You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
From what it means for America’s climate goals to how it might make American cars smaller again
The Biden administration just kicked off the next phase of the electric-vehicle revolution.
The Environmental Protection Agency unveiled Wednesday some of the world’s most aggressive climate rules on the transportation sector, a sweeping effort that aims to ensure that two-thirds of new cars, SUVs, and pickups — and one-quarter of new heavy-duty trucks — sold in the United States in 2032 will be all electric.
The rules, which are the most ambitious attempt to regulate greenhouse-gas pollution in American history, would put the country at the forefront of the global transition to electric vehicles. If adopted and enforced as proposed, the new standards could eventually prevent 10 billion tons of carbon pollution, roughly double America’s total annual emissions last year, the EPA says.
The rules would roughly halve carbon pollution from America’s massive car and truck fleet, the world’s third largest, within a decade. Such a cut is in line with Biden’s Paris Agreement goal of cutting carbon pollution from across the economy in half by 2030.
Transportation generates more carbon pollution than any other part of the U.S. economy. America’s hundreds of millions of cars, SUVs, pickups, 18-wheelers, and other vehicles generated roughly 25% of total U.S. carbon emissions last year, a figure roughly equal to the entire power sector’s.
In short, the proposal is a big deal with many implications. Here are seven of them.
Heatmap Illustration/Getty Images
Every country around the world must cut its emissions in half by 2030 in order for the world to avoid 1.5 degrees Celsius of temperature rise, according to the Intergovernmental Panel on Climate Change. That goal, enshrined in the Paris Agreement, is a widely used benchmark for the arrival of climate change’s worst impacts — deadly heat waves, stronger storms, and a near total die-off of coral reefs.
The new proposal would bring America’s cars and trucks roughly in line with that requirement. According to an EPA estimate, the vehicle fleet’s net carbon emissions would be 46% lower in 2032 than they stand today.
That means that rules of this ambition and stringency are a necessary part of meeting America’s goals under the Paris Agreement. The United States has pledged to halve its carbon emissions, as compared to its all-time high, by 2020. The country is not on track to meet that goal today, but robust federal, state, and corporate action — including strict vehicle rules — could help it get there, a recent report from the Rhodium Group, an energy-research firm, found.
Heatmap Illustration/Getty Images
Until this week, California and the European Union had been leading the world’s transition to electric vehicles. Both jurisdictions have pledged to ban sales of new fossil-fuel-powered cars after 2035 and set aggressive targets to meet that goal — although Europe recently watered down its commitment by allowing some cars to burn synthetic fuels.
The United States hasn’t issued a similar ban. But under the new rules, its timeline for adopting EVs will come close to both jurisdictions — although it may slightly lag California’s. By 2030, EVs will make up about 58% of new vehicles sold in Europe, according to the think tank Transportation & Environment; that is roughly in line with the EPA’s goals.
California, meanwhile, expects two-thirds of new car sales to be EVs by the same year, putting it ahead of the EPA’s proposal. The difference between California’s targets and the EPA’s may come down to technical accounting differences, however. The Washington Post has reported that the new EPA rules are meant to harmonize the national standards with California’s.
Heatmap Illustration/Getty Images
With or without the rules, the United States was already likely to see far more EVs in the future. Ford has said that it would aim for half of its global sales to be electric by 2030, and Stellantis, which owns Chrysler and Jeep, announced that half of its American sales and all its European sales must be all-electric by that same date. General Motors has pledged to sell only EVs after 2035. In fact, the EPA expects that automakers are collectively on track for 44% of vehicle sales to be electric by 2030 without any changes to emissions rules.
But every manufacturer is on a different timeline, and some weren’t planning to move quite this quickly. John Bozella, the president of Alliance for Automotive Innovation, has struck a skeptical note about the proposal. “Remember this: A lot has to go right for this massive — and unprecedented — change in our automotive market and industrial base to succeed,” he told The New York Times.
The proposed rules would unify the industry and push it a bit further than current plans suggest.
Heatmap Illustration/Getty Images
The EPA’s proposal would see sales of all-electric heavy trucks grow beginning with model year 2027. The agency estimates that by 2032, some 50% of “vocational” vehicles sold — like delivery trucks, garbage trucks, and cement mixers — will be zero-emissions, as well as 35% of short-haul tractors and 25% of long-haul tractor trailers. This would save about 1.8 billion tons of CO2 through 2055 — roughly equivalent to one year’s worth of emissions from the transportation sector.
But the proposal falls short of where the market is already headed, some environmental groups pointed out. “It’s not driving manufacturers to do anything,” said Paul Cort, director of Earthjustice’s Right to Zero campaign. “It’s following what’s happening in the market in a very conservative way.”
Last year, California passed rules requiring 60% of vocational truck sales and 40% of tractors to be zero-emissions by 2032. Daimler, the world’s largest truck manufacturer, has said that zero emissions trucks would make up 60% of its truck sales by 2030 and 100% by 2039. Volvo Trucks, another major player, said it aims for 50% of its vehicle deliveries to be electric by 2030.
Heatmap Illustration/Getty Images
One of the more interesting aspects of the new rules is that they pick up on a controversy that has been running on and off for the past 13 years.
In 2010, the Obama administration issued the first-ever greenhouse-gas regulations for light-duty cars, SUVs, and trucks. In order to avoid a Supreme Court challenge to the rules, the White House did something unprecedented: It got every automaker to agree to meet the standards even before they became law.
This was a milestone in the history of American environmental law. Because the automakers agreed to the rules, they were in effect conceding that the EPA had the legal authority to regulate their greenhouse-gas pollution in the first place. That shored up the EPA’s legal authority to limit greenhouse gases from any part of the economy, allowing the agency to move on to limiting carbon pollution from power plants and factories.
But that acquiescence came at a cost. The Obama administration agreed to what are called “vehicle footprint” provisions, which put its rules on a sliding scale based on vehicle size. Essentially, these footprint provisions said that a larger vehicle — such as a three-row SUV or full-sized pickup — did not have to meet the same standards as a compact sedan. What’s more, an automaker only had to meet the standards that matched the footprint of the cars it actually sold. In other words, a company that sold only SUVs and pickups would face lower overall requirements than one that also sold sedans, coupes, and station wagons.
Some of this decision was out of Obama’s hands: Congress had required that the Department of Transportation, which issues a similar set of rules, consider vehicle footprint in laws that passed in 2007 and 1975. Those same laws also created the regulatory divide between cars and trucks.
But over the past decade, SUV and truck sales have boomed in the United States, while the market for old-fashioned cars has withered. In 2019, SUVs outsold cars two to one; big SUVs and trucks of every type now make up nearly half the new car market. In the past decade, too, the crossover — a new type of car-like vehicle that resembles a light-duty truck — has come to dominate the American road. This has had repercussions not just for emissions, but pedestrian fatalities as well.
Researchers have argued that the footprint rules may be at least partially to blame for this trend. In 2018, economists at the University of Chicago and UC Berkeley argued Japan’s tailpipe rules, which also include a footprint mechanism, pushed automakers to super-size their cars. Modeling studies have reached the same conclusion about the American rules.
For the first time, the EPA’s proposal seems to recognize this criticism and tries to address it. The new rules make the greenhouse-gas requirements for cars and trucks more similar than they have been in the past, so as to not “inadvertently provide an incentive for manufacturers to change the size or regulatory class of vehicles as a compliance strategy,” the EPA says in a regulatory filing.
The new rules also tighten requirements on big cars and trucks so that automakers can’t simply meet the rules by enlarging their vehicles.
These changes may not reverse the trend toward larger cars. It might even reveal how much cars’ recent growth is driven by consumer taste: SUVs’ share of the new car market has been growing almost without exception since the Ford Explorer debuted in 1991. But it marks the first admission by the agency that in trying to secure a climate win, it may have accidentally created a monster.
Heatmap Illustration/Buenavista Images via Getty Images
The EPA is trumpeting the energy security benefits of the proposal, in addition to its climate benefits.
While the U.S. is a net exporter of crude — and that’s not expected to change in the coming decades — U.S. refineries still rely on “significant imports of heavy crude which could be subject to supply disruptions,” the agency notes. This reliance ties the U.S. to authoritarian regimes around the world and also exposes American consumers to wilder swings in gas prices.
But the new greenhouse gas rules are expected to severely diminish the country’s dependence on foreign oil. Between cars and trucks, the rules would cut crude oil imports by 124 million barrels per year by 2030, and 1 billion barrels in 2050. For context, the United States imported about 2.2 billion barrels of crude oil in 2021.
This would also be a turning point for gas stations. Americans consumed about 135 billion gallons of gasoline in 2022. The rules would cut into gas sales by about 6.5 billion gallons by 2030, and by more than 50 billion gallons by 2050. Gas stations are going to have to adapt or fade away.
Heatmap Illustration/Getty Images
Although it may seem like these new electric vehicles could tax our aging, stressed electricity grid, the EPA claims these rules won’t change the status quo very much. The agency estimates the rules would require a small, 0.4% increase in electricity generation to meet new EV demand by 2030 compared to business as usual, with generation needs increasing by 4% by 2050. “The expected increase in electric power demand attributable to vehicle electrification is not expected to adversely affect grid reliability,” the EPA wrote.
Still, that’s compared to the trajectory we’re already on. With or without these rules, we’ll need a lot of investment in new power generation and reliability improvements in the coming years to handle an electrifying economy. “Standards or no standards, we have to have grid operators preparing for EVs,” said Samantha Houston, a senior vehicles analyst at the Union of Concerned Scientists.
The reduction in greenhouse gas emissions from replacing gas cars will also far outweigh any emissions related to increased power demands. The EPA estimates that between now and 2055, the rules could drive up power plant pollution by 710 million metric tons, but will cut emissions from cars by 8 billion tons.
This article was last updated on April 13 at 12:37 PM ET.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Rob and Jesse get into the nitty gritty on China’s energy policy with Joanna Lewis and John Paul Helveston.
China’s industrial policy for clean energy has turned the country into a powerhouse of solar, wind, battery, and electric vehicle manufacturing.
But long before the country’s factories moved global markets — and invited Trump’s self-destructive tariffs — the country implemented energy and technology policy to level up its domestic industry. How did those policies work? Which tools worked best? And if the United States needs to rebuild in the wake of Trump’s tariffs, what should this country learn?
On this week’s episode of Shift Key, Rob and Jesse talk with two scholars who have been studying Chinese industrial policy since the Great Recession. Joanna Lewis is the Provost’s Distinguished Associate Professor of Energy and Environment and Director of the Science, Technology and International Affairs Program at Georgetown University's School of Foreign Service. She’s also the author of Green Innovation in China. John Paul Helveston is an assistant professor in engineering management and systems engineering at George Washington University. He studies consumer preferences and market demand for new technologies, as well as China’s longstanding gasoline car and EV industrial policy. Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: One kind of classical hard problem about industrial policy is selecting the technology that is going to eventually be a winner. And there’s a few ways to get around this problem. One is to just make lots of bets.
One thing that’s been a little unclear to me about the set of technology bets that China has made is that it has seemed to pick a set of technologies that are now extremely competitive globally, and it did seem to pick up on those technologies before Western governments or firms really got to them. Is that entirely because China just made a bunch of technology bets and it happened that these are the ones that worked out? Is it because China could look ahead to the environmental needs of the world and the clean development needs of the world and say, well, there’s probably going to be a need for solar? There’s probably going to be a need for wind? There’s probably going to be a need for EVs? Or is it a third thing, which is that China’s domestic needs, its domestic energy security needs, just happen to align really well with the direction of development that the world is kind of interested in moving in anyway.
John Paul Helveston: All of the above. I don’t know — like, that’s the answer here. I’ll add one thing that’s a little bit nuanced: There’s been tremendous waste. I’ll just put that out there. There’s been all kinds of investments that did not pan out at all, like semiconductors for a long, long time. Just things that didn’t work.
I think where China has had a lot of success is in areas where … It’s like the inverse of what the United States innovation ecosystem does well. China’s ecosystem is really driven around production, and a lot of that is part of the way the government’s set up, that local provinces have a ton of power over how money gets spent, and often repurpose funds for export-oriented production. So that’s been a piece of the engine of China’s economic miracle, is mass producing everything.
But there’s a lot of knowledge that goes along with that. When you look at things like solar, that technology goes back many, many decades for, you know, satellites. But making it a mass produced product for energy applications requires production innovations. You need to get costs down. You need to figure out how to make the machine that makes the machine. And that is something that the Chinese ecosystem does very well.
So that’s one throughline across all of these things, is that the technology got to a certain level of maturity where production improvements and cost decreases were the bigger things that made them globally competitive. I don’t think anyone would be considering an EV if we were still looking at $1,000 a kilowatt hour — and we were there just 15 years ago. And so that’s the big thing. It’s just production. I don’t know if they’ve been exceptionally good at just picking winners, but they’re good at picking things that can be mass produced.
Music for Shift Key is by Adam Kromelow.
That’s according to new research published today analyzing flows of minerals and metals vs. fossil fuels.
Among fossil fuel companies and clean energy developers, almost no one has been spared from the effects of Trump’s sweeping tariffs. But the good news is that in general, the transition to clean energy could create a world that is less exposed to energy price shocks and other energy-related trade risks than the world we have today.
That’s according to a timely study published in Nature Climate Change on Wednesday. The authors compared countries’ trade risks under a fossil fuel-based energy economy to a net-zero emissions economy, focusing on the electricity and transportation sectors. The question was whether relying on oil, gas, and coal for energy left countries more or less exposed than relying on the minerals and metals that go into clean energy technologies, including lithium, cobalt, nickel, and uranium.
First the researchers identified which countries have known reserves of which resources as well as those countries’ established trading partners. Then they evaluated more than a thousand pathways for how the world could achieve net-zero emissions, each with different amounts or configurations of wind, solar, batteries, nuclear, and electric vehicles, and measured how exposed to trade risks each country would be under each scenario.
Ultimately, they found that most countries’ overall trade risks decreased under net-zero emissions scenarios relative to today. “We have such a concentration of fossil resources in a few countries,” Steven Davis, a professor of Earth system science at Stanford and the lead author of the study, told me. Transition minerals, by contrast, are less geographically concentrated, so “you have this ability to hedge a little bit across the system.”
The authors’ metric for trade risk is a combination of how dependent a given country is on imports and how many trading partners it has for a given resource, i.e. how diverse its sourcing is. “If you have a large domestic supply of a resource, or you have a large trade network, and you can get that resource from lots of different trading partners, you're in a relatively better spot,” Davis said.
Of course, this is a weird time to conclude that clean energy is better equipped to withstand trade shocks. As my colleagues at Heatmap have reported, Trump’s tariffs are hurting the economics of batteries, renewables, and minerals production, whether domestic or not. The paper considers risks from “random and isolated trade shocks,” Davis told me, like losing access to Bolivian lithium due to military conflict or a natural disaster. Trump’s tariffs, by contrast, are impacting everything, everywhere, all at once.
Davis embarked on the study almost two years ago after working as a lead author of the mitigation section of the Fifth National Climate Assessment, a report delivered to Congress every four years. A lot of the chapter focused on the economics of switching to solar and wind and trying to electrify as many end uses of energy as possible, but it also touched on considerations such as environmental justice, water, land, and trade. “There's this concern of having access to some of these more exotic materials, and whether that could be a vulnerability,” he told me. “So we said, okay, but we also know we're going to be trading a lot less fossil fuels, and that is probably going to be a huge benefit. So let's try to figure out what the net effect is.”
The study found that some more affluent countries, including the United States, could see their energy security decline in net-zero scenarios unless their trade networks expand. The U.S. owns 23% of the fossil reserves used for electricity generation, but only 4% of the critical materials needed for solar panels and wind turbines.
One conclusion for Davis was that the U.S. should be much more strategic about its trade partnerships with countries in South America and Sub-Saharan Africa. Companies are already starting to invest in developing mineral resources in those regions, but policymakers should make a concerted effort to develop those trade relationships, as well. The study also discusses how governments can reduce trade risks by investing in recycling infrastructure and in research to reduce the material intensity of clean energy technologies.
Davis also acknowledged that focusing on the raw materials alone oversimplifies the security question. It also matters where the minerals are processed, and today, a lot of that processing happens in China, even for minerals that don’t originate there. That means it will also be important to build up processing capacity elsewhere.
One caveat to the paper is that comparing the trade risks of fossil fuels and clean energy is sort of apples and oranges. A fossil fuel-based energy system requires the raw resource — fuel — to operate. But a clean energy system mostly requires the raw materials in the manufacturing and construction phase. Once you have solar panels and wind turbines, you don’t need continuous commodity inputs to get energy out of them. Ultimately, Davis said, the study’s conclusions about the comparative trade risks are probably conservative.
“Interrupting the flow of some of these transition materials could slow our progress in getting to the net zero future, but it would have much less of an impact on the actual cost of energy to Americans,” he said. “If we can successfully get a lot of these things built, then I think that's going to be a very secure situation.”
Businesses were already bracing for a crash. Then came another 50% tariff on Chinese goods.
When I wrote Heatmap’s guide to driving less last year, I didn’t anticipate that a good motivation for doing so would be that every car in America was about to get a lot more expensive.
Then again, no one saw the breadth and depth of the Trump administration’s tariffs coming. “We would characterize this slate of tariffs as ‘worse than the worst case scenario,’” one group of veteran securities analysts wrote in a note to investors last week, a sentiment echoed across Wall Street and reflected in four days of stock market turmoil so far.
But if the economic downturn has renewed your interest in purchasing a bike or e-bike, you’ll want to act fast — and it may already be too late. Because Trump’s “Liberation Day” tariffs stack on top of his other tariffs and duties, the U.S. bicycle trade association PeopleForBikes calculated that beginning on April 9, the day the newest tariffs come into effect, the duty on e-bikes from China would be 79%, up from nothing at all under President Biden. The tariff on most non-electric bikes from China, meanwhile, would spike to 90%, up from 11% on January 1 of this year. Then on Tuesday, the White House announced that it would add another 50% tariff on China on top of that whole tariff stack, starting Wednesday, in retaliation for Beijing’s counter-tariffs.
Prior to the latest announcement, Jay Townley, a founding partner of the cycling industry consulting firm Human Powered Solutions, had told me that if the Trump administration actually followed through on a retaliatory 50% tariff on top of those duties, then “we’re out of business because nobody can afford to bring in a bicycle product at 100% or more in tariffs.”
It’s difficult to overstate how existential the tariffs are for the bicycle industry. Imports account for 97% of the bikes purchased in the United States, of which 87% come from China, making it “one of the most import-dependent and China-dependent industries in the U.S.,” according to a 2021 analysis by the Coalition for a Prosperous America, which advocates for trade-protectionist policies.
Many U.S. cycling brands have grumbled for years about America’s relatively generous de minimis exemption, a policy of waiving duties on items valued at less than $800. The loophole — which is what enables shoppers to buy dirt-cheap clothes from brands like Temu, Shein, and Alibaba — has also allowed for uncertified helmets and non-compliant e-bikes and e-bike batteries to flood the U.S. market. These batteries, which are often falsely marketed as meeting international safety standards, have been responsible for deadly e-bike fires in places like New York City. “A going retail for a good lithium-ion replacement battery for an e-bike is $800 to $1,000,” Townley said. “You look online, and you’ll see batteries at $350, $400, that come direct to you from China under the de minimis exemption.”
Cyclingnews reported recently that Robert Margevicius, the executive vice president of the American bicycle giant Specialized, had filed a complaint with the Trump administration over losing “billions in collectable tariffs” through the loophole. A spokesperson for Specialized defended Margevicius’ comment by calling it an “industry-wide position that is aligned with PeopleForBikes.” (Specialized did not respond to a request for clarification from Heatmap, though a spokesperson told Cyclingnews that de minimis imports permit “unsafe products and intellectual property violation.” PeopleForBikes’ general and policy counsel Matt Moore told me in an email that “we have supported reforming the way the U.S. treats low-value de minimis imports for several years.”)
Trump indeed axed China’s de minimis exemption as part of his April 2 tariffs — a small win for the U.S. bicycle brands. But any protection afforded by duties on cheap imported bikes and e-bikes will be erased by the damage from high tariffs imposed on China and other Asian countries. Fewer than 500,000 bicycles in a 10 million-unit market are even assembled in the United States, and essentially none is entirely manufactured here. “We do not know how to make a bike,” Townley told me flatly. Though a number of major U.S. brands employ engineers to design their bikes, when it comes to home-shoring manufacturing, “all of that knowledge resides in Taiwan, China, Vietnam. It isn’t here.”
In recent years, Chinese factories had become “very proficient at shipping goods from third-party countries” in order to avoid European anti-dumping duties, as well as leftover tariffs from Trump’s first term, Rick Vosper, an industry veteran and columnist at Bicycle Retailer and Industry News, told me. “Many Chinese companies built bicycle assembly plants in Vietnam specifically so the sourcing sticker would not say ‘made in China,’” he added. Of course, those bikes and component parts are now also subject to Trump’s tariffs, which are as high as 57% for Vietnam, 60% for Cambodia, and 43% for Taiwan for most bikes. (A potential added tariff on countries that import oil from Venezuela could bump them even higher.)
The tariffs could not come at a worse time for the industry. 2019 marked one of the slowest years for the U.S. specialty retail bike business in two decades, so when COVID hit — and suddenly everyone wanted a bicycle as a way of exercising and getting around — there was “no inventory to be had, but a huge influx of customers,” Vosper told me. In response, “major players put in huge increases in their orders.”
But by 2023, the COVID-induced demand had evaporated, leaving suppliers with hundreds of millions of dollars in inventory that they couldn’t move. Even by discounting wholesale prices below their own cost to make the product and offering buy-one-get-one deals, dealers couldn’t get the bikes off their hands. “All the people who wanted to buy a bike during COVID have bought a bike and are not ready to buy another one anytime soon,” Vosper said.
Going into 2025, many retailers were still dealing with the COVID-induced bicycle glut; Mike Blok, the founder of Brooklyn Carbon Bike Company in New York City, told me he could think of three or four tristate-area shops off the top of his head that have closed in recent months because they were sitting on inventory.
Blok, however, was cautiously optimistic about his own position. While he stressed that he isn’t a fan of the tariffs, he also largely sells pre-owned bikes. On the low end of the market, the tariffs will likely raise prices no more than about $15 or $20, which might not make much of a difference to consumer behavior. But for something like a higher-end carbon fiber bike, which can run $2,700 or higher and is almost entirely produced in Taiwan, the tariffs could mean an increase of hundreds of dollars for customers. “I think what that will mean for me is that more folks will be open to the pre-owned option,” Blok said, although he also anticipates his input costs for repairs and tuning will go up.
But there’s a bigger, and perhaps even more obvious, problem for bike retailers beyond their products becoming more expensive. “What I sell is not a staple good; people don’t need a bike,” Blok reminded me. “So as folks’ discretionary income diminishes because other things become more expensive, they’ll have less to spend on discretionary items.”
Townley, the industry consultant, confirmed that many major cycling brands had already seen the writing on the wall before Trump announced his tariffs and begun to pivot to re-sale. Bicycling Magazine, a hobbyist publication, is even promoting “buying used” as one of its “tips to help you save” under Trump’s tariffs. Savvy retailers might be able to pivot and rely on their service, customer loyalty, and re-sale businesses to stay afloat during the hard days ahead; Moore of PeopleForBikes also noted that “repair services may increase” as people look to fix what they already have.
And if you don’t have a bike or e-bike but were thinking about getting one as a way to lighten your car dependency, decarbonize your life, or just because they’re cool, “there are still good values to be found,” Moore went on. “Now is a great time to avoid a likely increase in prices.” Townley anticipated that depending on inventory, we’re likely 30 to 40 days away from seeing prices go up.
In the meantime, cycling organizations are scrambling to keep their members abreast of the coming changes. “PeopleForBikes is encouraging our members to contact their elected representatives about the very real impacts these tariffs will have on their companies and our industry,” Moore told me. The National Bicycle Dealers Association, a nonprofit supporting specialty bicycle retailers, has teamed up with the D.C.-based League of American Bicyclists, a ridership organization, to explore lobbying lawmakers for the first time in decades in the hopes that some might oppose the tariffs or explore carve-outs for the industry.
But Townley, whose firm Human Powered Solutions is assisting in NBDA’s effort, shared a grim conversation he had at a recent trade show in Las Vegas, where a new board member at a cycling organization had asked him “what can we do” about Trump’s tariffs.
“I said, ‘You’re out of time,” Townley recalled. “There isn’t much that can be done. All we can do is react.”