You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Money is pouring in — and deadlines are approaching fast.
There’s no quick fix for decarbonizing medium- and long-distance flights. Batteries are typically too heavy, and hydrogen fuel takes up too much space to offer a practical solution, leaving sustainable aviation fuels made from plants and other biomass, recycled carbon, or captured carbon as the primary options. Traditionally, this fuel is much more expensive — and the feedstocks for it much more scarce — than conventional petroleum-based jet fuel. But companies are now racing to overcome these barriers, as recent months have seen backers throw hundreds of millions behind a series of emergent, but promising solutions.
Today, most SAF is made of feedstocks such as used cooking oil and animal fats, from companies such as Neste and Montana Renewables. But this supply is limited by, well, the amount of cooking oil or fats restaurants and food processing facilities generate, and is thus projected to meet only about 10% of total SAF demand by 2050, according to a 2022 report by the Mission Possible Partnership. Beyond that, companies would have to start growing new crops just to make into fuel.
That creates an opportunity for developers of second-generation SAF technologies, which involve making jet fuel out of captured carbon or alternate biomass sources, such as forest waste. These methods are not yet mature enough to make a significant dent in 2030 targets, such as the EU's mandate to use 6% SAF and the U.S. government’s goal of producing 3 billion gallons of SAF per year domestically. But this tech will need to be a big part of the equation in order to meet the aviation sector’s overall goal of net zero emissions by 2050, as well as the EU’s sustainable fuels mandate, which increases to 20% by 2035 and 70% by 2050 for all flights originating in the bloc.
“That’s going to be a massive jump because currently, SAF uptake is about 0.2% of fuel,” Nicole Cerulli, a research associate for transportation and logistics at the market research firm Cleantech Group, told me. The head of the airline industry’s trade association, Willie Walsh, said in December at a media day event, "We’re not making as much progress as we’d hoped for, and we’re certainly not making as much progress as we need.” While global SAF production doubled to 1 million metric tons in 2024, that fell far below the trade group’s projection of 1.5 million metric tons, made at the end of 2023.
Producing SAF requires making hydrocarbons that mirror those used in traditional jet fuel. We know how to do that, but the processes required — electrolysis, gasification, and the series of chemical reactions known as Fischer-Tropsch synthesis — are energy intensive. So finding a way to power all of this sustainably while simultaneously scaling to meet demand is a challenging and expensive task.
Aamir Shams, a senior associate at the energy think tank RMI whose work focuses on driving demand for SAF, told me that while sustainable fuel is undeniably more expensive than traditional fuel, airlines and corporations have so far been willing to pay the premium. “We feel that the lag is happening because we just don’t have the fuel today,” Shams said. “Whatever fuel shows up, it just flies off the shelves.”
Twelve, a Washington-based SAF producer, thinks its e-fuels can help make a dent. The company is looking to produce jet fuel initially by recycling the CO2 emitted from the ethanol, pulp, and paper industries. In September, the company raised $645 million to complete the buildout of its inaugural SAF facility in Washington state, support the development of future plants, and pursue further R&D. The funding includes $400 million in project equity from the impact fund TPG Rise Climate, $200 million in Series C financing led by TPG, Capricorn Investment Group, and Pulse Fund, and $45 million in loans. The company has also previously partnered with the Air Force to explore producing fuel on demand in hard to reach areas.
Nicholas Flanders, Twelve’s CEO, told me that the company is starting with ethanol, pulp, and paper because the CO2 emissions from these facilities are relatively concentrated and thus cheaper to capture. And unlike, say, coal power plants, these industries aren’t going anywhere fast, making them a steady source of carbon. To turn the captured CO2 into sustainable fuel, the company needs just one more input — water. Renewable-powered electrolyzers then break apart the CO2 and H2O into their constituent parts, and the resulting carbon monoxide and hydrogen are combined to create a syngas. That then gets put through a chemical reaction known as “Fischer-Tropsch synthesis,” where the syngas reacts with catalysts to form hydrocarbons, which are then processed into sustainable jet fuel and ultimately blended with conventional fuel.
Twelve says its proprietary CO2 electrolyzer can break apart CO2 at much lower temperatures than would typically be required for this molecule, which simplifies the whole process, making it easier to ramp the electrolyzers up and down to match the output of intermittent renewables. (How does it do this? The company didn’t respond when I asked.) Twelve’s first plant, which sources carbon from a nearby ethanol facility, is set to come online next year, producing 50,000 gallons of SAF annually once it’s fully scaled, with electrolyzers that will run on hydropower.
While Europe may have stricter, actually enforceable SAF requirements than the U.S., Flanders told me there’s a lot of promise in domestic production. “I think the U.S. has an exciting combination of relatively low-cost green electricity, lots of biogenic CO2 sources, a lot of demand for the product we’re making, and then the inflation Reduction Act and state level incentives can further enhance the economics.” Currently, the IRA provides SAF producers with a baseline $1.25 tax credit per gallon produced, which gradually increases the greener the fuel gets. Of course, whether or not the next Congress will rescind this is anybody’s guess.
Down the line, incentives and mandates will end up mattering a whole lot. Making SAF simply costs a whole lot more than producing jet fuel the standard way, by refining crude oil. But in the meantime, Twelve is setting up cost-sharing partnerships between airlines that want to reduce their direct emissions (scope 1) and large corporations that want to reduce their indirect emissions (scope 3), which include employee business travel.
For example, Twelve has offtake agreements with Seattle-based Alaska Airlines and Microsoft for the fuel produced at its initial Washington plant. Microsoft, which aims to reduce emissions from its employees’ flights, will essentially cover the cost premium associated with Twelve’s more expensive SAF fuel, making it cost-effective for Alaska to use in its fleet. Twelve has a similar agreement with Boston Consulting Group and an unnamed airline
Eventually, Flanders told me, the company expects to source carbon via direct air capture, but doing so today would be prohibitively expensive. “If there were a customer who wanted to pay the additional amount to use DAC today, we'd be very happy to do that,” Flanders said. “But our perspective is it will maybe be another decade before that cost starts to converge.”
No sustainable fuel is even close to cost parity yet — Cerulli told me that it generally comes with a “roughly 250% to over 800%” cost premium over conventional jet fuel. So while voluntary uptake by companies such as Microsoft and BCG are helping drive the emergent market today, that won’t be near enough to decarbonize the industry. “At the simplest level, the cost of not using SAF has to be higher than using it,” Cerulli told me.
Pathway Energy thinks that by incorporating carbon sequestration into its process, it can help the world get there. The sustainable fuels company, which emerged from stealth just last month, is pursuing what CEO Steve Roberts told me is “probably the most cost-efficient long-term pathway from a decarbonization perspective.” The company is building a $2 billion SAF plant in Port Arthur, Texas designed to produce about 30 million gallons of jet fuel annually — enough to power about 5,000 carbon-neutral 10-hour flights — while also permanently sequestering more than 1.9 million tons of CO2.
Pathway, a subsidiary of the investment and advisory firm Nexus Holdings, has partnered with the UK-based renewable energy company Drax, which will supply the company with 1 million metric tons of wood pellets, to be turned into fuel using a series of well-established technologies. The first step is to gasify the biomass by heating the pellets to high temperatures in the absence of oxygen to produce a syngas. Then, just as Twelve does, it puts the syngas through the Fischer-Tropsch process to form the hydrocarbons that become SAF.
The competitive advantage here is capturing the emissions from the fuel production process itself and storing them permanently underground. Since Pathway is burying CO2 that’s already been captured by the trees from which the wood pellets come, that would make Pathway’s SAF carbon-negative, in theory, while the best Twelve and similar companies can hope for is carbon neutrality, assuming all of their captured carbon is used to produce fuel.
The choice of Drax as a feedstock partner is not without controversy, however, as the BBC revealed that the company sources much of its wood from rare old-growth forests. Though this is technically legal, it’s also ecologically disruptive. Roberts told me Drax’s sourcing methodologies have been verified by third parties, and Pathway isn’t concerned. “I don't think any of that controversy has yielded any actually significant changes to their sourcing program at all, because we believe that they're compliant,” Roberts told me. “We are 100% certain that they’re meeting all the standards and expectations.”
Pathway has big growth plans, which depend on the legitimacy of its sustainability cred. Beyond the Port Arthur facility, which Roberts told me will begin production by the end of 2029 or early 2030, the company has a pipeline of additional facilities along the Gulf Coast in the works. It also has global ambitions. “When you have a fuel that is this negative, it really opens up a global market, because you can transport fuel out of Texas, whether that be into the EU, Africa, Asia, wherever it may be,” Roberts said, explaining that even substantial transportation-related emissions would be offset by the carbon-negativity of the fuel.
But alternative feedstocks such as forestry biomass are finite resources, too. That’s why many experts think that within the SAF sector, e-fuels such as Twelve’s that could one day source carbon via direct air capture and then electrolyze it have the greatest potential for growth. “It’s extremely dependent on getting sustainable CO2 and cheap electricity prices so that you can make cheap green hydrogen,” Shams told me. “But theoretically, it is unlimited in terms of what your total cap on production would be.”
In the meantime, airlines are focused on making their planes and engines more aerodynamic and efficient so that they don’t consume as much fuel in the first place. They’re also exploring other technical pathways to decarbonization — because after all, SAF will only be a portion of the solution, as many short and medium-length flights could likely be powered by batteries or hydrogen fuel. RMI forecasts that by 2050, 45% of global emissions reduction in the aviation sector will come from improvements in fuel efficiency, 37% will be due to SAF deployment, 7% will come from hydrogen, and 3.5% will come from electrification.
If you did the mental math, you’ll notice these numbers add up to 92.5% — not 100%. “What we have done is, let's look at what we are actually doing today and for the past three, four, five years, and let's see if we get to net zero or not. And the answer is, no. We don't get to net zero by 2050,” Shams told me. And while getting to 92.5% is nothing to scoff at, that means that the aviation sector would still be emitting about 700 million metric tons of CO2 equivalent by that time.
So what’s to be done? “The financing sector needs to step up its game and take a little bit more of a risk than they are used to,” Shams told me, noting that one of RMI’s partners, the Mission Possible Partnership, estimates that getting the aviation sector to net zero will require an investment of around $170 billion per year, a total of about $4.5 trillion by 2050. These numbers take a variety of factors into account beyond strictly SAF production, such as airport infrastructure for new fuels, building out direct air capture plants, etc.
But any way you cut it, it’s a boatload of money that certainly puts Pathway’s $2 billion SAF facility and Twelve’s $645 million funding round in perspective. And it’s far from certain that we can get there. “Increasingly, that goal of the 2050 net-zero target looks really difficult to achieve,” Shams put it simply. “Commitments are always going up, but more can be done.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Imagine for a moment that you’re an aerial firefighter pilot. You have one of the most dangerous jobs in the country, and now you’ve been called in to fight the devastating fires burning in Los Angeles County’s famously tricky, hilly terrain. You’re working long hours — not as long as your colleagues on the ground due to flight time limitations, but the maximum scheduling allows — not to mention the added external pressures you’re also facing. Even the incoming president recently wondered aloud why the fires aren’t under control yet and insinuated that it’s your and your colleagues’ fault.
You’re on a sortie, getting ready for a particularly white-knuckle drop at a low altitude in poor visibility conditions when an object catches your eye outside the cockpit window: an authorized drone dangerously close to your wing.
Aerial firefighters don’t have to imagine this terrifying scenario; they’ve lived it. Last week, a drone punched a hole in the wing of a Québécois “super soaker” plane that had traveled down from Canada to fight the fires, grounding Palisades firefighting operations for an agonizing half-hour. Thirty minutes might not seem like much, but it is precious time lost when the Santa Ana winds have already curtailed aerial operations.
“I am shocked by what happened in Los Angeles with the drone,” Anna Lau, a forestry communication coordinator with the Montana Department of Natural Resources and Conservation, told me. The Montana DNRC has also had to contend with unauthorized drones grounding its firefighting planes. “We’re following what’s going on very closely, and it’s shocking to us,” Lau went on. Leaving the skies clear so that firefighters can get on with their work “just seems like a no-brainer, especially when people are actively trying to tackle the situation at hand and fighting to save homes, property, and lives.”
Courtesy of U.S. Forest Service
Although the super soaker collision was by far the most egregious case, according to authorities there have been at least 40 “incidents involving drones” in the airspace around L.A. since the fires started. (Notably, the Federal Aviation Administration has not granted any waivers for the air space around Palisades, meaning any drone images you see of the region, including on the news, were “probably shot illegally,” Intelligencer reports.) So far, law enforcement has arrested three people connected to drones flying near the L.A. fires, and the FBI is seeking information regarding the super soaker collision.
Such a problem is hardly isolated to these fires, though. The Forest Service reports that drones led to the suspension of or interfered with at least 172 fire responses between 2015 and 2020. Some people, including Mike Fraietta, an FAA-certified drone pilot and the founder of the drone-detection company Gargoyle Systems, believe the true number of interferences is much higher — closer to 400.
Law enforcement likes to say that unauthorized drone use falls into three buckets — clueless, criminal, or careless — and Fraietta was inclined to believe that it’s mostly the former in L.A. Hobbyists and other casual drone operators “don’t know the regulations or that this is a danger,” he said. “There’s a lot of ignorance.” To raise awareness, he suggested law enforcement and the media highlight the steep penalties for flying drones in wildfire no-fly zones, which is punishable by up to 12 months in prison or a fine of $75,000.
“What we’re seeing, particularly in California, is TikTok and Instagram influencers trying to get a shot and get likes,” Fraietta conjectured. In the case of the drone that hit the super soaker, it “might have been a case of citizen journalism, like, Well, I have the ability to get this shot and share what’s going on.”
Emergency management teams are waking up, too. Many technologies are on the horizon for drone detection, identification, and deflection, including Wi-Fi jamming, which was used to ground climate activists’ drones at Heathrow Airport in 2019. Jamming is less practical in an emergency situation like the one in L.A., though, where lives could be at stake if people can’t communicate.
Still, the fact of the matter is that firefighters waste precious time dealing with drones when there are far more pressing issues that need their attention. Lau, in Montana, described how even just a 12-minute interruption to firefighting efforts can put a community at risk. “The biggest public awareness message we put out is, ‘If you fly, we can’t,’” she said.
Fraietta, though, noted that drone technology could be used positively in the future, including on wildfire detection and monitoring, prescribed burns, and communicating with firefighters or victims on the ground.
“We don’t want to see this turn into the FAA saying, ‘Hey everyone, no more drones in the United States because of this incident,’” Fraietta said. “You don’t shut down I-95 because a few people are running drugs up and down it, right? Drones are going to be super beneficial to the country long term.”
But critically, in the case of a wildfire, such tools belong in the right hands — not the hands of your neighbor who got a DJI Mini 3 for Christmas. “Their one shot isn’t worth it,” Lau said.
Plus 3 more outstanding questions about this ongoing emergency.
As Los Angeles continued to battle multiple big blazes ripping through some of the most beloved (and expensive) areas of the city on Friday, a question lingered in the background: What caused the fires in the first place?
Though fires are less common in California during this time of the year, they aren’t unheard of. In early December 2017, power lines sparked the Thomas Fire near Ventura, California, which burned through to mid-January. At the time it was the largest fire in the state since at least the 1930s. Now it’s the ninth-largest. Although that fire was in a more rural area, it ignited for some of the same reasons we’re seeing fires this week.
Read on for everything we know so far about how the fires started.
Six major fires started during the Santa Ana wind event last week:
Officials are investigating the cause of the fires and have not made any public statements yet. Early eyewitness accounts suggest that the Eaton Fire may have started at the base of a transmission tower owned by Southern California Edison. So far, the company has maintained that an analysis of its equipment showed “no interruptions or electrical or operational anomalies until more than one hour after the reported start time of the fire.” A Washington Post investigation found that the Palisades Fire could have risen from the remnants of a fire that burned on New Year’s Eve and reignited.
On Thursday morning, Edward Nordskog, a retired fire investigator from the Los Angeles Sheriff’s Department, told me it was unlikely they had even begun looking into the root of the biggest and most destructive of the fires in the Pacific Palisades. “They don't start an investigation until it's safe to go into the area where the fire started, and it just hasn't been safe until probably today,” he said.
It can take years to determine the cause of a fire. Investigators did not pinpoint the cause of the Thomas Fire until March 2019, more than two years after it started.
But Nordskog doesn’t think it will take very long this time. It’s easier to narrow down the possibilities for an urban fire because there are typically both witnesses and surveillance footage, he told me. He said the most common causes of wildfires in Los Angeles are power lines and those started by unhoused people. They can also be caused by sparks from vehicles or equipment.
At more than 40,000 acres burned total, these fires are unlikely to make the charts for the largest in California history. But because they are burning in urban, densely populated, and expensive areas, they could be some of the most devastating. With an estimated 9,000 structures damaged as of Friday morning, the Eaton and Palisades fires are likely to make the list for most destructive wildfire events in the state.
And they will certainly be at the top for costliest. The Palisades Fire has already been declared a likely contender for the most expensive wildfire in U.S. history. It has destroyed more than 5,000 structures in some of the most expensive zip codes in the country. Between that and the Eaton Fire, Accuweather estimates the damages could reach $57 billion.
While we don’t know the root causes of the ignitions, several factors came together to create perfect fire conditions in Southern California this week.
First, there’s the Santa Ana winds, an annual phenomenon in Southern California, when very dry, high-pressure air gets trapped in the Great Basin and begins escaping westward through mountain passes to lower-pressure areas along the coast. Most of the time, the wind in Los Angeles blows eastward from the ocean, but during a Santa Ana event, it changes direction, picking up speed as it rushes toward the sea.
Jon Keeley, a research scientist with the US Geological Survey and an adjunct professor at the University of California, Los Angeles told me that Santa Ana winds typically blow at maybe 30 to 40 miles per hour, while the winds this week hit upwards of 60 to 70 miles per hour. “More severe than is normal, but not unique,” he said. “We had similar severe winds in 2017 with the Thomas Fire.”
Second, Southern California is currently in the midst of extreme drought. Winter is typically a rainier season, but Los Angeles has seen less than half an inch of rain since July. That means that all the shrubland vegetation in the area is bone-dry. Again, Keeley said, this was not usual, but not unique. Some years are drier than others.
These fires were also not a question of fuel management, Keeley told me. “The fuels are not really the issue in these big fires. It's the extreme winds,” he said. “You can do prescription burning in chaparral and have essentially no impact on Santa Ana wind-driven fires.” As far as he can tell, based on information from CalFire, the Eaton Fire started on an urban street.
While it’s likely that climate change played a role in amplifying the drought, it’s hard to say how big a factor it was. Patrick Brown, a climate scientist at the Breakthrough Institute and adjunct professor at Johns Hopkins University, published a long post on X outlining the factors contributing to the fires, including a chart of historic rainfall during the winter in Los Angeles that shows oscillations between wet and dry years over the past eight decades.
But climate change is expected to make dry years drier and wet years wetter, creating a “hydroclimate whiplash,” as Daniel Swain, a pre-eminent expert on climate change and weather in California puts it. In a thread on Bluesky, Swain wrote that “in 2024, Southern California experienced an exceptional episode of wet-to-dry hydroclimate whiplash.” Last year’s rainy winter fostered abundant plant growth, and the proceeding dryness primed the vegetation for fire.
Get our best story delivered to your inbox every day:
Editor’s note: This story was last update on Monday, January 13, at 10:00 a.m. ET.
On tough questioning from the Senate, LA’s fires, and EV leases
Current conditions: Odd weather has caused broccoli and cauliflower plants to come up far too early in the UK • Another blast of Arctic air is headed for the Midwest • An air quality alert has been issued in Los Angeles due to windblown dust and ash.
Firefighters in Los Angeles are scrambling to make progress against the ongoing wildfires there before dangerous winds return. The Palisades and Eaton fires have now been burning for almost a week, charring nearly 40,000 acres, damaging more than 12,000 structures, and leaving at least 24 people dead. They are 13% and 27% contained, respectively. Residents who lost their homes are desperately trying to find new properties to rent or buy in a tight market, with reports of intense bidding wars as landlords hike rents. The economic toll of this disaster is estimated to be between $135 billion and $150 billion. Red flag warnings are in effect today, with critical fire conditions and extreme wind gusts forecast through Wednesday.
Red fire retardant on pool furniture. Justin Sullivan/Getty Images
A few updates on the incoming administration: President-elect Donald Trump tapped Ed Russo to run an advisory environmental task force. Trump said Russo will oversee “initiatives to create great jobs and protect our natural resources, by following my policy of CLEAN AIR and CLEAN WATER. Together, we will achieve American Energy DOMINANCE, rebuild our Economy, and DRILL, BABY, DRILL.” Russo is a longtime Trump loyalist who served as an environmental consultant to the Trump Organization and wrote a book titled “Donald J. Trump: An Environmental Hero”.
Trump also announced his deputies for some key environmental and energy Cabinet positions over the weekend, including:
More than a dozen of Trump’s Cabinet nominees face Senate confirmation hearings this week. Doug Burgum, who is up for interior secretary, has a hearing before the Committee on Energy and Natural Resources tomorrow. Energy secretary nominee Chris Wright has one on Wednesday. EPA nominee Lee Zeldin has one with the Environment and Public Works Committee on Thursday.
Affordable EV leases are “the car market’s hottest deal,” according toThe Wall Street Journal. Car companies are changing the way they pitch EVs to buyers, offering short-term leases with low monthly payments. These deals are attractive to first-time EV shoppers who are still a little bit hesitant to commit, as well as people on a tighter budget. Roughly 45% of EV transactions at the end of 2024 were leases, much higher than the auto industry as a whole. And a provision in the Inflation Reduction Act means leased cars can more easily qualify for the government’s $7,500 EV tax credit. “The proliferation of lease deals has made EVs more accessible to buyers who couldn’t afford their higher sticker prices,” the Journal said. “For the automakers, it is helping get more EVs into customers’ hands after a choppy start for their electric-car operations.”
Wind power could overtake coal in Europe for electricity generation for the first time this year, according to the energy think tank Ember. At the end of 2024, wind power was closing in on coal, coming in at just 4% below the fossil fuel in power generation as the continent’s coal plants close. “That output gap could easily be made up over the course of 2025 by an increase in regional wind generation capacity or by higher average wind speeds at turbine level, or by some combination of both,” Reutersreported. Last year wind power accounted for 20% of electricity consumed in the EU, and the goal is to get that up to 50% by 2050. But as Electreknoted, the same problems plaguing projects in the U.S. – permitting delays and connection bottlenecks – are slowing things down. The EU accounts for 4.6% of global power sector emissions.
The World Health Organization’s European Centre for Environment and Health has issued a callout for “examples of interventions to protect and promote mental health in the face of climate change.” The group wants to take stock of these interventions so that it can identify gaps in mental health care and share some best practices. The callout is aimed at Europe only, but it is indicative of a growing awareness of how the worsening climate crisis is taking a toll on mental health worldwide.
“There’s a lot of finger-pointing going around, and I would just try to emphasize that this is a really complex problem. We have lots of different responsible parties. To me, what has happened requires more of a rethink than a blame game.” –Faith Kearns, a water and wildfire researcher at Arizona State University, speaking to Heatmap about the spread of misinformation around the LA fires