Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Electric Vehicles

Why It’s Hard to Build EVs for Range Instead of Power

If you want an EV with great range, just drive slowly.

An electric car.
Heatmap Illustration/Getty Images

The last gas car I owned was underpowered. Equipped with a four-speed stick shift and an undeserved spoiler, the 1994 Ford Escort eked out all of 100 horsepower. It got you there, but it huffed a little on the way.

My current vehicle has no such struggles. The Tesla Model 3 accelerates happily thanks to its 269 horsepower, a figure that lives toward the lower end of modern EVs. It zips away from a red light thanks to the physics of a battery-powered car.

“The nice thing about electric vehicles is, they can provide full torque at zero speed, which internal combustion vehicles can't do. And that's one of the reasons why they have those improvements in terms of acceleration,” says Heath Hofmann, a professor of electrical engineering at the University of Michigan who has consulted with companies including Tesla.

The tale of my two cars is the story of the last half-century of auto engineering. Carmakers got good at delivering more power, so much so that someone behind the wheel of a family car today has as much horsepower at their feet as some sports cars of the late ‘80s and early 90s. Americans came to expect it. And now, in the burgeoning EV space, automakers chase Tesla’s success in selling electric vehicles on muscle and sex appeal by cranking out a new slate of EVs with lightning-fast zero-to-sixty times.

The green machines meant to reduce our transportation carbon emissions have become speed demons. But the specter of Americans driving mostly amped-up, super-heavy electric vehicles that are more dangerous to everyone around them has led many experts — including the chief of the National Transportation Safety Board — to fret about the direction of the EV revolution. It’s enough to make you wonder whether the swole EV could, or should, be tamed.

All that quickness comes in handy during a highway merge, sure. But like a lot of current combustion cars, the new electric vehicles are overpowered for daily driving situations, capable of acceleration bursts and top speeds that are impractical or illegal on public roads. At the same time, they also have a range problem. Extending how far they travel per charge would enhance driving quality of life, allowing people to drive further, and use their energy for ancillary applications, with less anxiety about running out.

Could the car companies churn out EVs that are optimized to go far instead of fast? Well, they could. Hofmann explains that an EV’s power depends not only on how much energy it can draw from the battery at a given time, but also on its drivetrain components, especially its electric motors. The most straightforward way to rein in an electric vehicle — to emphasize range and battery life at the expense of acceleration — would be to give it smaller motors that simply wouldn't allow for inefficient, aggressive driving. It’s (roughly) analogous to putting a smaller engine in a combustion car as opposed to a snarling, gas-guzzling block.

There are a couple of problems with that, though, starting with the car market. Last week, GM CEO Mary Barra said that electric cars under $40,000 still aren’t profitable, which is why there are so few. Vehicles that command prices above that mark are typically big, powerful machines, not economy cars whose zoom-zoom has been curtailed. Americans won’t pony up for wimpy cars.

Hofmann says there’s also an engineering quirk to consider. It turns out, he tells me, that larger electric motors tend to be more efficient than smaller ones. As a result, you might actually save a little energy by having big motors in your car, but using them conservatively, than by installing small motors that constrain your lead-footedness.

This leads us back to a familiar axiom: It’s not the car, but the driver. Much of the old wisdom about efficient driving is as true for EVs as it was for gas-burners: Driving slower saves energy, as does properly inflated tires, maintaining a constant speed instead of frequently stopping and starting, and turning down energy-sucking applications like climate control. Many new EVs reveal this truth in real time: They calculate exactly how many miles of battery life you cost yourself by driving 10 mph over the speed limit or running the air conditioning at full blast.

Speed is the big one, Hofmann says. Given that larger motors can be more efficient than small ones, the best thing to do for promoting EV range and efficiency may be to give drivers the power and hope they use it cautiously. The top-down way to make EVs go farther and drive safer would be for governments to change speed limit laws or mandate vehicles be electronically prevented from exceeding certain speeds, which unearths draconian memories of the “I Can’t Drive 55” 1970s and 80s.

It works. When I’ve driven my own EV on slower state highways — and stuck to the speed limit — I’ve been taken aback by how much I stretch the battery. That doesn’t mean a nation of speed limit flouters would happily comply.

“Really, if you wanted to force the cars to be efficient, you would limit them to go no faster than 55 miles an hour, right? Not too many people are gonna be okay with that,” Hofmann says.

Blue

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Climate

AM Briefing: NOAA Nominee Vows to Fill Forecaster Vacancies

On Neil Jacobs’ confirmation hearing, OBBBA costs, and Saudi Aramco

Would-be NOAA Administrator Vows to Fill Forecaster Vacancies
Heatmap Illustration/Getty Images

Current conditions: Temperatures are climbing toward 100 degrees Fahrenheit in central and eastern Texas, complicating recovery efforts after the floodsMore than 10,000 people have been evacuated in southwestern China due to flooding from the remnants of Typhoon DanasMebane, North Carolina, has less than two days of drinking water left after its water treatment plant sustained damage from Tropical Storm Chantal.

THE TOP FIVE

1. Trump’s nominee to head NOAA vows to fill staffing vacancies

Neil Jacobs, President Trump’s nominee to head the National Oceanic and Atmospheric Administration, fielded questions from the Senate Commerce, Science, and Transportation Committee on Wednesday about how to prevent future catastrophes like the Texas floods, Politico reports. “If confirmed, I want to ensure that staffing weather service offices is a top priority,” Jacobs said, even as the administration has cut more than 2,000 staff positions this year. Jacobs also told senators that he supports the president’s 2026 budget, which would further cut $2.2 billion from NOAA, including funding for the maintenance of weather models that accurately forecast the Texas storms. During the hearing, Jacobs acknowledged that humans have an “influence” on the climate, and said he’d direct NOAA to embrace “new technologies” and partner with industry “to advance global observing systems.”

Keep reading...Show less
Yellow
Climate Tech

What’s Left of the LPO After the One Big Beautiful Bill?

Some of the Loan Programs Office’s signature programs are hollowed-out shells.

Blurred money.
Heatmap Illustration/Getty Images

With a stroke of President Trump’s Sharpie, the One Big Beautiful Bill Act is now law, stripping the Department of Energy’s Loan Programs Office of much of its lending power. The law rescinds unobligated credit subsidies for a number of the office’s key programs, including portions of the $3.6 billion allocated to the Loan Guarantee Program, $5 billion for the Energy Infrastructure Reinvestment Program, $3 billion for the Advanced Technology Vehicle Manufacturing Program, and $75 million for the Tribal Energy Loan Guarantee Program.

Just three years ago, the Inflation Reduction Act supercharged LPO, originally established in 2005 to help stand up innovative new clean energy technologies that weren’t yet considered bankable for the private sector, expanding its lending authority to roughly $400 billion. While OBBBA leaves much of the office’s theoretical lending authority intact, eliminating credit subsidies means that it no longer really has the tools to make use of those dollars.

Keep reading...Show less
Electric Vehicles

Can EVs Relieve Our Need to Speed?

Electric vehicle batteries are more efficient at lower speeds — which, with electricity prices rising, could make us finally slow down.

A Tesla as a snail.
Heatmap Illustration/Tesla, Getty Images

The contours of a 30-year-old TV commercial linger in my head. The spot, whose production value matched that of local access programming, aired on the Armed Forces Network in the 1990s when the Air Force had stationed my father overseas. In the lo-fi video, two identical military green vehicles are given the same amount of fuel and the same course to drive. The truck traveling 10 miles per hour faster takes the lead, then sputters to a stop when it runs out of gas. The slower one eventually zips by, a mechanical tortoise triumphant over the hare. The message was clear: slow down and save energy.

That a car uses a lot more energy to go fast is nothing new. Anyone who remembers the 55 miles per hour national speed limit of the 1970s and 80s put in place to counter oil shortages knows this logic all too well. But in the time of electric vehicles, when driving too fast slashes a car’s range and burns through increasingly expensive electricity, the speed penalty is front and center again. And maybe that’s not a bad thing.

Keep reading...Show less