You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Let’s get this out of the way: You don’t have to turn vegetarian to make a meaningful dent in your carbon emissions. You don’t have to start eating insects or experiment with precision-fermented plant-based proteins. You don’t even have to eat less meat, necessarily. Just eat less beef — or, if you prefer the idea of “more” to the idea of “less,” you could even say: Eat more chicken.
Either way, the reason comes down to some of the simplest carbon accounting we have. Cows are, by far, our most carbon-intensive protein source. Every kilogram of beef produced in the U.S. emits about 38 kilograms of carbon from cradle to slaughterhouse, according to Gillett. Compare that to roughly 3.8 kilograms of CO2 per kilogram of chicken, and even 4.9 kilograms of CO2 per kilogram of pork, and you can start to see why even such a small change can have a big impact. A chicken needs to eat just 1.6 kilograms of feed to produce a kilogram of meat.
“1.6 is basically magic, right?” Arthur Gillett, chief research officer at HowGood, an emissions research and data service for the food sector, told me. “Why are we messing with crickets?”
Beyond that, though, the picture gets murkier. Because here’s the thing: Even if you wanted to track every single ounce of carbon related to your food intake, you couldn’t, at least not with any meaningful degree of accuracy. Of all the many systems operating in the global economy, the food system is perhaps the most complex, involving processes we’re still trying to understand, let alone track.
For example: dirt. Essentially all the food we eat depends, at some point in its life cycle, on dirt. One reason beef is such a high-emission product is that it takes a lot of dirt to grow all the feed a typical cow eats over the course of its life — which runs to the thousands of pounds (including byproducts from other agricultural production) — plus a lot more to grow the cow itself. Even in the U.S., where cows are mostly finished on feedlots, livestock occupy 41% of available farmland, but are raised on just 30% of farms. In Brazil, the world’s largest exporter of beef, where cows are mostly grass-fed, cattle graze on somewhere between 189 million and 253 million acres of what used to be the Amazon rainforest, depending on whose estimate you use.
But back to dirt: Climate scientists still don’t really understand how it works, from a carbon perspective. How much carbon is stored in the Earth’s soil? Estimates vary pretty widely, biogeochemist Rose Abramoff told me. How much is it emitting each year? That’s even less clear. Does it make a difference whether that soil is planted with genetically modified soy versus heirloom squash? No idea.
Until seven or eight years ago, it was accepted practice in the life-cycle analysis world to resolve these uncertainties by assuming soil-related emissions were stable and therefore marking them at zero, according to Gillett, “which is incredibly wrong,” he told me. Analyses are starting to be able to account for those emissions now, he said, but to be really meaningful, they would have to be recalculated every year. “So then every LCA, to be worth its salt, has to be a multi-year LCA. That’s impossible.” Gillett said.
In other words, the science is very much still changing, and you could drive yourself crazy trying to keep up with it. These days, Gillett is excited about the potential for regenerative agriculture practices like no-till farming and co-locating livestock with crops to transform dairy into one of our most carbon-efficient sources of protein, he told me — something he never would have expected to say a year or two ago.
Similarly, “Maybe 10 years ago, all of us were talking about food miles,” i.e. the distance from farm to table, according to Minnie Ringland, manager of climate and insights at ReFED, a food waste reduction advocacy group. You may have experienced this in the form of admonishments to “eat local.” Since then, however, cold storage supply chains have gotten a lot better, particularly in the Global South, which means that we’re losing a lot less food to spoilage — compared to the agricultural process itself, shipping represents a negligible portion of the emissions related to just about any given product.
It's also important to remember that not all farming regions are created equal. California, for instance, is a great place to grow lots of things; Arizona, less so. “Depending on the geography where the food is being produced, it can be super intensive in terms of land use change, if land is being deforested in order to make way for agricultural fields or for grazing,” Ringland said. Another factor is the use of nitrogen fertilizer, which is both emissions-intensive to produce and generates carbon dioxide from its use, the environmental effects of fertilizer run-off on nearby land and waterways notwithstanding.
That’s not to say there aren’t other important benefits to eating locally: contributing to your local economy, supporting biodiversity, encouraging holistic farming practices. The farmers at your weekend farmers market are a whole lot more likely to be practicing regenerative techniques and fertilizing with compost instead of industrial chemicals. But they’re also not going to be there at 7:48 p.m. on any given Tuesday when you’re midway through cooking a batch of chicken cacciatore and realize that you forgot the bell peppers.
Speaking of compost, though, here’s a bonus trick to reduce your food-related carbon emissions: Collecting and composting your food scraps is good, but wasting less food is even better. The reason why is pretty obvious: Before it can be composted, food still has to go through the entire supply chain. And while composting food produces fewer emissions than landfilling food waste, it’s not an entirely emissions-free process, and can be more or less carbon-intensive depending on where and how it’s made. Reducing your food waste requires a bit more planning, but it will also save you money and send a more accurate demand signal down the farm-to-grocery-store supply chain.
I could go on and on about things like the relative carbon impact of plant-based proteins and the emissions reduction potential of standardizing expiration dates on food labels, but all of that is still being worked out. If you are fake meat-curious, you can check out our guide on that here. And if you’re already a vegetarian or curious about it for reasons of health, ethics, etc., that’s great. The most important thing you, as a consumer, can do to reduce emissions from the food system is hold companies accountable for their carbon claims, which means not getting sucked into the stuff that sounds too good to be true. There’s plenty of delicious food out there that doesn’t take elaborate math to justify eating.
So to recap: Eat less beef, waste less food. You can make it more complicated than that if you want, but everything else is gravy.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
And more of this week’s top renewable energy fights across the country.
1. Otsego County, Michigan – The Mitten State is proving just how hard it can be to build a solar project in wooded areas. Especially once Fox News gets involved.
2. Atlantic County, New Jersey – Opponents of offshore wind in Atlantic City are trying to undo an ordinance allowing construction of transmission cables that would connect the Atlantic Shores offshore wind project to the grid.
3. Benton County, Washington – Sorry Scout Clean Energy, but the Yakima Nation is coming for Horse Heaven.
Here’s what else we’re watching right now…
In Connecticut, officials have withdrawn from Vineyard Wind 2 — leading to the project being indefinitely shelved.
In Indiana, Invenergy just got a rejection from Marshall County for special use of agricultural lands.
In Kansas, residents in Dickinson County are filing legal action against county commissioners who approved Enel’s Hope Ridge wind project.
In Kentucky, a solar project was actually approved for once – this time for the East Kentucky Power Cooperative.
In North Carolina, Davidson County is getting a solar moratorium.
In Pennsylvania, the town of Unity rejected a solar project. Elsewhere in the state, the developer of the Newton 1 solar project is appealing their denial.
In South Carolina, a state appeals court has upheld the rejection of a 2,300 acre solar project proposed by Coastal Pine Solar.
In Washington State, Yakima County looks like it’ll keep its solar moratorium in place.
And more of this week’s top policy news around renewables.
1. Trump’s Big Promise – Our nation’s incoming president is now saying he’ll ban all wind projects on Day 1, an expansion of his previous promise to stop only offshore wind.
2. The Big Nuclear Lawsuit – Texas and Utah are suing to kill the Nuclear Regulatory Commission’s authority to license small modular reactors.
3. Biden’s parting words – The Biden administration has finished its long-awaited guidance for the IRA’s tech-neutral electricity credit (which barely changed) and hydrogen production credit.
A conversation with J. Timmons Roberts, executive director of Brown University’s Climate Social Science Network
This week’s interview is with Brown University professor J. Timmons Roberts. Those of you familiar with the fight over offshore wind may not know Roberts by name, but you’re definitely familiar with his work: He and his students have spearheaded some of the most impactful research conducted on anti-offshore wind opposition networks. This work is a must-read for anyone who wants to best understand how the anti-renewables movement functions and why it may be difficult to stop it from winning out.
So with Trump 2.0 on the verge of banning offshore wind outright, I decided to ask Roberts what he thinks developers should be paying attention to at this moment. The following interview has been lightly edited for clarity.
Is the anti-renewables movement a political force the country needs to reckon with?
Absolutely. In my opinion it’s been unfortunate for the environmental groups, the wind development, the government officials, climate scientists – they’ve been unwilling to engage directly with those groups. They want to keep a very positive message talking about the great things that come with wind and solar. And they’ve really left the field open as a result.
I think that as these claims sit there unrefuted and naive people – I don’t mean naive in a negative sense but people who don’t know much about this issue – are only hearing the negative spin about renewables. It’s a big problem.
When you say renewables developers aren’t interacting here – are you telling me the wind industry is just letting these people run roughshod?
I’ve seen no direct refutation in those anti-wind Facebook groups, and there’s very few environmentalists or others. People are quite afraid to go in there.
But even just generally. This vast network you’ve tracked – have you seen a similar kind of counter mobilization on the part of those who want to build these wind farms offshore?
There’s some mobilization. There’s something called the New England for Offshore Wind coalition. There’s some university programs. There’s some other oceanographic groups, things like that.
My observation is that they’re mostly staff organizations and they’re very cautious. They’re trying to work as a coalition. And they’re going as slow as their most cautious member.
As someone who has researched these networks, what are you watching for in the coming year? Under the first year of Trump 2.0?
Yeah I mean, channeling my optimistic and Midwestern dad, my thought is that there may be an overstepping by the Trump administration and by some of these activists. The lack of viable alternative pathways forward and almost anti-climate approaches these groups are now a part of can backfire for them. Folks may say, why would I want to be supportive of your group if you’re basically undermining everything I believe in?
What do you think developers should know about the research you have done into these networks?
I think it's important for deciding bodies and the public, the media and so on, to know who they’re hearing when they hear voices at a public hearing or in a congressional field hearing. Who are the people representing? Whose voice are they advancing?
It’s important for these actors that want to advance action on climate change and renewables to know what strategies and the tactics are being used and also know about the connections.
One of the things you pointed out in your research is that, yes, there are dark money groups involved in this movement and there are outside figures involved, but a lot of this sometimes is just one person posts something to the internet and then another person posts something to the internet.
Does that make things harder when it comes to addressing the anti-renewables movement?
Absolutely. Social media’s really been devastating for developing science and informed, rational public policymaking. It’s so easy to create a conspiracy and false information and very slanted, partial information to shoot holes at something as big as getting us off of fossil fuels.
Our position has developed as we understand that indeed these are not just astro-turf groups created by some far away corporation but there are legitimate concerns – like fishing, where most of it is based on certainty – and then there are these sensationalized claims that drive fears. That fear is real. And it’s unfortunate.
Anything else you’d really like to tell our readers?
I didn’t really choose this topic. I feel like it really got me. It was me and four students sitting in my conference room down the hall and I said, have you heard about this group that just started here in Rhode Island that’s making these claims we should investigate? And students were super excited about it and have really been the leaders.