Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Podcast

Shift Key Summer School: How Sun and Wind Become Electricity

Jesse teaches Rob all about where solar and wind energy come from.

Early solar panels.
Heatmap Illustration/Getty Images

The two fastest-growing sources of electricity generation in the world represent a radical break with the energy technologies that came before them. That’s not just because their fuels are the wind and the sun.

This is our third episode of Shift Key Summer School, a series of “lecture conversations” about the basics of energy, electricity, and the power grid. This week, we dive into the history and mechanics of wind turbines and solar panels, the two lynchpin technologies of the energy transition. What do solar panels have in common with semiconductors? Why did it take so long for them to achieve scale? And what’s an inverter and why is it so important for the grid of the future?

Shift Key is hosted by Jesse Jenkins, a professor of energy systems engineering at Princeton University, and Robinson Meyer, Heatmap’s executive editor.

Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, YouTube, or wherever you get your podcasts.

You can also add the show’s RSS feed to your podcast app to follow us directly.

Here is an excerpt from our conversation:

Jesse Jenkins: And so then the other thing, of course, that helps is putting it at a place that’s sunnier, right? In addition to pointing it at the sun, you need to have the sun in the first place. If you go from a cloudy northern latitude to a sunny southern latitude, you’re going to get more production. That variation isn’t as large as you might think, though, from the best site in, say, Arizona and New Mexico to the worst 10th percentile sites in northern Maine or Portland, Oregon, where I grew up, where it’s very cloudy. That difference in solar resource potential is only about a factor of two. So I get about twice as much solar output from an ideally placed panel in Arizona as I do in Portland, Oregon, or Portland, Maine. That’s a lot, but we can find much better resources much closer to Portland, Maine, and Portland, Oregon, right?

And so this is why it doesn’t really make sense to build a giant solar farm in Arizona and then send all that power everywhere else in the country — because the transmission lines are so expensive and the efficiency gain is not that huge, it doesn’t make sense to send power that far away. It might make sense to put my solar panel on the east side of the Cascade Mountains and send them to Portland, Oregon, but not to go all the way to Arizona. Because the variation in solar potential is much more gradual across different locations and doesn’t span quite as much of a range as wind power, which we can talk about.

Robinson Meyer: I was going to say, this idea that solar only varies by, it sounds like, about 100% in its efficiency.

Jenkins: Or capacity factor.

Meyer: Yeah. I suspect, in fact, from previous conversations that this is going to be an important tool that comes back later — this idea that solar only really varies by 100% in its resource potential, that Arizona solar is only twice as good as Maine solar, is going to be really important after we talk about wind.

Mentioned:

How Solar Energy Became Cheap, by Gregory F. Nemet

More on what wind energy has to do with Star Trek

This episode of Shift Key is sponsored by …

Accelerate your clean energy career with Yale’s online certificate programs. Gain real-world skills, build strong networks, and keep working while you learn. Explore the year-long Financing and Deploying Clean Energy program or the 5-month Clean and Equitable Energy Development program. Learn more here.

Music for Shift Key is by Adam Kromelow.

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Energy

Electricity Markets Aren’t Working Anymore

Why regional transmission organizations as we know them might not survive the data center boom.

Data servers and graphs.
Heatmap Illustration/Getty Images

As the United States faces its first significant increase in electricity demand in decades, the grid itself is not only aging, but also straining against the financial, logistical, and legal barriers to adding new supply. It’s enough to make you wonder: What’s the point of an electricity market, anyway?

That’s the question some stakeholders in the PJM Interconnection, America’s largest electricity market, started asking loudly and in public in response to the grid operator’s proposal that new large energy users could become “non-capacity backed load,” i.e. be forced to turn off if ever and whenever PJM deems it necessary.

Keep reading...Show less
Green
Sparks

Trump Just Suffered His First Loss on Offshore Wind

A judge has lifted the administration’s stop-work order against Revolution Wind.

Donald Trump and wind turbines.
Heatmap Illustration/Getty Images

A federal court has lifted the Trump administration’s order to halt construction on the Revolution Wind farm off the coast of New England. The decision marks the renewables industry’s first major legal victory against a federal war on offshore wind.

The Interior Department ordered Orsted — the Danish company developing Revolution Wind — to halt construction of Revolution Wind on August 22, asserting in a one-page letter that it was “seeking to address concerns related to the protection of national security interests of the United States and prevention of interference with reasonable uses of the exclusive economic zone, the high seas, and the territorial seas.”

Keep reading...Show less
Blue
Ideas

Permitting Reform Is Hard. This Is Easier.

Harmonizing data across federal agencies will go a long, long way toward simplifying environmental reviews.

The Capitol.
Heatmap Illustration/Getty Images

Comprehensive permitting reform remains elusive.

In spite of numerous promising attempts — the Fiscal Responsibility Act of 2023, for instance, which delivered only limited improvements, and the failed Manchin-Barrasso bill of last year — the U.S. has repeatedly failed to overhaul its clogged federal infrastructure approval process. Even now there are draft bills and agreements in principle, but the Trump administration’s animus towards renewable energy has undermined Democratic faith in any deal. Less obvious but no less important, key Republicans are quietly disengaged, hesitant to embrace the federal transmission reform that negotiators see as essential to the package.

Keep reading...Show less
Green