-cadmium batteries rather than the lithium-ion that is today’s state of the art. (Caltech’s VW carried a literal ton of batteries to store 16 kWh of energy.) Still: After blowing fuses and causing a power outage in Seligman, Arizona, the Caltech team had to start charging at a lower speed in order to avoid overloading the technology of the time.
Range anxiety was naturally worse, given the experimental technology and the need to make it to the next station on the list. Both teams had chase cars accompanying their EV and occasionally resorted to towing the electric car when mechanical gremlins struck. Caltech towed a generator along just in case.
The biggest enemy? Heat. Today’s EV batteries suffer under extreme temperatures, with heat degrading battery life and cold diminishing range. But modern EVs have sophisticated cooling mechanisms to help protect the cells. The student EVs did not have this. They resorted to a simpler fix: dumping ice on the batteries during charging stops.
Wrote Rubenstein: “We finally solved our battery overheating problem in McLean, Texas. While the car was charging, I went into town to buy some rubber tubing and a rubber syringe bulb. We got some small ice cubes and put them on the batteries, then used the tubing to siphon the water out of the battery enclosure. We used the syringe bulb to start the siphon. That was our handy-dandy cooling system, for which I blushingly accept credit.”
In other ways, their simple EV technology is startlingly familiar. The VW bus nearly didn’t make it to the charging stop in the desert of Needles, California, but used the downhill grade into town to put some charge back on the battery, just as regenerative braking in today’s EVs saves energy when the car is decelerating or rolling downhill. (Today, Needles is home to several EV fast-charging stations, befitting its nature as one of the rare pit stops on this lonely stretch of desert highway.)
The article in Caltech’s Engineering & Science magazine concludes by saying future lead-cobalt rechargeable batteries might reach 250 miles of range — just about what lithium-ion batteries were actually doing a half-century later, when cars like the Tesla Model 3 arrived.
The race ended nine days later, on September 4. MIT reached the end of the line first, by about a day and a half. But, per the agreed-upon rules, its team was dinged with many hours’ worth of time penalties because of how often the electric Chevy Corvair had to be towed — including across the finish line. The EV van from Pasadena, for all its own troubles, reached MIT under its own power and was, eventually, declared the winner.
In retrospect, the race looks like a one-off — a moment when young scientists with a dream tried to show the world a better way but decades before the world was ready to see it. In fact, though, this calamitous, makeshift Cannonball Run left threads that led to the electrification of vehicles that’s finally happening around the world.
The next generation of idealistic auto engineers created the Sunraycer, a 1980s solar-powered race car that crossed the Australian Outback. Its success led to the GM Impact, a 1990 concept EV meant to show the world what was possible. And the Impact led to the fabled, doomed GM EV1.
EV1 is remembered as the electric car that wasn’t, the victim in the case of Who Killed the Electric Car? But attempts like it and the AC Propulsion tZero in the 1990s showed that EVs were not only possible, but could be downright cool if you did them right. The rest is history.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Current conditions: Winter Storm Fern buried broad swaths of the country, from Oklahoma City to Boston • Intense flooding in Zimbabwe and Mozambique have killed more than 100 people • South Australia’s heat wave is raging on, raising temperatures as high as 113 degrees Fahrenheit.
The United States’ aging grid infrastructure faces a test every time the weather intensifies, whether that’s heat domes, hurricanes, or snow storms. The good news is that pipeline winterization efforts that followed the deadly blackouts in 2021’s Winter Storm Uri made some progress in keeping everything running in the cold. The bad news is that nearly a million American households still lost power amid the storm. Tennessee, Mississippi, and Louisiana were the worst hit, with hundreds of thousands of households left in the dark, according to live data on the Power Outage tracker website. Georgia and Texas followed close behind, with roughly 75,000 customers facing blackouts. Kentucky had the next-most outages, with more than 50,000 households disconnected from the grid, followed by South Carolina, West Virginia, North Carolina, Virginia, and Alabama. Given the prevalence of electric heating in the typically-warmer Southeast, the outages risked leaving the blackout region without heat. Gas wasn’t entirely reliable, however. The deep freeze in Texas halted operations at roughly 10% of the Gulf Coast’s petrochemical facilities and refineries, Bloomberg reported.
On Saturday, right before Winter Storm Fern began, the Department of Energy issued its first emergency order of the year to deploy backup generation in Texas in hopes of avoiding a repeat of Uri. As of Sunday evening, data from Electric Reliability Council of Texas, the state’s grid operator, showed natural gas providing nearly 60% of the electricity on the wires, with coal and wind neck-and-neck for second place and solar in a close fourth. It’s a relief that the grid is holding. But the overreliance on fossil fuels isn’t a good long-term strategy. While “climate change deniers love to use major winter storms as ‘proof’ that global warming isn’t real,” my colleague Jeva Lange wrote last week, “in the case of this weekend’s polar vortex, there is evidence that Arctic warming is responsible for the record cold temperature projections across the United States.”

The National Oceanic and Atmospheric Administration finalized a rule last week clearing the way for companies to apply for the right to mine the deep ocean floor. Under the new rules, applications for commercial and exploratory licenses are streamlined into a single process, cutting the number of required environmental assessments and public comment hearings in half. The day after the final rule came out, The Metals Company, the leading startup racing to collect mineral-rich nodules from largely unexplored depths of international waters, submitted an application to mine an area roughly twice the size of its original plans. “Nearly 50 years after this industry took shape, it’s ready to move forward,” the company told The New York Times. But opposition to deep-sea mining is mounting as environmentalists highlight the risk the industry poses to a scarcely understood and still remarkably untouched ecosystem. A corporate campaign to oppose deep sea mining just added the solar giant Sunrun to its petition, as I told you last week.
Tesla has officially discontinued Autopilot, its basic self-driving software, in the U.S. and Canada. All new car purchases now come with standard Traffic-Aware Cruise Control, Sawyer Merritt, a self-described Tesla investor with a prolific social media presence, wrote in a post on X. The move, according to TechCrunch, is designed to boost adoption of Tesla’s more advanced Full Self-Driving setting. But it’s also in response to a courtroom loss in the company’s biggest market. Last month, a judge in California ruled that Tesla engaged in deceptive marketing by overstaying the capabilities of both Autopilot and FSD for years. The California Department of Motor Vehicles, which originally brought the case, gave Tesla two months to comply with the ruling by dropping the Autopilot name.
Sign up to receive Heatmap AM in your inbox every morning:
New York Governor Kathy Hochul is going all in on nuclear power. She started off last year at the helm of a new multi-state alliance working on building more reactors. Over the summer, she directed the state-owned power authority to oversee construction of New York’s first new reactor since the 1980s. More recently, she inked a deal with Ontario to work together on building new plants and expanded her target fivefold to 5 gigawatts of new atomic energy in the state. Now she’s backed something a little more traditional but no less important. Last week, the state’s utility regulators extended subsidies for existing nuclear plants by another two decades in hopes of keeping aging reactors open until at least 2049.
In Denmark, meanwhile, the government has officially started considering building small modular reactors and lifting the nuclear ban the parliament put into effect 40 years ago. “Green energy from solar and wind is now and will continue to be the backbone of the Danish energy supply, but we can also see that it cannot stand alone,” Lars Aagaard, Denmark’s climate, energy and utilities minister, said in a statement. “We must be open to examining whether other technologies can provide us with green energy in the future. Small modular nuclear reactors may be an option.”
Standard Nuclear, a startup producing TRISO atomic fuel required by several of the nation’s leading small modular reactor designs, has raised $140 million in Series A funding. The investment round was led by Decisive Point, with first-time backing from Chevron Technology Ventures, StepStone Group, and XTX Ventures. Several existing investors, including Fundomo, Andreessen Horowitz, and Crucible Capital, increased their stakes. The financing will support Standard Nuclear’s plans to expand TRISO production to over 2 metric tons per year at multiple sites across the country. The timeline, the company said, is “rapid” and will take place by mid-2026. “With this funding, we are positioned to accelerate our roadmap, scale operations, and deliver on the promise to fuel the next generation of reactors powering industry, defense, and space,” Kurt Terrani, Standard Nuclear’s chief executive, said in a statement.
While TRISO was invented decades ago, the fuel — which has extra layers of ceramic coating that are meant to make a meltdown virtually impossible — is making a comeback as the go-to material for next-generation reactors designed to reach higher temperatures by using coolants other than water. Standard Nuclear has also inked a deal with the nuclear recycling company SHINE Technologies to work on reprocessing radioactive waste into fresh fuel.
Years ago, at a lecture about the spread of Lyme disease in the New York area, I learned that opossums eat thousands of ticks every season. That information totally changed my perception of a rodent that previously creeped me out. Well, it turns out kestrels — colorful, predatory birds — serve a similar function on fruit farms. New research in the Journal of Applied Ecology suggests kestrels keep harmful pathogens off fruit by eating and scaring off small birds that carry those diseases. Orchards that housed the birds in nest boxes saw fewer cherry-eating birds than orchards without, translating to what Inside Climate News described as a 81% reduction in crop damage.
In some ways, fossil fuels make snowstorms like the one currently bearing down on the U.S. even more dangerous.
The relationship between fossil fuels and severe weather is often presented as a cause-and-effect: Burning coal, oil, and gas for heat and energy forces carbon molecules into a reaction with oxygen in the air to form carbon dioxide, which in turn traps heat in the atmosphere and gradually warms our planet. That imbalance, in many cases, makes the weather more extreme.
But this relationship also goes the other way: We use fossil fuels to make ourselves more comfortable — and in some cases, keep us alive — during extreme weather events. Our dependence on oil and gas creates a grim ouroboros: As those events get more extreme, we need more fuel.
This weekend, some 200 million Americans will be cranking up the thermostats in their natural-gas-heated homes, firing up their propane generators, or hitting icy roads in their combustion-engine cars as a major winter storm brings record-low temperatures to 35 states, knocks out power, and grinds air travel to a halt.
Climate change deniers love to use major winter storms as “proof” that global warming isn’t real. But in the case of this weekend’s polar vortex, there is evidence that Arctic warming is responsible for the record cold temperature projections across the United States.
“In the Arctic, in the winter, the ocean is much, much warmer than the atmosphere,” Judah Cohen, a climatologist at MIT and the author of a 2021 paper linking Arctic variability to extreme weather in the U.S., told me. Sea ice acts as an insulating layer separating the warmer ocean water from the frigid air. But as it melts — as it is doing every month of the year — “all of this heat can now be extracted out of the ocean.” The reduced temperature difference between the ocean and atmosphere creates wavy high-pressure ridges and low-pressure troughs that are favorable to the formation of polar vortices, which can funnel extreme cold air down over North America, as they seemingly did over Texas in 2021’s Winter Storm Uri, when 246 people died.
The exact mechanisms and interactions of this phenomenon are still up for debate. “I am in the minority that argues that there is causal link between a warm Arctic and cold continents,” Cohen added to me via email. “Most others argue that it is a coincidental relationship.” Still, scientists generally agree that extreme cold events will persist in a warming world; they’ll just become rarer.
Cold kills more people in the United States than heat, but curiously, warmer winters aren’t likely to significantly reduce these seasonal deaths. That’s because about half of the cases of excess mortality in winter are from cardiovascular diseases, which are, by nature, “highly seasonal,” Kristie Ebi, a professor of global health at the University of Washington, told me. “Since people began studying these, there are more of them in the winter than there are in the summer.” Researchers still aren’t sure why that is — though since the 1940s, we’ve known that people’s blood pressure, cholesterol, and even blood viscosity go up during the colder and darker months, perhaps due to changes in diet or exercise. That also appears to be the case regardless of climate or temperature, holding true whether you’re in Yellowknife or Miami.
In other words, “if seasonal factors other than temperature are mainly responsible for winter excess mortality, then climate warming might have little benefit,” Patrick Kinney, the director of Columbia University’s Climate and Health Program, wrote in Environmental Research Letters back in 2015. Extreme heat-related deaths, by contrast, have no ceiling, meaning global warming will result in more temperature-related deaths than it will prevent.
Our anthropogenically warmer winters could even prove to be more deadly in certain ways. Dana Tobin is a researcher at the Cooperative Institute for Research in Environmental Sciences at the University of Colorado Boulder who studies how weather affects traffic accidents. She’s found that driving in freezing rain is more dangerous than driving in snow “because of the ice glaze that it can produce on surfaces, especially those that are untreated,” she told me. As winters become warmer, there will, counterintuitively, be more ice on roads in many places, since freezing rain requires a bit of warm air before it hits the ground and becomes black ice.
Researchers working in Scandinavia have similarly found that as the atmosphere warms and more days hover around freezing, “there is a higher risk of icy conditions … which may lead to a predisposition to falls and road traffic accidents.” (As I’ve previously reported, milder winters might also make us even more depressed than very cold ones.)
There is something slightly karmic about the fact that cars become increasingly unsafe as the planet, warmed by their emissions, becomes more hazardous. But this connection gets even bleaker when carbon monoxide poisoning is factored in.
On Thursday, the North American Electric Reliability Corporation issued a statement warning that “much of North America is at an elevated risk of having insufficient energy supplies to meet demand in extreme operating conditions,” including “advancing winter weatherization of power plants and fuel acquisition to enable operations during cold temperatures.” Heavy ice can also snap branches above power lines, causing local outages.
When the power goes out or the gas lines freeze, desperate people will do anything to stay warm. That includes, in tragic cases, running improperly vented generators or plugging in propane heaters indoors, which can produce odorless and colorless CO — instead of the usual water and carbon dioxide — when fossil fuels don’t burn correctly. Accidental carbon monoxide poisoning is on the rise in the United States due to the proliferation of such appliances amid increasingly frequent extreme weather events, jumping 86% between 2012 and 2022. That’s even as, worldwide, carbon monoxide poisoning is decreasing.
Snow and ice are among the most dangerous weather conditions in the U.S., and people should take warnings of “life-threatening conditions” at face value. Tobin, the traffic researcher, stressed that one of the best protections from winter weather hazards is knowledge alone. “I believe the best thing that we can do when it comes to messaging to protect drivers from hazards is to empower motorists to make educated and informed decisions for their own safety and the safety of others,” she told me.
Winter storms highlight the entangled nature of our dependence on fossil fuels. We can’t separate extreme weather events from the energy required to survive them. But the dark irony is that, as the planet becomes more volatile, the most dangerous fossil fuels might be the ones meant to keep us warm and get us back home.
The cloak-and-dagger approach is turning the business into a bogeyman.
It’s time to call it like it is: Many data center developers seem to be moving too fast to build trust in the communities where they’re siting projects.
One of the chief complaints raised by data center opponents across the country is that companies aren’t transparent about their plans, which often becomes the original sin that makes winning debates over energy or water use near-impossible. In too many cases, towns and cities neighboring a proposed data center won’t know who will wind up using the project, either because a tech giant is behind it and keeping plans secret or a real estate firm refuses to disclose to them which company it’ll be sold to.
Making matters worse, developers large and small are requiring city and county officials to be tight-lipped through non-disclosure agreements. It’s safe to say these secrecy contracts betray a basic sense of public transparency Americans expect from their elected representatives and they become a core problem that lets activists critical of the data center boom fill in gaps for the public. I mean, why trust facts and figures about energy and water if the corporations won’t be up front about their plans?
“When a developer comes in and there’s going to be a project that has a huge impact on a community and the environment – a place they call home – and you’re not getting any kind of answers, you can tell they’re not being transparent with you,” Ginny Marcille-Kerslake, an organizer for Food and Water Watch in Pennsylvania, told me in an interview this week. “There’s an automatic lack of trust there. And then that extends to their own government.”
Let’s break down an example Marcille-Kerslake pointed me to, where Talen Energy is seeking to rezone hundreds of acres of agricultural land in Montour County, Pennsylvania, for industrial facilities. Montour County is already a high risk area for any kind of energy or data center development, ranking in the 86th percentile nationally for withdrawn renewable energy projects (more than 10 solar facilities have been canceled here for various reasons). So it didn’t help when individuals living in the area began questioning if this was for Amazon Web Services, similar to other nearby Talen-powered data center projects in the area?
Officials wouldn’t – or couldn’t – say if the project was for Amazon, in part because one of the county commissioners signed a non-disclosure agreement binding them to silence. Subsequently, a Facebook video from an activist fighting the rezoning went viral, using emails he claimed were obtained through public records requests to declare Amazon “is likely behind the scenes” of the zoning request.
Amazon did not respond to my requests for comment. But this is a very familiar pattern to us now. Heatmap Pro data shows that a lack of transparency consistently ranks in the top five concerns people raise when they oppose data center projects, regardless of whether they are approved or canceled. Heatmap researcher Charlie Clynes explained to me that the issue routinely crops up in the myriad projects he’s tracked, down to the first data center ever logged into the platform – a $100 million proposal by a startup in Hood County, Oregon, that was pulled after a community uproar.
“At a high level, I have seen a lack of transparency become more of an issue. It makes people angry in a very unique way that other issues don’t. Not only will they think a project is going to be bad for a community, but you’re not even telling them, the key stakeholder, what is going on,” Clynes said. “It’s not a matter of, are data centers good or bad necessarily, but whether people feel like they’re being heard and considered. And transparency issues make that much more difficult.”
My interview with Marcille-Kerslake exemplified this situation. Her organization is opposed to the current rapid pace of data center build-out and is supporting opposition in various localities. When we spoke, her arguments felt archetypal and representative of how easily those who fight projects can turn secrecy into a cudgel. After addressing the trust issues with me, she immediately pivoted to saying that those exist because “at the root of it, this lack of transparency to the community” comes from “the fact that what they have planned, people don’t want.”
“The answer isn’t for these developers to come in and be fully transparent in what they want to do, which is what you’d see with other kinds of developments in your community. That doesn’t help them because what they’re building is not wanted.”
I’m not entirely convinced by her point, that the only reason data center developers are staying quiet is because of a likelihood of community opposition. In fairness, the tech sector has long operated with a “move fast, break things” approach, and Silicon Valley companies long worked in privacy in order to closely guard trade secrets in a competitive marketplace. I also know from my previous reporting that before AI, data center developers were simply focused on building projects with easy access to cheap energy.
However, in fairness to opponents, I’m also not convinced the industry is adequately addressing its trust deficit with the public. Last week, I asked Data Center Coalition vice president of state policy Dan Diorio if there was a set of “best practices” that his large data center trade organization is pointing to for community relations and transparency. His answer? People are certainly trying their best as they move quickly to build out infrastructure for AI, but no, there is no standard for such a thing.
“Each developer is different. Each company is different. There’s different sizes, different structures,” he said. “There’s common themes of open and public meetings, sharing information about water use in particular, helping put it in the proper context as well.”
He added: “I wouldn’t categorize that as industry best practice, [but] I think you’re seeing common themes emerge in developments around the country.”