You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Money is pouring in — and deadlines are approaching fast.
There’s no quick fix for decarbonizing medium- and long-distance flights. Batteries are typically too heavy, and hydrogen fuel takes up too much space to offer a practical solution, leaving sustainable aviation fuels made from plants and other biomass, recycled carbon, or captured carbon as the primary options. Traditionally, this fuel is much more expensive — and the feedstocks for it much more scarce — than conventional petroleum-based jet fuel. But companies are now racing to overcome these barriers, as recent months have seen backers throw hundreds of millions behind a series of emergent, but promising solutions.
Today, most SAF is made of feedstocks such as used cooking oil and animal fats, from companies such as Neste and Montana Renewables. But this supply is limited by, well, the amount of cooking oil or fats restaurants and food processing facilities generate, and is thus projected to meet only about 10% of total SAF demand by 2050, according to a 2022 report by the Mission Possible Partnership. Beyond that, companies would have to start growing new crops just to make into fuel.
That creates an opportunity for developers of second-generation SAF technologies, which involve making jet fuel out of captured carbon or alternate biomass sources, such as forest waste. These methods are not yet mature enough to make a significant dent in 2030 targets, such as the EU's mandate to use 6% SAF and the U.S. government’s goal of producing 3 billion gallons of SAF per year domestically. But this tech will need to be a big part of the equation in order to meet the aviation sector’s overall goal of net zero emissions by 2050, as well as the EU’s sustainable fuels mandate, which increases to 20% by 2035 and 70% by 2050 for all flights originating in the bloc.
“That’s going to be a massive jump because currently, SAF uptake is about 0.2% of fuel,” Nicole Cerulli, a research associate for transportation and logistics at the market research firm Cleantech Group, told me. The head of the airline industry’s trade association, Willie Walsh, said in December at a media day event, "We’re not making as much progress as we’d hoped for, and we’re certainly not making as much progress as we need.” While global SAF production doubled to 1 million metric tons in 2024, that fell far below the trade group’s projection of 1.5 million metric tons, made at the end of 2023.
Producing SAF requires making hydrocarbons that mirror those used in traditional jet fuel. We know how to do that, but the processes required — electrolysis, gasification, and the series of chemical reactions known as Fischer-Tropsch synthesis — are energy intensive. So finding a way to power all of this sustainably while simultaneously scaling to meet demand is a challenging and expensive task.
Aamir Shams, a senior associate at the energy think tank RMI whose work focuses on driving demand for SAF, told me that while sustainable fuel is undeniably more expensive than traditional fuel, airlines and corporations have so far been willing to pay the premium. “We feel that the lag is happening because we just don’t have the fuel today,” Shams said. “Whatever fuel shows up, it just flies off the shelves.”
Twelve, a Washington-based SAF producer, thinks its e-fuels can help make a dent. The company is looking to produce jet fuel initially by recycling the CO2 emitted from the ethanol, pulp, and paper industries. In September, the company raised $645 million to complete the buildout of its inaugural SAF facility in Washington state, support the development of future plants, and pursue further R&D. The funding includes $400 million in project equity from the impact fund TPG Rise Climate, $200 million in Series C financing led by TPG, Capricorn Investment Group, and Pulse Fund, and $45 million in loans. The company has also previously partnered with the Air Force to explore producing fuel on demand in hard to reach areas.
Nicholas Flanders, Twelve’s CEO, told me that the company is starting with ethanol, pulp, and paper because the CO2 emissions from these facilities are relatively concentrated and thus cheaper to capture. And unlike, say, coal power plants, these industries aren’t going anywhere fast, making them a steady source of carbon. To turn the captured CO2 into sustainable fuel, the company needs just one more input — water. Renewable-powered electrolyzers then break apart the CO2 and H2O into their constituent parts, and the resulting carbon monoxide and hydrogen are combined to create a syngas. That then gets put through a chemical reaction known as “Fischer-Tropsch synthesis,” where the syngas reacts with catalysts to form hydrocarbons, which are then processed into sustainable jet fuel and ultimately blended with conventional fuel.
Twelve says its proprietary CO2 electrolyzer can break apart CO2 at much lower temperatures than would typically be required for this molecule, which simplifies the whole process, making it easier to ramp the electrolyzers up and down to match the output of intermittent renewables. (How does it do this? The company didn’t respond when I asked.) Twelve’s first plant, which sources carbon from a nearby ethanol facility, is set to come online next year, producing 50,000 gallons of SAF annually once it’s fully scaled, with electrolyzers that will run on hydropower.
While Europe may have stricter, actually enforceable SAF requirements than the U.S., Flanders told me there’s a lot of promise in domestic production. “I think the U.S. has an exciting combination of relatively low-cost green electricity, lots of biogenic CO2 sources, a lot of demand for the product we’re making, and then the inflation Reduction Act and state level incentives can further enhance the economics.” Currently, the IRA provides SAF producers with a baseline $1.25 tax credit per gallon produced, which gradually increases the greener the fuel gets. Of course, whether or not the next Congress will rescind this is anybody’s guess.
Down the line, incentives and mandates will end up mattering a whole lot. Making SAF simply costs a whole lot more than producing jet fuel the standard way, by refining crude oil. But in the meantime, Twelve is setting up cost-sharing partnerships between airlines that want to reduce their direct emissions (scope 1) and large corporations that want to reduce their indirect emissions (scope 3), which include employee business travel.
For example, Twelve has offtake agreements with Seattle-based Alaska Airlines and Microsoft for the fuel produced at its initial Washington plant. Microsoft, which aims to reduce emissions from its employees’ flights, will essentially cover the cost premium associated with Twelve’s more expensive SAF fuel, making it cost-effective for Alaska to use in its fleet. Twelve has a similar agreement with Boston Consulting Group and an unnamed airline
Eventually, Flanders told me, the company expects to source carbon via direct air capture, but doing so today would be prohibitively expensive. “If there were a customer who wanted to pay the additional amount to use DAC today, we'd be very happy to do that,” Flanders said. “But our perspective is it will maybe be another decade before that cost starts to converge.”
No sustainable fuel is even close to cost parity yet — Cerulli told me that it generally comes with a “roughly 250% to over 800%” cost premium over conventional jet fuel. So while voluntary uptake by companies such as Microsoft and BCG are helping drive the emergent market today, that won’t be near enough to decarbonize the industry. “At the simplest level, the cost of not using SAF has to be higher than using it,” Cerulli told me.
Pathway Energy thinks that by incorporating carbon sequestration into its process, it can help the world get there. The sustainable fuels company, which emerged from stealth just last month, is pursuing what CEO Steve Roberts told me is “probably the most cost-efficient long-term pathway from a decarbonization perspective.” The company is building a $2 billion SAF plant in Port Arthur, Texas designed to produce about 30 million gallons of jet fuel annually — enough to power about 5,000 carbon-neutral 10-hour flights — while also permanently sequestering more than 1.9 million tons of CO2.
Pathway, a subsidiary of the investment and advisory firm Nexus Holdings, has partnered with the UK-based renewable energy company Drax, which will supply the company with 1 million metric tons of wood pellets, to be turned into fuel using a series of well-established technologies. The first step is to gasify the biomass by heating the pellets to high temperatures in the absence of oxygen to produce a syngas. Then, just as Twelve does, it puts the syngas through the Fischer-Tropsch process to form the hydrocarbons that become SAF.
The competitive advantage here is capturing the emissions from the fuel production process itself and storing them permanently underground. Since Pathway is burying CO2 that’s already been captured by the trees from which the wood pellets come, that would make Pathway’s SAF carbon-negative, in theory, while the best Twelve and similar companies can hope for is carbon neutrality, assuming all of their captured carbon is used to produce fuel.
The choice of Drax as a feedstock partner is not without controversy, however, as the BBC revealed that the company sources much of its wood from rare old-growth forests. Though this is technically legal, it’s also ecologically disruptive. Roberts told me Drax’s sourcing methodologies have been verified by third parties, and Pathway isn’t concerned. “I don't think any of that controversy has yielded any actually significant changes to their sourcing program at all, because we believe that they're compliant,” Roberts told me. “We are 100% certain that they’re meeting all the standards and expectations.”
Pathway has big growth plans, which depend on the legitimacy of its sustainability cred. Beyond the Port Arthur facility, which Roberts told me will begin production by the end of 2029 or early 2030, the company has a pipeline of additional facilities along the Gulf Coast in the works. It also has global ambitions. “When you have a fuel that is this negative, it really opens up a global market, because you can transport fuel out of Texas, whether that be into the EU, Africa, Asia, wherever it may be,” Roberts said, explaining that even substantial transportation-related emissions would be offset by the carbon-negativity of the fuel.
But alternative feedstocks such as forestry biomass are finite resources, too. That’s why many experts think that within the SAF sector, e-fuels such as Twelve’s that could one day source carbon via direct air capture and then electrolyze it have the greatest potential for growth. “It’s extremely dependent on getting sustainable CO2 and cheap electricity prices so that you can make cheap green hydrogen,” Shams told me. “But theoretically, it is unlimited in terms of what your total cap on production would be.”
In the meantime, airlines are focused on making their planes and engines more aerodynamic and efficient so that they don’t consume as much fuel in the first place. They’re also exploring other technical pathways to decarbonization — because after all, SAF will only be a portion of the solution, as many short and medium-length flights could likely be powered by batteries or hydrogen fuel. RMI forecasts that by 2050, 45% of global emissions reduction in the aviation sector will come from improvements in fuel efficiency, 37% will be due to SAF deployment, 7% will come from hydrogen, and 3.5% will come from electrification.
If you did the mental math, you’ll notice these numbers add up to 92.5% — not 100%. “What we have done is, let's look at what we are actually doing today and for the past three, four, five years, and let's see if we get to net zero or not. And the answer is, no. We don't get to net zero by 2050,” Shams told me. And while getting to 92.5% is nothing to scoff at, that means that the aviation sector would still be emitting about 700 million metric tons of CO2 equivalent by that time.
So what’s to be done? “The financing sector needs to step up its game and take a little bit more of a risk than they are used to,” Shams told me, noting that one of RMI’s partners, the Mission Possible Partnership, estimates that getting the aviation sector to net zero will require an investment of around $170 billion per year, a total of about $4.5 trillion by 2050. These numbers take a variety of factors into account beyond strictly SAF production, such as airport infrastructure for new fuels, building out direct air capture plants, etc.
But any way you cut it, it’s a boatload of money that certainly puts Pathway’s $2 billion SAF facility and Twelve’s $645 million funding round in perspective. And it’s far from certain that we can get there. “Increasingly, that goal of the 2050 net-zero target looks really difficult to achieve,” Shams put it simply. “Commitments are always going up, but more can be done.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
On sparring in the Senate, NEPA rules, and taxing first-class flyers
Current conditions: A hurricane warning is in effect for Mexico as the Category 1 storm Flossie approaches • More than 50,000 people have been forced to flee wildfires raging in Turkey • Heavy rain caused flash floods and landslides near a mountain resort in northern Italy during peak tourist season.
Senate lawmakers’ vote-a-rama on the GOP tax and budget megabill dragged into Monday night and continues Tuesday. Republicans only have three votes to lose if they want to get the bill through the chamber and send it to the House. Already Senators Thom Tillis and Rand Paul are expected to vote against it, and there are a few more holdouts for whom clean energy appears to be one sticking point. Senator Lisa Murkowski of Alaska, for example, has put forward an amendment (together with Iowa Senators Joni Ernst and Chuck Grassley) that would eliminate the new renewables excise tax, and phase out tax credits for solar and wind gradually (by 2028) rather than immediately, as proposed in the original bill. “I don’t want us to backslide on the clean energy credits,” Murkowski told reporters Monday. E&E News reported that the amendment could be considered on a simple majority threshold. (As an aside: If you’re wondering why wind and solar need tax credits if they’re so cheap, as clean energy advocates often emphasize, Heatmap’s Emily Pontecorvo has a nice explainer worth reading.)
At the same time, Utah’s Senator John Curtis has proposed an amendment that tweaks the new excise tax to make it more “flexible.” The amendments are “setting up a major intra-party fight,” Politicoreported, adding that “fiscal hawks on both sides of the Capitol are warning they will oppose the bill if the phase-outs of Inflation Reduction Act provisions are watered down.” Senators have already defeated amendments proposed by Democrats Jeanne Shaheen of New Hampshire and John Hickenlooper of Colorado to defend clean energy and residential solar tax credits, respectively. The session has broken the previous record for most votes in a vote-a-rama, set in 2008, with no end in sight.
The Department of Energy on Monday rolled back most of its regulations relating to the National Environmental Policy Act, or NEPA, and published a new set of guidance procedures in their place. The longstanding NEPA law requires that the government study the environmental impacts of its actions, and in the case of the DOE, this meant things like permitting and public lands management. In a press release outlining the changes, the agency said it was “fixing the broken permitting process and delivering on President Trump’s pledge to unleash American energy dominance and accelerate critical energy infrastructure.” Secretary of Energy Chris Wright said the agency was cutting red tape to end permitting paralysis. “Build, baby, build!” he said.
Nearly 300 employees of the Environmental Protection Agency signed a letter addressed to EPA head Lee Zeldin declaring their dissent toward the Trump administration’s policies. The letter accuses the administration of:
“Going forward, you have the opportunity to correct course,” the letter states. “Should you choose to do so, we stand ready to support your efforts to fulfill EPA’s mission.” It’s signed by more than 420 people, 270 being EPA workers. Many of them asked to sign anonymously. In a statement to The New York Times, EPA spokesperson Carolyn Horlan said “the Trump EPA will continue to work with states, tribes and communities to advance the agency’s core mission of protecting human health and the environment and administrator Zeldin’s Powering the Great American Comeback Initiative, which includes providing clean air, land and water for EVERY American.”
At the fourth International Conference on Financing for Development taking place in Spain this week, a group of eight countries including France and Spain announced they’re banding together in an effort to tax first- and business-class flyers as well as private jets to raise money for climate mitigation and sustainable development. “The aim is to help improve green taxation and foster international solidarity by promoting more progressive and harmonised tax systems,” the office of Spanish Prime Minister Pedro Sanchez said in a statement. Other countries in the coalition include Kenya, Barbados, Somalia, Benin, Sierra Leone, and Antigua & Barbuda. The group said it will “work towards COP30 on a better contribution of the aviation sector to fair transitions and resilience.” Wopke Hoekstra, who heads up the European Commission for Climate, called for other countries to join the group in the lead-up to COP30 in November.
In case you missed it: Google announced on Monday that it intends to buy fusion energy from nuclear startup Commonwealth Fusion Systems. Of course, CFS will have to crack commercial-scale fusion first (minor detail!), but as The Wall Street Journal noted, the news is significant because it is “the first direct deal between a customer and a fusion energy company.” Google will buy 200 megawatts of energy supplied by CFS’s ARC plant in Virginia. “It’s a pretty big signal to the market that fusion’s coming,” CFS CEO Bob Mumgaard told the Journal. “It’s desirable, and that people are gonna work together to make it happen.” Google’s head of advanced energy Michael Terrell echoed that sentiment, saying the company hopes this move will “prove out and scale a promising pathway toward commercial fusion power.” CFS, which is backed by Bill Gates’ Breakthrough Energy Ventures, aims to produce commercial fusion energy in the 2030s.
All the public property owned by Britain’s King Charles earned a net profit of £1.15 billion ($1.58 billion) last year. The biggest source of income? Offshore wind leases.
It’s the largest facility of its kind of Europe and will immediately make the lithium-sulfur battery startup a major player.
Lyten, the domestic lithium-sulfur battery company, has officially expanded into the European market, announcing that it has acquired yet another shuttered Northvolt facility. Located in Gdansk, Poland, this acquisition represents a new direction for the company: Rather than producing battery cells — as Lyten’s other U.S.-based facilities will do — this 270,000 square foot plant is designed to produce complete battery energy storage systems for the grid. Currently, it’s the largest energy storage manufacturing facility in Europe, with enough equipment to ramp up to 6 gigawatt-hours of capacity. This gives Lyten the ability to become — practically immediately — a major player in energy storage.
“We were very convinced that we needed to be able to build our own battery energy storage systems, so the full system with electronics and switch gear and safety systems and everything for our batteries to go into,” Keith Norman, Lyten’s chief sustainability and marketing officer, told me. “So this opportunity became very, very well aligned with our strategy.”
The well-funded startup has been negotiating this transaction — which is expected to close in the third quarter — since Northvolt’s bankruptcy proceedings got underway at the end of last year. It marks the second time the company has snatched up an old Northvolt asset, the first being a Bay Area-based plant capable of producing 200 megawatt-hours of batteries that’s expected to begin operations late this year.
Lithium-sulfur batteries are an emerging technology yet to be deployed at scale. This chemistry — if perfected — has the potential to be much higher energy-density than lithium-ion, and doesn’t require costly critical minerals prone to supply chain volatility such as nickel, manganese, cobalt, and graphite. These are all key elements of lithium-ion batteries and are primarily refined in China, whereas sulfur — the key material in lithium-sulfur batteries — is cheap and abundant around the world. Right now, the Poland facility is set up to produce lithium-ion energy storage systems, but once it starts switching over production lines, it will become likely the first in the world to manufacture lithium-sulfur systems at scale.
Until now, Lyten has only owned assets in the U.S., touting that it sources “well over 80%” of its core battery components domestically. But according to Norman, the startup has always looked to Europe as another key market, as its focus revolves around building local supply chains, not just a U.S.-centric one. “We have a vision to be able to have both battery manufacturing and energy storage manufacturing in the U.S. and in Europe, so that we can localize both supply chains,” he explained to me.
In the short-term, however, the company will continue to build its battery capacity in the U.S., including a a gigafactory in Reno planned for 2027, while it focuses on energy storage in Europe. U.S.-made batteries will supply the Poland facility until Lyten’s hypothetical future Europe-based battery factories can ramp, Norman explained.
Immediately after the deal closes, Lyten will restart manufacturing in order to meet Northvolt’s preexisting contracts for lithium-ion systems. Then throughout this year and next, the startup will work to integrate its own lithium-sulfur production lines, ultimately offering customers both lithium-sulfur and lithium-ion energy storage options. The goal is to produce a gigawatt-hour of system capacity by sometime next year.
Offering two distinct energy storage systems reliant on different battery chemistries will work to Lyten’s advantage, Norman told me via email, giving the company “an incredible amount of flexibility to navigate market uncertainty, supply chain uncertainty, geopolitical uncertainty, and varied customer demands.”
The company’s eagerness to acquire shuttered facilities isn’t driven by turbulence in the current political climate, Norman said, but rather by “opportunistic” market circumstances. Yet I also can’t help but notice that this would be a promising way for Lyten to cost-effectively scale at a time when, Norman said, it’s still taking a “wait and see” approach to tariffs and other fluctuating policies that stand to impact the domestic buildout of energy infrastructure.
When I spoke with Norman back in April, right after Trump’s “Liberation Day” tariffs came into effect, he expressed concern over how they could lead to spiraling construction costs. Levies on steel and aluminum, for example, now stand at 50%, while imports from China are still subject to cumulative tariffs of at least 54%. As Norman told me then, “the energy transition is a manufacturing transition,” and Lyten itself is “a hard tech company that needs to build a lot of infrastructure.”
So while the finances of the Poland factory acquisition aren’t public, it’s probably safe to assume that scooping up prebuilt infrastructure from a defunct business, taking over production of tried-and-true lithium-ion-based technologies, and expanding into international markets are all cheap and prudent options in this economy.
In terms of demand for energy storage, Norman also mentioned that the market is hotter in Europe right now than in the U.S., making it an optimal place to kick off its new product line. The company expects to sell storage systems from the Poland plant into a variety of other international markets, as well. In December of last year, Lyten announced that it had received letters of interest from the U.S. Export-Import Bank totalling $650 million in financing to deploy lithium-sulfur energy storage systems in the Caribbean and other developing economies.
As the company expands, it’s on the hunt for even more facilities to grab. “We continue to see assets becoming available or potential capital investments that have already been made in battery manufacturing assets that are potentially coming on the market,” Norman told me. He’s got his eyes on all of it. “That’s a real big priority for us.”
Removing the subsidies would be bad enough, but the chaos it would cause in the market is way worse.
In their efforts to persuade Republicans in Congress not to throw wind and solar off a tax credit cliff, clean energy advocates have sometimes made what would appear to be a counterproductive argument: They’ve emphasized that renewables are cheap and easily obtainable.
Take this statement published by Advanced Energy United over the weekend: “By effectively removing tax credits for some of the most affordable and easy-to-build energy resources, Congress is all but guaranteeing that consumers will be burdened with paying more for a less reliable electric grid.”
If I were a fiscal hawk, a fossil fuel lobbyist, or even an average non-climate specialist, I’d take this as further evidence that renewables don’t need tax credits. The problem is that there’s a lot more nuance to the “cheapness” of renewables than snappy statements like this convey.
“Renewables are cheap and they’ve gotten cheaper, but that doesn’t mean they are always the cheapest thing, unsubsidized,” Robbie Orvis, the senior director of modeling and analysis at Energy Innovation, told me back in May at the start of the reconciliation process. Natural gas is still competitive with renewables in a lot of markets — either where it’s less windy or sunny, where natural gas is particularly cheap, or where there are transmission constraints, for example.
Just because natural gas plants might be cheaper to build in those places, however, doesn’t mean they will save customers money in the long run. Utilities pass fuel costs through to customers, and fuel costs can swing dramatically. That’s what happened in 2022 after Russia invaded Ukraine, Europe swore off Russian gas, and the U.S. rushed to fill the supply gap, spiking U.S. natural gas prices and contributing to the largest annual increase in residential electricity spending in decades. Winter storms can also reduce natural gas production, causing prices to shoot up. Wind and solar, of course, do not use conventional fuels. The biggest factor influencing the price of power from renewables is the up-front cost of building them.
That’s not the only benefit that’s not reflected in the price tags of these resources. The Biden administration and previous Congress supported tax credits for wind and solar to achieve the policy goal of reducing planet-warming emissions and pollution that endangers human health. But Orvis argued you don’t even need to talk about climate change or the environment to justify the tax credits.
“We’re not saying let’s go tomorrow to wind, water, and solar,” Orvis said. “We’re saying these bring a lot of benefitsonto the system, and so more of them delivers more of those benefits, and incentives are a good way to do that.” Another benefit Orvis mentioned is energy security — because again, wind and solar don’t rely on globally-traded fuels, which means they’re not subject to the actions of potentially adversarial governments.
Orvis’ colleague, Mike O’Boyle, also raised the point that fossil fuels receive subsidies, too, both inside and outside the tax code. There’s the “intangible drilling costs” deduction, allowing companies to deduct most costs associated with drilling, like labor and site preparation. Smaller producers can also take a “depletion deduction” as they draw down their oil or gas resources. Oil and gas developers also benefit from low royalty rates for drilling on public lands, and frequently evade responsibility to clean up abandoned wells. “I think in many ways, these incentives level the playing field,” O’Boyle said.
When I reached out to some of the clean energy trade groups trying to negotiate a better deal in Trump’s tax bill, many stressed that they were most worried about upending existing deals and were not, in fact, calling for wind and solar to be subsidized indefinitely. “The primary issue here is about the chaos this bill will cause by ripping away current policy overnight,” Abigail Ross Hopper, the CEO of the Solar Energy Industries Association, told me by text message.
The latest version of the bill, introduced late Friday night, would require projects to start construction by 2027 and come online by 2028 to get any credit at all. Projects would also be subject to convoluted foreign sourcing rules that will make them more difficult, if not impossible, to finance. Those that fail the foreign sourcing test would also be taxed.
Harry Godfrey, managing director for Advanced Energy United, emphasized the need for “an orderly phase-out on which businesses can follow through on sound investments that they’ve already made.” The group supports an amendment introduced by Senators Joni Ernst, Lisa Murkowski, and Chuck Grassley on Monday that would phase down the tax credit over the next two years and safe harbor any project that starts construction during that period to enable them to claim the credit regardless of when they begin operating.
“Without these changes, the bill as drafted will retroactively change tax policy on projects in active development and construction, stranding billions in private investment, killing tens of thousands of jobs, and shrinking the supply of new generation precisely when we need it the most,” Advanced Energy United posted on social media.
In the near term, wind and solar may not need tax credits to win over natural gas. Energy demand is rising rapidly, and natural gas turbines are in short supply. Wind and solar may get built simply because they can be deployed more quickly. But without the tax credits, whatever does get built is going to be more expensive, experts say. Trade groups and clean energy experts have also warned that upending the clean energy pipeline will mean ceding the race for AI and advanced manufacturing to China.
Godfrey compared the reconciliation bill’s rapid termination of tax credits to puncturing the hull of a ship making a cross-ocean voyage. You’ll either need a big fix, or a new ship, but “the delay will mean we’re not getting electrons on to the grid as quickly as we need, and the company that was counting on that first ship is left in dire straits, or worse.”