You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Money is pouring in — and deadlines are approaching fast.
There’s no quick fix for decarbonizing medium- and long-distance flights. Batteries are typically too heavy, and hydrogen fuel takes up too much space to offer a practical solution, leaving sustainable aviation fuels made from plants and other biomass, recycled carbon, or captured carbon as the primary options. Traditionally, this fuel is much more expensive — and the feedstocks for it much more scarce — than conventional petroleum-based jet fuel. But companies are now racing to overcome these barriers, as recent months have seen backers throw hundreds of millions behind a series of emergent, but promising solutions.
Today, most SAF is made of feedstocks such as used cooking oil and animal fats, from companies such as Neste and Montana Renewables. But this supply is limited by, well, the amount of cooking oil or fats restaurants and food processing facilities generate, and is thus projected to meet only about 10% of total SAF demand by 2050, according to a 2022 report by the Mission Possible Partnership. Beyond that, companies would have to start growing new crops just to make into fuel.
That creates an opportunity for developers of second-generation SAF technologies, which involve making jet fuel out of captured carbon or alternate biomass sources, such as forest waste. These methods are not yet mature enough to make a significant dent in 2030 targets, such as the EU's mandate to use 6% SAF and the U.S. government’s goal of producing 3 billion gallons of SAF per year domestically. But this tech will need to be a big part of the equation in order to meet the aviation sector’s overall goal of net zero emissions by 2050, as well as the EU’s sustainable fuels mandate, which increases to 20% by 2035 and 70% by 2050 for all flights originating in the bloc.
“That’s going to be a massive jump because currently, SAF uptake is about 0.2% of fuel,” Nicole Cerulli, a research associate for transportation and logistics at the market research firm Cleantech Group, told me. The head of the airline industry’s trade association, Willie Walsh, said in December at a media day event, "We’re not making as much progress as we’d hoped for, and we’re certainly not making as much progress as we need.” While global SAF production doubled to 1 million metric tons in 2024, that fell far below the trade group’s projection of 1.5 million metric tons, made at the end of 2023.
Producing SAF requires making hydrocarbons that mirror those used in traditional jet fuel. We know how to do that, but the processes required — electrolysis, gasification, and the series of chemical reactions known as Fischer-Tropsch synthesis — are energy intensive. So finding a way to power all of this sustainably while simultaneously scaling to meet demand is a challenging and expensive task.
Aamir Shams, a senior associate at the energy think tank RMI whose work focuses on driving demand for SAF, told me that while sustainable fuel is undeniably more expensive than traditional fuel, airlines and corporations have so far been willing to pay the premium. “We feel that the lag is happening because we just don’t have the fuel today,” Shams said. “Whatever fuel shows up, it just flies off the shelves.”
Twelve, a Washington-based SAF producer, thinks its e-fuels can help make a dent. The company is looking to produce jet fuel initially by recycling the CO2 emitted from the ethanol, pulp, and paper industries. In September, the company raised $645 million to complete the buildout of its inaugural SAF facility in Washington state, support the development of future plants, and pursue further R&D. The funding includes $400 million in project equity from the impact fund TPG Rise Climate, $200 million in Series C financing led by TPG, Capricorn Investment Group, and Pulse Fund, and $45 million in loans. The company has also previously partnered with the Air Force to explore producing fuel on demand in hard to reach areas.
Nicholas Flanders, Twelve’s CEO, told me that the company is starting with ethanol, pulp, and paper because the CO2 emissions from these facilities are relatively concentrated and thus cheaper to capture. And unlike, say, coal power plants, these industries aren’t going anywhere fast, making them a steady source of carbon. To turn the captured CO2 into sustainable fuel, the company needs just one more input — water. Renewable-powered electrolyzers then break apart the CO2 and H2O into their constituent parts, and the resulting carbon monoxide and hydrogen are combined to create a syngas. That then gets put through a chemical reaction known as “Fischer-Tropsch synthesis,” where the syngas reacts with catalysts to form hydrocarbons, which are then processed into sustainable jet fuel and ultimately blended with conventional fuel.
Twelve says its proprietary CO2 electrolyzer can break apart CO2 at much lower temperatures than would typically be required for this molecule, which simplifies the whole process, making it easier to ramp the electrolyzers up and down to match the output of intermittent renewables. (How does it do this? The company didn’t respond when I asked.) Twelve’s first plant, which sources carbon from a nearby ethanol facility, is set to come online next year, producing 50,000 gallons of SAF annually once it’s fully scaled, with electrolyzers that will run on hydropower.
While Europe may have stricter, actually enforceable SAF requirements than the U.S., Flanders told me there’s a lot of promise in domestic production. “I think the U.S. has an exciting combination of relatively low-cost green electricity, lots of biogenic CO2 sources, a lot of demand for the product we’re making, and then the inflation Reduction Act and state level incentives can further enhance the economics.” Currently, the IRA provides SAF producers with a baseline $1.25 tax credit per gallon produced, which gradually increases the greener the fuel gets. Of course, whether or not the next Congress will rescind this is anybody’s guess.
Down the line, incentives and mandates will end up mattering a whole lot. Making SAF simply costs a whole lot more than producing jet fuel the standard way, by refining crude oil. But in the meantime, Twelve is setting up cost-sharing partnerships between airlines that want to reduce their direct emissions (scope 1) and large corporations that want to reduce their indirect emissions (scope 3), which include employee business travel.
For example, Twelve has offtake agreements with Seattle-based Alaska Airlines and Microsoft for the fuel produced at its initial Washington plant. Microsoft, which aims to reduce emissions from its employees’ flights, will essentially cover the cost premium associated with Twelve’s more expensive SAF fuel, making it cost-effective for Alaska to use in its fleet. Twelve has a similar agreement with Boston Consulting Group and an unnamed airline
Eventually, Flanders told me, the company expects to source carbon via direct air capture, but doing so today would be prohibitively expensive. “If there were a customer who wanted to pay the additional amount to use DAC today, we'd be very happy to do that,” Flanders said. “But our perspective is it will maybe be another decade before that cost starts to converge.”
No sustainable fuel is even close to cost parity yet — Cerulli told me that it generally comes with a “roughly 250% to over 800%” cost premium over conventional jet fuel. So while voluntary uptake by companies such as Microsoft and BCG are helping drive the emergent market today, that won’t be near enough to decarbonize the industry. “At the simplest level, the cost of not using SAF has to be higher than using it,” Cerulli told me.
Pathway Energy thinks that by incorporating carbon sequestration into its process, it can help the world get there. The sustainable fuels company, which emerged from stealth just last month, is pursuing what CEO Steve Roberts told me is “probably the most cost-efficient long-term pathway from a decarbonization perspective.” The company is building a $2 billion SAF plant in Port Arthur, Texas designed to produce about 30 million gallons of jet fuel annually — enough to power about 5,000 carbon-neutral 10-hour flights — while also permanently sequestering more than 1.9 million tons of CO2.
Pathway, a subsidiary of the investment and advisory firm Nexus Holdings, has partnered with the UK-based renewable energy company Drax, which will supply the company with 1 million metric tons of wood pellets, to be turned into fuel using a series of well-established technologies. The first step is to gasify the biomass by heating the pellets to high temperatures in the absence of oxygen to produce a syngas. Then, just as Twelve does, it puts the syngas through the Fischer-Tropsch process to form the hydrocarbons that become SAF.
The competitive advantage here is capturing the emissions from the fuel production process itself and storing them permanently underground. Since Pathway is burying CO2 that’s already been captured by the trees from which the wood pellets come, that would make Pathway’s SAF carbon-negative, in theory, while the best Twelve and similar companies can hope for is carbon neutrality, assuming all of their captured carbon is used to produce fuel.
The choice of Drax as a feedstock partner is not without controversy, however, as the BBC revealed that the company sources much of its wood from rare old-growth forests. Though this is technically legal, it’s also ecologically disruptive. Roberts told me Drax’s sourcing methodologies have been verified by third parties, and Pathway isn’t concerned. “I don't think any of that controversy has yielded any actually significant changes to their sourcing program at all, because we believe that they're compliant,” Roberts told me. “We are 100% certain that they’re meeting all the standards and expectations.”
Pathway has big growth plans, which depend on the legitimacy of its sustainability cred. Beyond the Port Arthur facility, which Roberts told me will begin production by the end of 2029 or early 2030, the company has a pipeline of additional facilities along the Gulf Coast in the works. It also has global ambitions. “When you have a fuel that is this negative, it really opens up a global market, because you can transport fuel out of Texas, whether that be into the EU, Africa, Asia, wherever it may be,” Roberts said, explaining that even substantial transportation-related emissions would be offset by the carbon-negativity of the fuel.
But alternative feedstocks such as forestry biomass are finite resources, too. That’s why many experts think that within the SAF sector, e-fuels such as Twelve’s that could one day source carbon via direct air capture and then electrolyze it have the greatest potential for growth. “It’s extremely dependent on getting sustainable CO2 and cheap electricity prices so that you can make cheap green hydrogen,” Shams told me. “But theoretically, it is unlimited in terms of what your total cap on production would be.”
In the meantime, airlines are focused on making their planes and engines more aerodynamic and efficient so that they don’t consume as much fuel in the first place. They’re also exploring other technical pathways to decarbonization — because after all, SAF will only be a portion of the solution, as many short and medium-length flights could likely be powered by batteries or hydrogen fuel. RMI forecasts that by 2050, 45% of global emissions reduction in the aviation sector will come from improvements in fuel efficiency, 37% will be due to SAF deployment, 7% will come from hydrogen, and 3.5% will come from electrification.
If you did the mental math, you’ll notice these numbers add up to 92.5% — not 100%. “What we have done is, let's look at what we are actually doing today and for the past three, four, five years, and let's see if we get to net zero or not. And the answer is, no. We don't get to net zero by 2050,” Shams told me. And while getting to 92.5% is nothing to scoff at, that means that the aviation sector would still be emitting about 700 million metric tons of CO2 equivalent by that time.
So what’s to be done? “The financing sector needs to step up its game and take a little bit more of a risk than they are used to,” Shams told me, noting that one of RMI’s partners, the Mission Possible Partnership, estimates that getting the aviation sector to net zero will require an investment of around $170 billion per year, a total of about $4.5 trillion by 2050. These numbers take a variety of factors into account beyond strictly SAF production, such as airport infrastructure for new fuels, building out direct air capture plants, etc.
But any way you cut it, it’s a boatload of money that certainly puts Pathway’s $2 billion SAF facility and Twelve’s $645 million funding round in perspective. And it’s far from certain that we can get there. “Increasingly, that goal of the 2050 net-zero target looks really difficult to achieve,” Shams put it simply. “Commitments are always going up, but more can be done.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
How the Migratory Bird Treaty Act could become the administration’s ultimate weapon against wind farms.
The Trump administration has quietly opened the door to strictly enforcing a migratory bird protection law in a way that could cast a legal cloud over wind farms across the country.
As I’ve chronicled for Heatmap, the Interior Department over the past month expanded its ongoing investigation of the wind industry’s wildlife impacts to go after turbines for killing imperiled bald and golden eagles, sending voluminous records requests to developers. We’ve discussed here how avian conservation activists and even some former government wildlife staff are reporting spikes in golden eagle mortality in areas with operating wind projects. Whether these eagle deaths were allowable under the law – the Bald and Golden Eagle Protection Act – is going to wind up being a question for regulators and courts if Interior progresses further against specific facilities. Irrespective of what one thinks about the merits of wind energy, it’s extremely likely that a federal government already hostile to wind power will use the law to apply even more pressure on developers.
What’s received less attention than the eagles is that Trump’s team signaled it could go even further by using the Migratory Bird Treaty Act, a separate statute intended to support bird species flying south through the U.S. from Canada during typical seasonal migration periods. At the bottom of an Interior press release published in late July, the department admitted it was beginning a “careful review of avian mortality rates associated with the development of wind energy projects located in migratory flight paths,” and would determine whether migratory birds dying because of wind farms qualified as “‘incidental’ takings” – harm or death – under the Migratory Bird Treaty Act.
While not stated explicitly, what this means is that the department appears to be considering whether to redefine these deaths as intentional under the Migratory Bird Treaty Act, according to Ben Cowan, a lawyer with the law firm Troutman Pepper Locke.
I reached out to Cowan after the eagle investigation began because his law firm posted a bulletin warning that developers “holding active eagle permits” might want to prepare for “subpoenas that may be forthcoming.” During our chat earlier this month, he told me that the eagle probe is likely going to strain financing for projects even on private lands that wouldn’t require any other forms of federal sign-off: “Folks don’t want to operate if they feel there’s a significant risk they might take an eagle without authorization.”
Cowan then voiced increasing concern about the migratory bird effort, however, because the law on this matter could be a quite powerful – if legally questionable – weapon against wind development.
Unlike the Endangered Species Act or the eagle protection law, there is currently no program on the books for a wind project developer to even obtain a permit for incidental impacts to a migratory bird. Part of the reason for the absence of such a program is the usual federal bureaucratic struggle that comes with implementing a complex statute, with the added effect of the ping-pong of federal control; the Biden administration started a process for permitting “incidental” impacts, but it was scrapped in April by the Trump team. Most protection of migratory birds under the law today comes from voluntary measures conducted by private companies and nonprofits in consultation with the federal government.
Hypothetically, hurting a migratory bird should be legally permissible to the federal government. That’s because the administration loosened implementation of the law earlier this year with an Interior Department legal opinion that stated the agency would only go after harm that was “intentional” – a term of art under the statute.
This is precisely why Cowan is fretting about migratory birds, however. Asked why the wind industry hasn’t publicly voiced more anxiety about this potential move, he said industry insiders genuinely hope this is “bluster” because such a selective use of this law “would be so beyond the pale.”
“It’s basically saying the purpose of a wind farm is to kill migratory birds, which is very clearly not the case – it’s to generate renewable electricity,” Cowan told me, adding that any effort by the Interior Department would inevitably result in lawsuits. “I mean, look at what this interpretation would mean: To classify it as intentional take would say the purpose of operating a wind farm would be to kill a bird. It’s obviously not. But this seems to be a way this administration is contemplating using the MBTA to block the operation of wind farms.”
It’s worth acknowledging just how bonkers this notion is on first blush. Is the federal government actually going to decide that any operating wind farm could be illegal? That would put entire states’ power supplies – including GOP-heavy states like Iowa – in total jeopardy. Not to mention it would be harmful overall to take operating capacity offline in any fashion at a moment when energy demand is spiking because of data centers and artificial intelligence. Even I, someone who has broken quite a few eye-popping stories about Trump’s war on renewables, struggle to process the idea of the government truly going there on the MBTA.
And yet, a door to this activity is now open, like a cleaver hanging over the industry’s head.
I asked the Interior Department to clarify its timeline for the MBTA review. It declined to comment on the matter. I would note that in mid-August, the Trump administration began maintenance on a federal dashboard for tracking regulations such as these and hasn’t updated it since. So we’ll have to wait for nothing less than their word to know what direction this is going in.
And more on the week’s most important conflicts around renewable energy projects.
1. Santa Fe County, New Mexico – County commissioners approved the controversial AES Rancho Viejo solar project after months of local debate, which was rendered more intense by battery fire concerns.
2. Nantucket, Massachusetts – The latest episode of the Vineyard Wind debacle has dropped, and it appears the offshore wind project’s team is now playing ball with the vacation town.
3. Klickitat County, Washington – Washington Gov. Bob Ferguson is pausing permitting on Cypress Creek Renewables’ Carriger solar project despite a recommendation from his own permitting council, citing concerns from tribes that have dogged other renewables projects in the state.
4. Tippecanoe County, Indiana – The county rejected what is believed to have been its first utility-scale solar project, flying in the face of its zoning staff.
5. Morrow County, Oregon – This county is opting into a new state program that purports to allow counties more input in how they review utility-scale solar projects.
6. Ocean County, New Jersey – The Jersey shoreline might not get a wind farm any time soon, but now that angst is spreading to battery storage.
7. Fairfield County, Ohio – Hey, at least another solar farm is getting permitted in Ohio.
Talking NEPA implementation and permitting reform with Pamela Goodwin, an environmental lawyer at Saul Ewing LLP.
This week’s conversation is with Pamela Goodwin, an environmental lawyer with Saul Ewing LLP. I reached out to her to chat about permitting because, well, when is that not on all of our minds these days. I was curious, though, whether Trump’s reforms to National Environmental Policy Act regulations and recent court rulings on the law’s implementation would help renewables in any way, given how much attention has been paid to “permitting reform” over the years. To my surprise, there are some silver linings here – though you’ll have to squint to see them.
The following chat was lightly edited for clarity.
So walk me through how you see the Trump administration handling renewable energy projects right now under NEPA.
In general, the federal government has been much more reluctant to the timely issue of permits in contrast to what we might be seeing on the more traditional side of things.
But that’s separate from NEPA — it relates to public notice and comments and the opportunity for third parties to get involved, ensuring any decision-making on the government side is done in a way that’s evocative of a fair system. On the NEPA side, I don’t know if they’re going to treat renewables any differently than they’re going to treat other sorts of projects. That’s different, from a policy perspective, [from] how they’re handling the permits.
If, from a policy perspective, the federal government is less inclined to make a determination about a particular project — or if it decides that it doesn’t like wind, for example, and isn’t going to issue a permit — that’s different than the procedural elements associated with a NEPA review.
The Supreme Court recently ruled in the Seven County case that agencies can be granted a lot of deference in their reviews under NEPA, seeing it more as a procedural statute than a substantive roadblock. What will this lead to?
I think that what we’re seeing – and every agency’s different – but what the court said is that lower courts should defer to the agency to establish their own protocols under NEPA. They’ve begun to streamline the process by which they issue permits, issue notices of those permits, and give people the opportunity to comment on them.
What we’re anticipating will happen if the court gets its wishes – and candidly, I think this is a good thing for developers, on both the renewables and non-renewables side – is that we’ll see more expeditious permitting from the federal government.
You may not like the determinations. There’s a possibility that certain permits are denied if the nature of the permit is in conflict with the federal government’s policy and intention. But you’ll get a quicker decision than you used to get. And if there’s a will to issue a permit, you’ll get it faster.
We’ve heard the concept of permitting reform or NEPA reform as a leveling of the playing field, but in this environment, it is not entirely clear that’ll be the case. Where does the battleground turn then for those who get, as you put it, rejections faster?
That’s a great question. Regrettably, the immediate battleground is the courts. There is certainly a right and an opportunity for anybody who feels a determination was incorrect to challenge that, and to challenge the particular agency’s implementation of NEPA.
Okay, but what’s the remedy here if renewables companies are just getting rejections faster from the Trump team?
Without a real-world example, it’s hard to give you legal theories, but they will always exist. It’ll be circumstantial, and good lawyers always come up with good arguments. I don’t think this issue is fully resolved, either. The Supreme Court has done a favor to everybody by at least defining the issue, but now we’ll have to see what happens as agencies make these kinds of determinations.