Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Technology

Lithios Raises $12 Million to Unlock New Sources of Lithium

The seed funding will help it build up to commercial production.

Lithios technology.
Heatmap Illustration/Lithios, Getty Images

With the markets for electric vehicles and battery energy storage systems on the come-up, energy market analysts predict that the world is hurtling towards a global lithium shortage by the 2030’s. Lithios, a Massachusetts-based startup with a novel method of lithium extraction, is aiming to help by unlocking previously untapped lithium resources around the world.

The company just raised a $12 million seed round to help fund this mission, led by Clean Energy Ventures with support from Lowercarbon Capital, among others. The round included $10 million in venture funding and $2 million in venture debt loans from Silicon Valley Bank.

It’s not as if the world actually lacks for lithium, the energy dense mineral that is the primary component in lithium-ion batteries. It’s just that many current reserves are too low-grade to be economically exploited, and traditional extraction methods are land-intensive, inefficient, and often controversial with local communities. Chile, Australia, and China dominate the market, while the U.S. contributes less than 2% of the world’s annual supply.

Lithios aims to make it more economical and environmentally friendly to extract lithium from salty groundwater deposits, a.k.a. brines. The company’s CEO, Mo Alkhadra, told me that while about two-thirds of the world’s lithium is contained in brine rather than hard rock, only about 15% to 20% of these brines are currently worth mining. Lithios, he said, will get that number up to around 80% to 85%, in theory. “The vision with Lithios’ tech is to enable access to these lower-grade resources at a similar or maybe slightly higher cost structure relative to the highest grade deposits that are mined today,” Alkhadra explained.

The normal lithium brine extraction process involves pumping saline water from underground reservoirs to the surface, where it’s then moved through a series of large, wildly colored evaporation ponds, often located in the middle of vast salt deserts. Over a period of about 18 months, the sun slowly evaporates the brine, leaving behind increasingly high concentrations of lithium. But Lithios’ tech avoids these ponds altogether. Instead, the brine is pumped to the surface and delivered directly to the company’s refrigerator-sized electrochemical reactors, which contain stacks of electrodes that capture the lithium.

While the company wouldn't disclose the electrodes’ exact chemistry, Alkhadra told me they are made from “inorganic compounds which have geometries that fit basically only lithium and none of the other larger ions that you would find in these brine mixtures.” After lithium is extracted, the company produces a purified lithium concentrate and sends that off for refining into battery chemicals. The final batteries could end up in EVs, energy storage systems, or even just plain old portable consumer electronics.

Lithios’ tech comes at a good time, as the Inflation Reduction Act’s domestic content requirements for EVs incentivizes manufacturers to source critical minerals from the U.S. and countries that the U.S. has free trade agreements with. Alkhadra told me that Lithios could open up opportunities for brine mining in the Smackover formation, which spans a number of southern states including Texas and Arkansas, the Salton Sea area, which has been dubbed “Lithium Valley,” as well as deposits in Utah and Nevada. More areas in Canada and Europe could also be in play. (The company said it couldn’t talk yet about any specific partnership agreements.)

While there are a number of other companies such as Lilac Solutions and EnergyX that are also pursuing more efficient and less land-intensive brine-based extraction methods, they rely on a different, purely chemical process known as direct lithium extraction, which uses technology adapted from the water treatment industry. “The core thesis around what we're building at Lithios stems from that work,” Alkhadra told me, explaining that electrifying these chemical processes makes them “much more selective, energy efficient, and water efficient” — resulting in “modest to significant cost reduction.”

Lithios’ new funding will help the company scale its research and development efforts as well as build out a pilot facility in Medford, Massachusetts, with initial production to begin in the first quarter of next year. At first, output will be limited to just “several battery packs” per year, Alkhadra told me, scaling up to commercial production “in the coming years.”

Alkhadra is excited to see investors and the federal government alike beginning to express interest in the upstream, “dirtier” portions of the battery supply chain, which he told me have generally been overlooked in favor of downstream sectors such as battery manufacturing and cell production. “I think the U.S. departments of both energy and defense, and investors too, are coming to realize that the real bottlenecks in battery manufacturing and EV production are on the resource side.”

Yellow

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Politics

AM Briefing: The Vote-a-Rama Drags On

On sparring in the Senate, NEPA rules, and taxing first-class flyers

The Megabill’s Clean Energy Holdouts
Heatmap Illustration/Getty Images

Current conditions: A hurricane warning is in effect for Mexico as the Category 1 storm Flossie approaches • More than 50,000 people have been forced to flee wildfires raging in Turkey • Heavy rain caused flash floods and landslides near a mountain resort in northern Italy during peak tourist season.

THE TOP FIVE

1. Senate Republicans spar over megabill’s clean energy policies

Senate lawmakers’ vote-a-rama on the GOP tax and budget megabill dragged into Monday night and continues Tuesday. Republicans only have three votes to lose if they want to get the bill through the chamber and send it to the House. Already Senators Thom Tillis and Rand Paul are expected to vote against it, and there are a few more holdouts for whom clean energy appears to be one sticking point. Senator Lisa Murkowski of Alaska, for example, has put forward an amendment (together with Iowa Senators Joni Ernst and Chuck Grassley) that would eliminate the new renewables excise tax, and phase out tax credits for solar and wind gradually (by 2028) rather than immediately, as proposed in the original bill. “I don’t want us to backslide on the clean energy credits,” Murkowski told reporters Monday. E&E News reported that the amendment could be considered on a simple majority threshold. (As an aside: If you’re wondering why wind and solar need tax credits if they’re so cheap, as clean energy advocates often emphasize, Heatmap’s Emily Pontecorvo has a nice explainer worth reading.)

Keep reading...Show less
Yellow
Climate Tech

Lyten Is Acquiring Northvolt’s Energy Storage Manufacturing ​Plant

It’s the largest facility of its kind of Europe and will immediately make the lithium-sulfur battery startup a major player.

A Lyten battery in Poland.
Heatmap Illustration/Getty Images, Lyten

Lyten, the domestic lithium-sulfur battery company, has officially expanded into the European market, announcing that it has acquired yet another shuttered Northvolt facility. Located in Gdansk, Poland, this acquisition represents a new direction for the company: Rather than producing battery cells — as Lyten’s other U.S.-based facilities will do — this 270,000 square foot plant is designed to produce complete battery energy storage systems for the grid. Currently, it’s the largest energy storage manufacturing facility in Europe, with enough equipment to ramp up to 6 gigawatt-hours of capacity. This gives Lyten the ability to become — practically immediately — a major player in energy storage.

“We were very convinced that we needed to be able to build our own battery energy storage systems, so the full system with electronics and switch gear and safety systems and everything for our batteries to go into,” Keith Norman, Lyten’s chief sustainability and marketing officer, told me. “So this opportunity became very, very well aligned with our strategy.”

Keep reading...Show less
Blue
Energy

If Wind and Solar Are So Cheap, Why Do They Need Tax Credits?

Removing the subsidies would be bad enough, but the chaos it would cause in the market is way worse.

Money and clean energy.
Heatmap Illustration/Getty Images

In their efforts to persuade Republicans in Congress not to throw wind and solar off a tax credit cliff, clean energy advocates have sometimes made what would appear to be a counterproductive argument: They’ve emphasized that renewables are cheap and easily obtainable.

Take this statement published by Advanced Energy United over the weekend: “By effectively removing tax credits for some of the most affordable and easy-to-build energy resources, Congress is all but guaranteeing that consumers will be burdened with paying more for a less reliable electric grid.”

Keep reading...Show less
Green