Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Podcast

Shift Key Summer School: How Sun and Wind Become Electricity

Jesse teaches Rob all about where solar and wind energy come from.

Early solar panels.
Heatmap Illustration/Getty Images

The two fastest-growing sources of electricity generation in the world represent a radical break with the energy technologies that came before them. That’s not just because their fuels are the wind and the sun.

This is our third episode of Shift Key Summer School, a series of “lecture conversations” about the basics of energy, electricity, and the power grid. This week, we dive into the history and mechanics of wind turbines and solar panels, the two lynchpin technologies of the energy transition. What do solar panels have in common with semiconductors? Why did it take so long for them to achieve scale? And what’s an inverter and why is it so important for the grid of the future?

Shift Key is hosted by Jesse Jenkins, a professor of energy systems engineering at Princeton University, and Robinson Meyer, Heatmap’s executive editor.

Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, YouTube, or wherever you get your podcasts.

You can also add the show’s RSS feed to your podcast app to follow us directly.

Here is an excerpt from our conversation:

Jesse Jenkins: And so then the other thing, of course, that helps is putting it at a place that’s sunnier, right? In addition to pointing it at the sun, you need to have the sun in the first place. If you go from a cloudy northern latitude to a sunny southern latitude, you’re going to get more production. That variation isn’t as large as you might think, though, from the best site in, say, Arizona and New Mexico to the worst 10th percentile sites in northern Maine or Portland, Oregon, where I grew up, where it’s very cloudy. That difference in solar resource potential is only about a factor of two. So I get about twice as much solar output from an ideally placed panel in Arizona as I do in Portland, Oregon, or Portland, Maine. That’s a lot, but we can find much better resources much closer to Portland, Maine, and Portland, Oregon, right?

And so this is why it doesn’t really make sense to build a giant solar farm in Arizona and then send all that power everywhere else in the country — because the transmission lines are so expensive and the efficiency gain is not that huge, it doesn’t make sense to send power that far away. It might make sense to put my solar panel on the east side of the Cascade Mountains and send them to Portland, Oregon, but not to go all the way to Arizona. Because the variation in solar potential is much more gradual across different locations and doesn’t span quite as much of a range as wind power, which we can talk about.

Robinson Meyer: I was going to say, this idea that solar only varies by, it sounds like, about 100% in its efficiency.

Jenkins: Or capacity factor.

Meyer: Yeah. I suspect, in fact, from previous conversations that this is going to be an important tool that comes back later — this idea that solar only really varies by 100% in its resource potential, that Arizona solar is only twice as good as Maine solar, is going to be really important after we talk about wind.

Mentioned:

How Solar Energy Became Cheap, by Gregory F. Nemet

More on what wind energy has to do with Star Trek

This episode of Shift Key is sponsored by …

Accelerate your clean energy career with Yale’s online certificate programs. Gain real-world skills, build strong networks, and keep working while you learn. Explore the year-long Financing and Deploying Clean Energy program or the 5-month Clean and Equitable Energy Development program. Learn more here.

Music for Shift Key is by Adam Kromelow.

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
AM Briefing

The Atomic LPO

On ravenous data centers, treasured aluminum trash, and the drilling slump

Three Mile Island.
Heatmap Illustration/Getty Images

Current conditions: The West Coast’s parade of storms continues with downpours along the California shoreline, threatening mudslides • Up to 10 inches of rain is headed for the Ozarks • Temperatures climbed beyond 50 degrees Fahrenheit in Greenland this week before beginning a downward slide.

THE TOP FIVE

1. Trump grants his first LPO loan

The Department of Energy’s Loan Programs Office just announced a $1 billion loan to finance Microsoft’s restart of the functional Unit 1 reactor at the Three Mile Island nuclear plant. The funding will go to Constellation, the station’s owner, and cover the majority of the estimated $1.6 billion restart cost. If successful, it’ll likely be the nation’s second-ever reactor restart, assuming Holtec International’s revival of the Palisades nuclear plant goes as planned in the next few months. While the Trump administration has rebranded several loans brokered under its predecessor, this marks the first completely new deal sanctioned by the Trump-era LPO, a sign of Energy Secretary Chris Wright’s recent pledge to focus funding on nuclear projects. It’s also the first-ever LPO loan to reach conditional commitment and financial close on the same day.

Keep reading...Show less
Blue
Podcast

How Clean Energy Could Prepare for an AI Bubble

Rob and Jesse talk data center finance with the Center for Public Enterprise’s Advait Arun.

A data center.
Heatmap Illustration/Getty Images

The boom in artificial intelligence has become entangled with the clean energy industry over the past 18 months. Tech companies are willing to pay a lot for electricity — especially reliable zero-carbon electricity — and utilities and energy companies have been scrambling to keep up.

But is that boom more like a bubble? And if so, what does that mean for the long-term viability of AI companies and data center developers, and for the long-term health of decarbonization?

Keep reading...Show less
Yellow
Politics

Democrats’ New Affordability Message Is Complicating Climate Policy

The transition to clean energy will be expensive today, even if it’ll be cheaper in the long run.

Sherrill, Shapiro, Mamdani, and Newsom.
Heatmap Illustration/Getty Images

Democrats have embraced a new theory of how to win: run on affordability and cost-of-living concerns while hammering Donald Trump for failing to bring down inflation.

There’s only one problem: their own climate policies.

Keep reading...Show less
Blue