You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Money is pouring in — and deadlines are approaching fast.
There’s no quick fix for decarbonizing medium- and long-distance flights. Batteries are typically too heavy, and hydrogen fuel takes up too much space to offer a practical solution, leaving sustainable aviation fuels made from plants and other biomass, recycled carbon, or captured carbon as the primary options. Traditionally, this fuel is much more expensive — and the feedstocks for it much more scarce — than conventional petroleum-based jet fuel. But companies are now racing to overcome these barriers, as recent months have seen backers throw hundreds of millions behind a series of emergent, but promising solutions.
Today, most SAF is made of feedstocks such as used cooking oil and animal fats, from companies such as Neste and Montana Renewables. But this supply is limited by, well, the amount of cooking oil or fats restaurants and food processing facilities generate, and is thus projected to meet only about 10% of total SAF demand by 2050, according to a 2022 report by the Mission Possible Partnership. Beyond that, companies would have to start growing new crops just to make into fuel.
That creates an opportunity for developers of second-generation SAF technologies, which involve making jet fuel out of captured carbon or alternate biomass sources, such as forest waste. These methods are not yet mature enough to make a significant dent in 2030 targets, such as the EU's mandate to use 6% SAF and the U.S. government’s goal of producing 3 billion gallons of SAF per year domestically. But this tech will need to be a big part of the equation in order to meet the aviation sector’s overall goal of net zero emissions by 2050, as well as the EU’s sustainable fuels mandate, which increases to 20% by 2035 and 70% by 2050 for all flights originating in the bloc.
“That’s going to be a massive jump because currently, SAF uptake is about 0.2% of fuel,” Nicole Cerulli, a research associate for transportation and logistics at the market research firm Cleantech Group, told me. The head of the airline industry’s trade association, Willie Walsh, said in December at a media day event, "We’re not making as much progress as we’d hoped for, and we’re certainly not making as much progress as we need.” While global SAF production doubled to 1 million metric tons in 2024, that fell far below the trade group’s projection of 1.5 million metric tons, made at the end of 2023.
Producing SAF requires making hydrocarbons that mirror those used in traditional jet fuel. We know how to do that, but the processes required — electrolysis, gasification, and the series of chemical reactions known as Fischer-Tropsch synthesis — are energy intensive. So finding a way to power all of this sustainably while simultaneously scaling to meet demand is a challenging and expensive task.
Aamir Shams, a senior associate at the energy think tank RMI whose work focuses on driving demand for SAF, told me that while sustainable fuel is undeniably more expensive than traditional fuel, airlines and corporations have so far been willing to pay the premium. “We feel that the lag is happening because we just don’t have the fuel today,” Shams said. “Whatever fuel shows up, it just flies off the shelves.”
Twelve, a Washington-based SAF producer, thinks its e-fuels can help make a dent. The company is looking to produce jet fuel initially by recycling the CO2 emitted from the ethanol, pulp, and paper industries. In September, the company raised $645 million to complete the buildout of its inaugural SAF facility in Washington state, support the development of future plants, and pursue further R&D. The funding includes $400 million in project equity from the impact fund TPG Rise Climate, $200 million in Series C financing led by TPG, Capricorn Investment Group, and Pulse Fund, and $45 million in loans. The company has also previously partnered with the Air Force to explore producing fuel on demand in hard to reach areas.
Nicholas Flanders, Twelve’s CEO, told me that the company is starting with ethanol, pulp, and paper because the CO2 emissions from these facilities are relatively concentrated and thus cheaper to capture. And unlike, say, coal power plants, these industries aren’t going anywhere fast, making them a steady source of carbon. To turn the captured CO2 into sustainable fuel, the company needs just one more input — water. Renewable-powered electrolyzers then break apart the CO2 and H2O into their constituent parts, and the resulting carbon monoxide and hydrogen are combined to create a syngas. That then gets put through a chemical reaction known as “Fischer-Tropsch synthesis,” where the syngas reacts with catalysts to form hydrocarbons, which are then processed into sustainable jet fuel and ultimately blended with conventional fuel.
Twelve says its proprietary CO2 electrolyzer can break apart CO2 at much lower temperatures than would typically be required for this molecule, which simplifies the whole process, making it easier to ramp the electrolyzers up and down to match the output of intermittent renewables. (How does it do this? The company didn’t respond when I asked.) Twelve’s first plant, which sources carbon from a nearby ethanol facility, is set to come online next year, producing 50,000 gallons of SAF annually once it’s fully scaled, with electrolyzers that will run on hydropower.
While Europe may have stricter, actually enforceable SAF requirements than the U.S., Flanders told me there’s a lot of promise in domestic production. “I think the U.S. has an exciting combination of relatively low-cost green electricity, lots of biogenic CO2 sources, a lot of demand for the product we’re making, and then the inflation Reduction Act and state level incentives can further enhance the economics.” Currently, the IRA provides SAF producers with a baseline $1.25 tax credit per gallon produced, which gradually increases the greener the fuel gets. Of course, whether or not the next Congress will rescind this is anybody’s guess.
Down the line, incentives and mandates will end up mattering a whole lot. Making SAF simply costs a whole lot more than producing jet fuel the standard way, by refining crude oil. But in the meantime, Twelve is setting up cost-sharing partnerships between airlines that want to reduce their direct emissions (scope 1) and large corporations that want to reduce their indirect emissions (scope 3), which include employee business travel.
For example, Twelve has offtake agreements with Seattle-based Alaska Airlines and Microsoft for the fuel produced at its initial Washington plant. Microsoft, which aims to reduce emissions from its employees’ flights, will essentially cover the cost premium associated with Twelve’s more expensive SAF fuel, making it cost-effective for Alaska to use in its fleet. Twelve has a similar agreement with Boston Consulting Group and an unnamed airline
Eventually, Flanders told me, the company expects to source carbon via direct air capture, but doing so today would be prohibitively expensive. “If there were a customer who wanted to pay the additional amount to use DAC today, we'd be very happy to do that,” Flanders said. “But our perspective is it will maybe be another decade before that cost starts to converge.”
No sustainable fuel is even close to cost parity yet — Cerulli told me that it generally comes with a “roughly 250% to over 800%” cost premium over conventional jet fuel. So while voluntary uptake by companies such as Microsoft and BCG are helping drive the emergent market today, that won’t be near enough to decarbonize the industry. “At the simplest level, the cost of not using SAF has to be higher than using it,” Cerulli told me.
Pathway Energy thinks that by incorporating carbon sequestration into its process, it can help the world get there. The sustainable fuels company, which emerged from stealth just last month, is pursuing what CEO Steve Roberts told me is “probably the most cost-efficient long-term pathway from a decarbonization perspective.” The company is building a $2 billion SAF plant in Port Arthur, Texas designed to produce about 30 million gallons of jet fuel annually — enough to power about 5,000 carbon-neutral 10-hour flights — while also permanently sequestering more than 1.9 million tons of CO2.
Pathway, a subsidiary of the investment and advisory firm Nexus Holdings, has partnered with the UK-based renewable energy company Drax, which will supply the company with 1 million metric tons of wood pellets, to be turned into fuel using a series of well-established technologies. The first step is to gasify the biomass by heating the pellets to high temperatures in the absence of oxygen to produce a syngas. Then, just as Twelve does, it puts the syngas through the Fischer-Tropsch process to form the hydrocarbons that become SAF.
The competitive advantage here is capturing the emissions from the fuel production process itself and storing them permanently underground. Since Pathway is burying CO2 that’s already been captured by the trees from which the wood pellets come, that would make Pathway’s SAF carbon-negative, in theory, while the best Twelve and similar companies can hope for is carbon neutrality, assuming all of their captured carbon is used to produce fuel.
The choice of Drax as a feedstock partner is not without controversy, however, as the BBC revealed that the company sources much of its wood from rare old-growth forests. Though this is technically legal, it’s also ecologically disruptive. Roberts told me Drax’s sourcing methodologies have been verified by third parties, and Pathway isn’t concerned. “I don't think any of that controversy has yielded any actually significant changes to their sourcing program at all, because we believe that they're compliant,” Roberts told me. “We are 100% certain that they’re meeting all the standards and expectations.”
Pathway has big growth plans, which depend on the legitimacy of its sustainability cred. Beyond the Port Arthur facility, which Roberts told me will begin production by the end of 2029 or early 2030, the company has a pipeline of additional facilities along the Gulf Coast in the works. It also has global ambitions. “When you have a fuel that is this negative, it really opens up a global market, because you can transport fuel out of Texas, whether that be into the EU, Africa, Asia, wherever it may be,” Roberts said, explaining that even substantial transportation-related emissions would be offset by the carbon-negativity of the fuel.
But alternative feedstocks such as forestry biomass are finite resources, too. That’s why many experts think that within the SAF sector, e-fuels such as Twelve’s that could one day source carbon via direct air capture and then electrolyze it have the greatest potential for growth. “It’s extremely dependent on getting sustainable CO2 and cheap electricity prices so that you can make cheap green hydrogen,” Shams told me. “But theoretically, it is unlimited in terms of what your total cap on production would be.”
In the meantime, airlines are focused on making their planes and engines more aerodynamic and efficient so that they don’t consume as much fuel in the first place. They’re also exploring other technical pathways to decarbonization — because after all, SAF will only be a portion of the solution, as many short and medium-length flights could likely be powered by batteries or hydrogen fuel. RMI forecasts that by 2050, 45% of global emissions reduction in the aviation sector will come from improvements in fuel efficiency, 37% will be due to SAF deployment, 7% will come from hydrogen, and 3.5% will come from electrification.
If you did the mental math, you’ll notice these numbers add up to 92.5% — not 100%. “What we have done is, let's look at what we are actually doing today and for the past three, four, five years, and let's see if we get to net zero or not. And the answer is, no. We don't get to net zero by 2050,” Shams told me. And while getting to 92.5% is nothing to scoff at, that means that the aviation sector would still be emitting about 700 million metric tons of CO2 equivalent by that time.
So what’s to be done? “The financing sector needs to step up its game and take a little bit more of a risk than they are used to,” Shams told me, noting that one of RMI’s partners, the Mission Possible Partnership, estimates that getting the aviation sector to net zero will require an investment of around $170 billion per year, a total of about $4.5 trillion by 2050. These numbers take a variety of factors into account beyond strictly SAF production, such as airport infrastructure for new fuels, building out direct air capture plants, etc.
But any way you cut it, it’s a boatload of money that certainly puts Pathway’s $2 billion SAF facility and Twelve’s $645 million funding round in perspective. And it’s far from certain that we can get there. “Increasingly, that goal of the 2050 net-zero target looks really difficult to achieve,” Shams put it simply. “Commitments are always going up, but more can be done.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The multi-faceted investment is defense-oriented, but could also support domestic clean energy.
MP Materials is the national champion of American rare earths, and now the federal government is taking a stake.
The complex deal, announced Thursday, involves the federal government acting as a guaranteed purchaser of MP Materials’ output, a lender, and also an investor in the company. In addition, the Department of Defense agreed to a price floor for neodymium-praseodymium products of $110 per kilogram, about $50 above its current spot price.
MP Materials owns a rare earths mine and processing facility near the California-Nevada border on the edges of the Mojave National Preserve. It claims to be “the largest producer of rare earth materials in the Western Hemisphere,” with “the only rare earth mining and processing site of scale in North America.”
As part of the deal, the company will build a “10X Facility” to produce magnets, which the DOD has guaranteed will be able to sell 100% of its output to some combination of the Pentagon and commercial customers. The DOD is also kicking in $150 million worth of financing for MP Materials’ existing processing efforts in California, alongside $1 billion from Wall Street — specifically JPMorgan Chase and Goldman Sachs — for the new magnet facility. The company described the deal in total as “a multi-billion-dollar commitment to accelerate American rare earth supply chain independence.”
Finally, the DOD will buy $400 million worth of newly issued stock in MP Materials, giving it a stake in the future production that it’s also underwriting.
Between the equity investment, the lending, and the guaranteed purchasing, the Pentagon, and by extension the federal government, has taken on considerable financial risk in casting its lot with a company whose primary asset’s previous owner went bankrupt a decade ago. But at least so far, Wall Street is happy with the deal: MP Materials’ market capitalization soared to over $7 billion on Thursday after its share price jumped over 40%, from a market capitalization of around $5 billion on Wednesday and the company is valued at around $7.5 billion as of Friday afternoon.
Despite the risk, former Biden administration officials told me they would have loved to make a deal like this.
When I asked Alex Jacquez, who worked on industrial policy for the National Economic Council in the Biden White House, whether he wished he could’ve overseen something like the DOD deal with MP Materials, he replied, “100%.” I put the same question to Ashley Zumwalt-Forbes, a former Department of Energy official who is now an investor; she said, “Absolutely.”
Rare earths and critical minerals were of intense interest to the Biden administration because of their use in renewable energy and energy storage. Magnets made with neodymium-praseodymium oxide are used in the electric motors found in EVs and wind turbines, as well as for various applications in the defense industry.
MP Materials will likely have to continue to rely on both sets of customers. Building up a real domestic market for the China-dominated industry will likely require both sets of buyers. According to a Commerce Department report issued in 2022, “despite their importance to national security, defense demand for … magnets is only a small portion of overall demand and insufficient to support an economically viable domestic industry.”
The Biden administration previously awarded MP Materials $58.5 million in 2024 through the Inflation Reduction Act’s 48C Advanced Energy Project tax credit to support the construction of a magnet facility in Fort Worth. While the deal did not come with the price guarantees and advanced commitment to purchase the facility’s output of the new agreement, GM agreed to come on as an initial buyer.
Matt Sloustcher, an MP Materials spokesperson, confirmed to me that the Texas magnet facility is on track to be fully up and running by the end of this year, and that other electric vehicle manufacturers could be customers of the new facility announced on Thursday.
At the time MP Materials received that tax credit award, the federal government was putting immense resources behind electric vehicles, which bolstered the overall supply supply chain and specifically demand for components like magnets. That support is now being slashed, however, thanks to the One Big Beautiful Bill Act, which will cancel consumer-side subsidies for electric vehicle purchases.
While the Biden tax credit deal and the DOD investment have different emphases, they both follow on years of bipartisan support for MP Materials. In 2020, the DOD used its authority under the Defense Production Act to award almost $10 million to MP Materials to support its investments in mineral refining. At the time, the company had been ailing in part due to retaliatory tariffs from China, cutting off the main market for its rare earths. The company was shipping its mined product to China to be refined, processed, and then used as a component in manufacturing.
“Currently, the Company sells the vast majority of its rare earth concentrate to Shenghe Resources,” MP Materials the company said in its 2024 annual report, referring to a Chinese rare earths company.
The Biden administration continued and deepened the federal government’s relationship with MP Materials, this time complementing the defense investments with climate-related projects. In 2022, the DOD awarded a contract worth $35 million to MP Materials for its processing project in order to “enable integration of [heavy rare earth elements] products into DoD and civilian applications, ensuring downstream [heavy rare earth elements] industries have access to a reliable feedstock supplier.”
While the DOD deal does not mean MP Materials is abandoning its energy customers or focus, the company does appear to be to the new political environment. In its February earnings release, the company mentioned “automaker” or “automotive-grade magnets” four times; in its May earnings release, that fell to zero times.
Former Biden administration officials who worked on critical minerals and energy policy are still impressed.
The deal is “a big win for the U.S. rare earths supply chain and an extremely sophisticated public-private structure giving not just capital, but strategic certainty. All the right levers are here: equity, debt, price floor, and offtake. A full-stack solution to scale a startup facility against a monopoly,” Zumwalt-Forbes, the former Department of Energy official, wrote on LinkedIn.
While the U.S. has plentiful access to rare earths in the ground, Zumwalt-Forbes told me, it has “a very underdeveloped ability to take that concentrate away from mine sites and make useful materials out of them. What this deal does is it effectively bridges that gap.”
The issue with developing that “midstream” industry, Jacquez told me, is that China’s world-leading mining, processing, and refining capacity allows it to essentially crash the price of rare earths to see off foreign competitors and make future investment in non-Chinese mining or processing unprofitable. While rare earths are valuable strategically, China’s whip hand over the market makes them less financially valuable and deters investment.
“When they see a threat — and MP is a good example — they start ramping up production,” he said. Jacquez pointed to neodymium prices spiking in early 2022, right around when the Pentagon threw itself behind MP Materials’ processing efforts. At almost exactly the same time, several state-owned Chinese rare earth companies merged. Neodymium-praseodymium oxide prices fell throughout 2022 thanks to higher Chinese production quotas — and continued to fall for several years.
While the U.S. has plentiful access to rare earths in the ground, Zumwalt-Forbes told me, it has “a very underdeveloped ability to take that concentrate out away from mine sites and make useful materials out of them. What this deal does is it effectively bridges that gap.”
The combination of whipsawing prices and monopolistic Chinese capacity to process and refine rare earths makes the U.S.’s existing large rare earth reserves less commercially viable.
“In order to compete against that monopoly, the government needed to be fairly heavy handed in structuring a deal that would both get a magnet facility up and running and ensure that that magnet facility stays in operation and weathers the storm of Chinese price manipulation,” Zumwalt-Forbes said.
Beyond simply throwing money around, the federal government can also make long-term commitments that private companies and investors may not be willing or able to make.
“What this Department of Defense deal did is, yes, it provided much-needed cash. But it also gave them strategic certainty around getting that facility off the ground, which is almost more important,” Zumwalt-Forbes said.
“I think this won’t be the last creative critical mineral deal that we see coming out of the Department of Defense,” Zumwalt-Forbes added. They certainly are in pole position here, as opposed to the other agencies and prior administrations.”
On a new plan for an old site, tariffs on Canada, and the Grain Belt Express
Current conditions: Phoenix will “cool” to 108 degrees Fahrenheit today after hitting 118 degrees on Thursday, its hottest day of the year so far • An extreme wildfire warning is in place through the weekend in Scotland • University of Colorado forecasters decreased their outlook for the 2025 hurricane season to 16 named storms, eight hurricanes, and three major hurricanes after a quiet June and July.
President Trump threatened a 35% tariff on Canadian imports on Thursday, giving Prime Minister Mark Carney a deadline of August 1 before the levies would go into effect. The move follows months of on-again, off-again threats against Canada, with former Canadian Prime Minister Justin Trudeau having successfully staved off the tariffs during talks in February. Despite those earlier negotiations, Trump held firm on his 50% tariff on steel and aluminum, which will have significant implications for green manufacturing.
As my colleagues Matthew Zeitlin and Robinson Meyer have written, tariffs on Canadian imports will affect the flow of oil, minerals, and lumber, as well as possibly break automobile supply chains in the United States. It was unclear as of Thursday, however, whether Trump’s tariffs “would affect all Canadian goods, or if he would follow through,” The New York Times reports. The move follows Trump’s announcement this week of tariffs on several other significant trade partners like Japan and South Korea, as well as a 50% tariff on copper.
The long beleaguered Lava Ridge Wind Project, formally halted earlier this year by an executive order from President Trump, might have a second life as the site for small modular reactors, Idaho News 6 reports. Sawtooth Energy Development Corporation has proposed installing six small nuclear power generators on the former Lava Ridge grounds in Jerome County, Idaho, drawn to the site by the power transmission infrastructure that could connect the region to the Midpoint Substation and onto the rest of the Western U.S. The proposed SMR project would be significantly smaller in scale than Lava Ridge, which would have produced 1,000 megawatts of electricity on a 200,000-acre footprint, sitting instead on 40 acres and generating 462 megawatts, enough to power 400,000 homes.
Sawtooth Energy plans to hold four public meetings on the proposal beginning July 21. The Lava Ridge Wind Project had faced strong local opposition — we named it the No. 1 most at-risk project of the energy transition last fall — due in part to concerns about the visibility of the turbines from the Minidoka National Historic Site, the site of a Japanese internment camp.
Get Heatmap AM directly in your inbox every morning:
Republican Senator Josh Hawley of Missouri said on social media Thursday that Energy Secretary Chris Wright had assured him that he will be “putting a stop to the Grain Belt Express green scam.” The Grain Belt Express is an 804-mile-long, $11 billion planned transmission line that would connect wind farms in Kansas to energy consumers in Missouri, Illinois, and Indiana, which has been nearing construction after “more than a decade of delays,” The New York Times reports. But earlier this month, Missouri Attorney General Andrew Bailey, a Republican, put in a request for the local public service commission to reconsider its approval, claiming that the project had overstated the number of jobs it would create and the cost savings for customers. Hawley has also been a vocal critic of the project and had asked the Energy Department to cancel its conditional loan guarantee for the transmission project.
New electric vehicles sold in Europe are significantly more environmentally friendly than gas cars, even when battery production is taken into consideration, according to a new study by the International Council on Clean Transportation. Per the report, EVs produce 73% less life-cycle greenhouse gas emissions than combustion engine cars, even considering production — a 24% improvement over 2021 estimates. The gains are also owed to the large share of renewable energy sources in Europe, and factor in that “cars sold today typically remain on the road for about 20 years, [and] continued improvement of the electricity mix will only widen the climate benefits of battery electric cars.” The gains are exclusive to battery electric cars, however; “other powertrains, including hybrids and plug-in hybrids, show only marginal or no progress in reducing their climate impacts,” the report found.
Aryna Sabalenka attempts to cool down during her Ladies' Singles semi-final at Wimbledon on Thursday.Julian Finney/Getty Images
With the United Kingdom staring down its third heatwave in a month this week, a new study warns of dire consequences if homes and cities do not adapt to the new climate reality. According to researchers at the University College London and the London School of Hygiene and Tropical Medicine, heat-related deaths in England and Wales could rise 50-fold by the 2070s, jumping from a baseline of 634 deaths to 34,027 in a worst-case scenario of 4.3 degrees Celsius warming, a high-emissions pathway.
The report specifically cited the aging populations of England and Wales, as older people become more vulnerable to the impacts of extreme heat. Low adoption of air conditioning is also a factor: only 2% to 5% of English households use air conditioning, although that number may grow to 32% by 2050. “We can mitigate [the] severity” of the health impacts of heat “by reducing greenhouse gas emissions and with carefully planned adaptations, but we have to start now,” UCL researcher Clare Heaviside told Sky News.
This week, Centerville, Ohio, rolled out high-tech recycling trucks that will use AI to scan the contents of residents’ bins and flag when items have been improperly sorted. “Reducing contamination in our recycling system lowers processing costs and improves the overall efficiency of our collection,” City Manager Wayne Davis said in a statement about the AI pilot program, per the Dayton Daily News.
Or at least the team at Emerald AI is going to try.
Everyone’s worried about the ravenous energy needs of AI data centers, which the International Energy Agency projects will help catalyze nearly 4% growth in global electricity demand this year and next, hitting the U.S. power sector particularly hard. On Monday, the Department of Energy released a report adding fuel to that fire, warning that blackouts in the U.S. could become 100 times more common by 2030 in large part due to data centers for AI.
The report stirred controversy among clean energy advocates, who cast doubt on that topline number and thus the paper’s justification for a significant fossil fuel buildout. But no matter how the AI revolution is powered, there’s widespread agreement that it’s going to require major infrastructure development of some form or another.
Not so fast, says Emerald AI, which emerged from stealth last week with $24.5 million in seed funding led by Radical Ventures along with a slew of other big name backers, including Nvidia’s venture arm as well as former Secretary of State John Kerry, Google’s chief scientist Jeff Dean, and Kleiner Perkins chair John Doerr. The startup, founded and led by Orsted’s former chief strategy and innovation officer Varun Sivaram, was built to turn data centers from “grid liabilities into flexible assets” by slowing, pausing, or redirecting AI workloads during times of peak energy demand.
Research shows this type of data center load flexibility could unleash nearly 100 gigawatts of grid capacity — the equivalent of four or five Project Stargates and enough to power about 83 million U.S. homes for a year. Such adjustments, Sivaram told me, would be necessary for only about 0.5% of a data center’s total operating time, a fragment so tiny that he says it renders any resulting training or operating performance dips for AI models essentially negligible.
As impressive as that hypothetical potential is, whether a software product can actually reduce the pressures facing the grid is a high stakes question. The U.S. urgently needs enough energy to serve that data center growth, both to ensure its economic competitiveness and to keep electricity bills affordable for Americans. If an algorithm could help alleviate even some of the urgency of an unprecedented buildout of power plants and transmission infrastructure, well, that’d be a big deal.
While Emerald AI will by no means negate the need to expand and upgrade our energy system, Sivaram told me, the software alone “materially changes the build out needs to meet massive demand expansion,” he said. “It unleashes energy abundance using our existing system.”
Grand as that sounds, the fundamental idea is nothing new. It’s the same concept as a virtual power plant, which coordinates distributed energy resources such as rooftop solar panels, smart thermostats, and electric vehicles to ramp energy supply either up or down in accordance with the grid’s needs.
Adoption of VPPs has lagged far behind their technical potential, however. That’s due to a whole host of policy, regulatory, and market barriers such as a lack of state and utility-level rules around payment structures, insufficient participation incentives for customers and utilities, and limited access to wholesale electricity markets. These programs also depend on widespread customer opt-in to make a real impact on the grid.
“It’s really hard to aggregate enough Nest thermostats to make any kind of dent,”” Sivaram told me. Data centers are different, he said, simply because “they’re enormous, they’re a small city.” They’re also, by nature, virtually controllable and often already interconnected if they’re owned by the same company. Sivaram thinks the potential of flexible data center loads is so promising and the assets themselves so valuable that governments and utilities will opt to organize “bespoke arrangements for data centers to provide their services.”
Sivaram told me he’s also optimistic that utilities will offer data center operators with flexible loads the option to skip the ever-growing interconnection queue, helping hyperscalers get online and turn a profit more quickly.
The potential to jump the queue is not something that utilities have formally advertised as an option, however, although there appears to be growing interest in the idea. An incentive like this will be core to making Emerald AI’s business case work, transmission advocate and president of Grid Strategies Rob Gramlich told me.
Data center developers are spending billions every year on the semiconductor chips powering their AI models, so the typical demand response value proposition — earn a small sum by turning off appliances when the grid is strained — doesn’t apply here. “There’s just not anywhere near enough money in that for a hyperscaler to say, Oh yeah, I’m gonna not run my Nvidia chips for a while to make $200 a megawatt hour. That’s peanuts compared to the bazillions [they] just spent,” Gramlich explained.
For Emerald AI to make a real dent in energy supply and blunt the need for an immediate and enormous grid buildout, a significant number of data center operators will have to adopt the platform. That’s where the partnership with Nvidia comes in handy, Sivaram told me, as the startup is “working with them on the reference architecture” for future AI data centers. “The goal is for all [data centers] to be potentially flexible in the future because there will be a standard reference design,” Sivaram said.
Whether or not data centers will go all in on Nvidia’s design remains to be seen, of course. Hyperscalers have not typically thought of data centers as a flexible asset. Right now, Gramlich said, most are still in the mindset that they need to be operating all 8,760 hours of the year to reach their performance targets.
“Two or three years ago, when we first noticed the surge in AI-driven demand, I talked to every hyperscaler about how flexible they thought they could be, because it seemed intuitive that machine learning might be more flexible than search and streaming,” Gramlich told me. By and large, the response was that while these companies might be interested in exploring flexibility “potentially, maybe, someday,” they were mostly focused on their mandate to get huge amounts of gigawatts online, with little time to explore new data center models.
“Even the ones that are talking about flexibility now, in terms of what they’re actually doing in the market today, they all are demanding 8,760 [hours of operation per year],” Gramlich told me.
Emerald AI is well aware that its business depends on proving to hyperscalers that a degree of flexibility won’t materially impact their operations. Last week, the startup released the results of a pilot demonstration that it ran at an Oracle data center in Phoenix, which proved it was able to reduce power consumption by 25% for three hours during a period of grid stress while still “assuring acceptable customer performance for AI workloads.”
It achieved this by categorizing specific AI tasks — think everything from model training and fine tuning to conversations with chatbots — from high to low priority, indicating the degree to which operations could be slowed while still meeting Oracle’s performance targets. Now, Emerald AI is planning additional, larger-scale demonstrations to showcase its capacity to handle more complex scenarios, such as responding to unexpected grid emergencies.
As transmission planners and hyperscalers alike wait to see more proof validating Emerald AI’s vision of the future, Sivaram is careful to note that his company is not advocating for a halt to energy system expansion. In an increasingly electrified economy, expanding and upgrading the grid will be essential — even if every data center in the world has a flexible load profile.
’We should be building a nationwide transmission system. We should be building out generation. We should be doing grid modernization with grid enhancing technologies,” Sivaram told me. “We just don’t need to overdo it. We don’t need the particularly massive projections that you’re seeing that are going to cause your grandmother’s electricity rates to spike. We can avoid that.”