You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Let’s get this out of the way: You don’t have to turn vegetarian to make a meaningful dent in your carbon emissions. You don’t have to start eating insects or experiment with precision-fermented plant-based proteins. You don’t even have to eat less meat, necessarily. Just eat less beef — or, if you prefer the idea of “more” to the idea of “less,” you could even say: Eat more chicken.
Either way, the reason comes down to some of the simplest carbon accounting we have. Cows are, by far, our most carbon-intensive protein source. Every kilogram of beef produced in the U.S. emits about 38 kilograms of carbon from cradle to slaughterhouse, according to Gillett. Compare that to roughly 3.8 kilograms of CO2 per kilogram of chicken, and even 4.9 kilograms of CO2 per kilogram of pork, and you can start to see why even such a small change can have a big impact. A chicken needs to eat just 1.6 kilograms of feed to produce a kilogram of meat.
“1.6 is basically magic, right?” Arthur Gillett, chief research officer at HowGood, an emissions research and data service for the food sector, told me. “Why are we messing with crickets?”
Beyond that, though, the picture gets murkier. Because here’s the thing: Even if you wanted to track every single ounce of carbon related to your food intake, you couldn’t, at least not with any meaningful degree of accuracy. Of all the many systems operating in the global economy, the food system is perhaps the most complex, involving processes we’re still trying to understand, let alone track.
For example: dirt. Essentially all the food we eat depends, at some point in its life cycle, on dirt. One reason beef is such a high-emission product is that it takes a lot of dirt to grow all the feed a typical cow eats over the course of its life — which runs to the thousands of pounds (including byproducts from other agricultural production) — plus a lot more to grow the cow itself. Even in the U.S., where cows are mostly finished on feedlots, livestock occupy 41% of available farmland, but are raised on just 30% of farms. In Brazil, the world’s largest exporter of beef, where cows are mostly grass-fed, cattle graze on somewhere between 189 million and 253 million acres of what used to be the Amazon rainforest, depending on whose estimate you use.
But back to dirt: Climate scientists still don’t really understand how it works, from a carbon perspective. How much carbon is stored in the Earth’s soil? Estimates vary pretty widely, biogeochemist Rose Abramoff told me. How much is it emitting each year? That’s even less clear. Does it make a difference whether that soil is planted with genetically modified soy versus heirloom squash? No idea.
Until seven or eight years ago, it was accepted practice in the life-cycle analysis world to resolve these uncertainties by assuming soil-related emissions were stable and therefore marking them at zero, according to Gillett, “which is incredibly wrong,” he told me. Analyses are starting to be able to account for those emissions now, he said, but to be really meaningful, they would have to be recalculated every year. “So then every LCA, to be worth its salt, has to be a multi-year LCA. That’s impossible.” Gillett said.
In other words, the science is very much still changing, and you could drive yourself crazy trying to keep up with it. These days, Gillett is excited about the potential for regenerative agriculture practices like no-till farming and co-locating livestock with crops to transform dairy into one of our most carbon-efficient sources of protein, he told me — something he never would have expected to say a year or two ago.
Similarly, “Maybe 10 years ago, all of us were talking about food miles,” i.e. the distance from farm to table, according to Minnie Ringland, manager of climate and insights at ReFED, a food waste reduction advocacy group. You may have experienced this in the form of admonishments to “eat local.” Since then, however, cold storage supply chains have gotten a lot better, particularly in the Global South, which means that we’re losing a lot less food to spoilage — compared to the agricultural process itself, shipping represents a negligible portion of the emissions related to just about any given product.
It's also important to remember that not all farming regions are created equal. California, for instance, is a great place to grow lots of things; Arizona, less so. “Depending on the geography where the food is being produced, it can be super intensive in terms of land use change, if land is being deforested in order to make way for agricultural fields or for grazing,” Ringland said. Another factor is the use of nitrogen fertilizer, which is both emissions-intensive to produce and generates carbon dioxide from its use, the environmental effects of fertilizer run-off on nearby land and waterways notwithstanding.
That’s not to say there aren’t other important benefits to eating locally: contributing to your local economy, supporting biodiversity, encouraging holistic farming practices. The farmers at your weekend farmers market are a whole lot more likely to be practicing regenerative techniques and fertilizing with compost instead of industrial chemicals. But they’re also not going to be there at 7:48 p.m. on any given Tuesday when you’re midway through cooking a batch of chicken cacciatore and realize that you forgot the bell peppers.
Speaking of compost, though, here’s a bonus trick to reduce your food-related carbon emissions: Collecting and composting your food scraps is good, but wasting less food is even better. The reason why is pretty obvious: Before it can be composted, food still has to go through the entire supply chain. And while composting food produces fewer emissions than landfilling food waste, it’s not an entirely emissions-free process, and can be more or less carbon-intensive depending on where and how it’s made. Reducing your food waste requires a bit more planning, but it will also save you money and send a more accurate demand signal down the farm-to-grocery-store supply chain.
I could go on and on about things like the relative carbon impact of plant-based proteins and the emissions reduction potential of standardizing expiration dates on food labels, but all of that is still being worked out. If you are fake meat-curious, you can check out our guide on that here. And if you’re already a vegetarian or curious about it for reasons of health, ethics, etc., that’s great. The most important thing you, as a consumer, can do to reduce emissions from the food system is hold companies accountable for their carbon claims, which means not getting sucked into the stuff that sounds too good to be true. There’s plenty of delicious food out there that doesn’t take elaborate math to justify eating.
So to recap: Eat less beef, waste less food. You can make it more complicated than that if you want, but everything else is gravy.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Though it might not be as comprehensive or as permanent as renewables advocates have feared, it’s also “just the beginning,” the congressman said.
President-elect Donald Trump’s team is drafting an executive order to “halt offshore wind turbine activities” along the East Coast, working with the office of Republican Rep. Jeff Van Drew of New Jersey, the congressman said in a press release from his office Monday afternoon.
“This executive order is just the beginning,” Van Drew said in a statement. “We will fight tooth and nail to prevent this offshore wind catastrophe from wreaking havoc on the hardworking people who call our coastal towns home.”
The announcement indicates that some in the anti-wind space are leaving open the possibility that Trump’s much-hyped offshore wind ban may be less sweeping than initially suggested.
In its press release, Van Drew’s office said the executive order would “lay the groundwork for permanent measures against the projects,” leaving the door open to only a temporary pause on permitting new projects. The congressman had recently told New Jersey reporters that he anticipates only a six-month moratorium on offshore wind.
The release also stated that the “proposed order” is “expected to be finalized within the first few months of the administration,” which is a far cry from Trump’s promise to stop projects on Day 1. If enacted, a pause would essentially halt all U.S. offshore wind development because the sought-after stretches of national coastline are entirely within federal waters.
Whether this is just caution from Van Drew’s people or a true moderation of Trump’s ambition we’ll soon find out. Inauguration Day is in less than a week.
Imagine for a moment that you’re an aerial firefighter pilot. You have one of the most dangerous jobs in the country, and now you’ve been called in to fight the devastating fires burning in Los Angeles County’s famously tricky, hilly terrain. You’re working long hours — not as long as your colleagues on the ground due to flight time limitations, but the maximum scheduling allows — not to mention the added external pressures you’re also facing. Even the incoming president recently wondered aloud why the fires aren’t under control yet and insinuated that it’s your and your colleagues’ fault.
You’re on a sortie, getting ready for a particularly white-knuckle drop at a low altitude in poor visibility conditions when an object catches your eye outside the cockpit window: an authorized drone dangerously close to your wing.
Aerial firefighters don’t have to imagine this terrifying scenario; they’ve lived it. Last week, a drone punched a hole in the wing of a Québécois “Super Scooper” plane that had traveled down from Canada to fight the fires, grounding Palisades firefighting operations for an agonizing half-hour. Thirty minutes might not seem like much, but it is precious time lost when the Santa Ana winds have already curtailed aerial operations.
“I am shocked by what happened in Los Angeles with the drone,” Anna Lau, a forestry communication coordinator with the Montana Department of Natural Resources and Conservation, told me. The Montana DNRC has also had to contend with unauthorized drones grounding its firefighting planes. “We’re following what’s going on very closely, and it’s shocking to us,” Lau went on. Leaving the skies clear so that firefighters can get on with their work “just seems like a no-brainer, especially when people are actively trying to tackle the situation at hand and fighting to save homes, property, and lives.”
Courtesy of U.S. Forest Service
Although the Super Scooper collision was by far the most egregious case, according to authorities there have been at least 40 “incidents involving drones” in the airspace around L.A. since the fires started. (Notably, the Federal Aviation Administration has not granted any waivers for the air space around Palisades, meaning any drone images you see of the region, including on the news, were “probably shot illegally,” Intelligencer reports.) So far, law enforcement has arrested three people connected to drones flying near the L.A. fires, and the FBI is seeking information regarding the Super Scooper collision.
Such a problem is hardly isolated to these fires, though. The Forest Service reports that drones led to the suspension of or interfered with at least 172 fire responses between 2015 and 2020. Some people, including Mike Fraietta, an FAA-certified drone pilot and the founder of the drone-detection company Gargoyle Systems, believe the true number of interferences is much higher — closer to 400.
Law enforcement likes to say that unauthorized drone use falls into three buckets — clueless, criminal, or careless — and Fraietta was inclined to believe that it’s mostly the former in L.A. Hobbyists and other casual drone operators “don’t know the regulations or that this is a danger,” he said. “There’s a lot of ignorance.” To raise awareness, he suggested law enforcement and the media highlight the steep penalties for flying drones in wildfire no-fly zones, which is punishable by up to 12 months in prison or a fine of $75,000.
“What we’re seeing, particularly in California, is TikTok and Instagram influencers trying to get a shot and get likes,” Fraietta conjectured. In the case of the drone that hit the Super Scooper, it “might have been a case of citizen journalism, like, Well, I have the ability to get this shot and share what’s going on.”
Emergency management teams are waking up, too. Many technologies are on the horizon for drone detection, identification, and deflection, including Wi-Fi jamming, which was used to ground climate activists’ drones at Heathrow Airport in 2019. Jamming is less practical in an emergency situation like the one in L.A., though, where lives could be at stake if people can’t communicate.
Still, the fact of the matter is that firefighters waste precious time dealing with drones when there are far more pressing issues that need their attention. Lau, in Montana, described how even just a 12-minute interruption to firefighting efforts can put a community at risk. “The biggest public awareness message we put out is, ‘If you fly, we can’t,’” she said.
Fraietta, though, noted that drone technology could be used positively in the future, including on wildfire detection and monitoring, prescribed burns, and communicating with firefighters or victims on the ground.
“We don’t want to see this turn into the FAA saying, ‘Hey everyone, no more drones in the United States because of this incident,’” Fraietta said. “You don’t shut down I-95 because a few people are running drugs up and down it, right? Drones are going to be super beneficial to the country long term.”
But critically, in the case of a wildfire, such tools belong in the right hands — not the hands of your neighbor who got a DJI Mini 3 for Christmas. “Their one shot isn’t worth it,” Lau said.
Editor’s note: This story has been updated to reflect that the Québécois firefighting planes are called Super Scoopers, not super soakers.
Plus 3 more outstanding questions about this ongoing emergency.
As Los Angeles continued to battle multiple big blazes ripping through some of the most beloved (and expensive) areas of the city on Friday, a question lingered in the background: What caused the fires in the first place?
Though fires are less common in California during this time of the year, they aren’t unheard of. In early December 2017, power lines sparked the Thomas Fire near Ventura, California, which burned through to mid-January. At the time it was the largest fire in the state since at least the 1930s. Now it’s the ninth-largest. Although that fire was in a more rural area, it ignited for some of the same reasons we’re seeing fires this week.
Read on for everything we know so far about how the fires started.
Six major fires started during the Santa Ana wind event last week:
Officials are investigating the cause of the fires and have not made any public statements yet. Early eyewitness accounts suggest that the Eaton Fire may have started at the base of a transmission tower owned by Southern California Edison. So far, the company has maintained that an analysis of its equipment showed “no interruptions or electrical or operational anomalies until more than one hour after the reported start time of the fire.” A Washington Post investigation found that the Palisades Fire could have risen from the remnants of a fire that burned on New Year’s Eve and reignited.
On Thursday morning, Edward Nordskog, a retired fire investigator from the Los Angeles Sheriff’s Department, told me it was unlikely they had even begun looking into the root of the biggest and most destructive of the fires in the Pacific Palisades. “They don't start an investigation until it's safe to go into the area where the fire started, and it just hasn't been safe until probably today,” he said.
It can take years to determine the cause of a fire. Investigators did not pinpoint the cause of the Thomas Fire until March 2019, more than two years after it started.
But Nordskog doesn’t think it will take very long this time. It’s easier to narrow down the possibilities for an urban fire because there are typically both witnesses and surveillance footage, he told me. He said the most common causes of wildfires in Los Angeles are power lines and those started by unhoused people. They can also be caused by sparks from vehicles or equipment.
At more than 40,000 acres burned total, these fires are unlikely to make the charts for the largest in California history. But because they are burning in urban, densely populated, and expensive areas, they could be some of the most devastating. With an estimated 9,000 structures damaged as of Friday morning, the Eaton and Palisades fires are likely to make the list for most destructive wildfire events in the state.
And they will certainly be at the top for costliest. The Palisades Fire has already been declared a likely contender for the most expensive wildfire in U.S. history. It has destroyed more than 5,000 structures in some of the most expensive zip codes in the country. Between that and the Eaton Fire, Accuweather estimates the damages could reach $57 billion.
While we don’t know the root causes of the ignitions, several factors came together to create perfect fire conditions in Southern California this week.
First, there’s the Santa Ana winds, an annual phenomenon in Southern California, when very dry, high-pressure air gets trapped in the Great Basin and begins escaping westward through mountain passes to lower-pressure areas along the coast. Most of the time, the wind in Los Angeles blows eastward from the ocean, but during a Santa Ana event, it changes direction, picking up speed as it rushes toward the sea.
Jon Keeley, a research scientist with the US Geological Survey and an adjunct professor at the University of California, Los Angeles told me that Santa Ana winds typically blow at maybe 30 to 40 miles per hour, while the winds this week hit upwards of 60 to 70 miles per hour. “More severe than is normal, but not unique,” he said. “We had similar severe winds in 2017 with the Thomas Fire.”
Second, Southern California is currently in the midst of extreme drought. Winter is typically a rainier season, but Los Angeles has seen less than half an inch of rain since July. That means that all the shrubland vegetation in the area is bone-dry. Again, Keeley said, this was not usual, but not unique. Some years are drier than others.
These fires were also not a question of fuel management, Keeley told me. “The fuels are not really the issue in these big fires. It's the extreme winds,” he said. “You can do prescription burning in chaparral and have essentially no impact on Santa Ana wind-driven fires.” As far as he can tell, based on information from CalFire, the Eaton Fire started on an urban street.
While it’s likely that climate change played a role in amplifying the drought, it’s hard to say how big a factor it was. Patrick Brown, a climate scientist at the Breakthrough Institute and adjunct professor at Johns Hopkins University, published a long post on X outlining the factors contributing to the fires, including a chart of historic rainfall during the winter in Los Angeles that shows oscillations between wet and dry years over the past eight decades.
But climate change is expected to make dry years drier and wet years wetter, creating a “hydroclimate whiplash,” as Daniel Swain, a pre-eminent expert on climate change and weather in California puts it. In a thread on Bluesky, Swain wrote that “in 2024, Southern California experienced an exceptional episode of wet-to-dry hydroclimate whiplash.” Last year’s rainy winter fostered abundant plant growth, and the proceeding dryness primed the vegetation for fire.
Get our best story delivered to your inbox every day:
Editor’s note: This story was last update on Monday, January 13, at 10:00 a.m. ET.