You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Electric vehicles are the future. But what if you can’t buy one now?
As unpredictable as world events have been recently, very few people would’ve put money on the humble Toyota Prius getting a stunning makeover for 2023. Somehow, that’s exactly what happened. Now the all-new, fifth-generation Prius hybrid boasts sleek, almost sports-car-like looks to go with its impressive 57 miles per gallon.
The Prius will need every advantage it can muster. Its sales have been down for years, and hybrid cars also feel almost anachronistic compared to the new crop of high-range, high-performance electric vehicles hitting the market. Why go hybrid when you’re about to have more options than ever when it comes to breaking up with gasoline entirely?
Even the Biden Administration’s Inflation Reduction Act seems to be reinforcing this idea. While the act modernized how EV and plug-in hybrid tax credits work, regular hybrids without plugs have been left out in the cold. In other words, if you want an American-made EV like a Ford F-150 Lightning, you now qualify for a $7,500 tax break; but if you want a hybrid F-150 or Maverick pickup truck, you’re out of luck because those don’t have plugs.
Furthermore, the hybrid — long the standard-bearer for eco-friendly driving — seems to have a target on its back. “Hybrid cars are still incredibly popular, but are they good for the environment?,” NPR wondered in February, probably much to the chagrin of listeners, many of whom have enjoyed “All Things Considered" while commuting in their own hybrids.
This is all deeply unfortunate, especially given how quickly we need to reduce emissions to avoid the worst outcomes of climate change. Whether there's a plug or not is also the wrong way to think about hybrids.
There’s still a strong case to be made for hybrids today. But let’s be clear about what that case isn’t: an argument for extending the internal combustion era or to slow-walk EV adoption. Rather, hybrids can and should be seen as an essential tool for reducing vehicle emissions right now, and as cars that still have tremendous advantages EVs don’t have yet.
The auto industry’s move toward zero-emission vehicles is now basically inevitable. But there’s still a long way to go. In the interim, cars that pair electricity and gasoline can play a vital role in making the air cleaner and serving as a gateway drug for widespread EV adoption.
For a long time, the primary appeal of a hybrid car was that it would help you save money on gas. But they do much more than that. The science is clear: Hybrid vehicles generate fewer tailpipe emissions than their all-gasoline counterparts, and obviously none when running only on electricity. In fact, 2021 data from the U.S. Department of Energy indicates hybrids produce about half the carbon dioxide on average that fully internal-combustion cars do. The numbers are even better for plug-in hybrids.
Of course, battery EVs fare the best; the only emissions they’re tied to are related to vehicle and battery production and charging. If your goal with your next car purchase is to cut down on CO2, this is a superb way to do so.
As for plug-in hybrids, those have gotten a bad rap in recent years with various studies (especially out of Europe) claiming they pollute much more than automakers advertise. Certainly, that wouldn’t be the car industry’s first rodeo when it comes to greasing emissions — remember Dieselgate?
One thing that hasn’t made headlines is the fact that in Europe, many corporations took advantage of government subsidies to buy PHEVs for their corporate fleets, but company car owners often didn’t charge them. The result is a heavier car, thanks to its additional batteries, that isn’t being used as intended.
The moral of this story: If you drive a PHEV, make sure to plug it in so that it can be driven in all-electric mode properly. The average PHEV gets between 20 and 40 miles of electric range, and given that most Americans drive around 40 miles a day on average, you may be surprised how much gasoline you don’t end up using.
You have more options than ever before when it comes to EVs, and things will get even better in the years to come. Just about every automaker is planning an aggressive EV rollout across multiple categories — trucks, vans, even convertibles — and multiple price points. Electric range is getting better, and thanks to the IRA, EVs built in North America will come with enticing tax credits. Starting next year, those credits will even be applied at the point of sale at the dealership, so you won’t even need to wait on a tax return to reap the benefits.
But there’s still a lot of daylight between where the EV market is now and where it will go next. America’s public charging network is woefully inadequate and many providers offer an infamously subpar experience. Few good charging solutions exist for city dwellers and those who live in apartments. (In fact, I’ve been seeing more and more EVs here in New York charged by 100-foot extension cords running out of windows, which is suboptimal for countless reasons.) Whether you’re into road trips or not, long distances remain a challenge for many EVs too, thanks to these network issues.
Tesla still has objectively the best charging network and it’s opening up to other EVs, but that’s a ways off. So is the network expansion that will be driven by the IRA’s incentives.
Then there's the fact the best EVs are comparatively hard to buy. Many of the really in-demand new EVs — the Mustang Mach-E, the Hyundai Ioniq 5, and the Kia EV6 — are tough to find and still impacted by supply chain issues. If you want a car with great range, a beautiful interior, and excellent range, get in line. Now, to be fair, supply remains super weird across the whole automotive industry, but the most desirable electric cars still seem to have among the longest lines.
EVs remain expensive as well, even by modern standards; by late last year, the average EV was priced around $65,000, around $20,000 more than a typical new vehicle's price tag. That too should change as batteries get cheaper and more options come to market, but for now, going electric could mean sticker shock, too — especially if your EV does not qualify for the new tax breaks.
In other words, it should get much easier to be an EV owner in the next few years. Until then, if these barriers to entry are too onerous, consider a hybrid instead.
There’s also the unfortunate matter of how “green” our electricity really is. Recently, Polestar and Rivian — two companies with every incentive to get you to buy their EVs — jointly commissioned a study that urged a dramatic increase in renewable energy powering both the automotive supply chain and electricity sources in order for these vehicles to be maximally effective at deterring climate change.
EVs alone will not be enough to reduce the harmful effects of the transportation sector. While it’s hard to say “be patient” when we directly experience climate change, we must realize that making changes that should’ve happened decades ago will be a process.
Until then, there’s great value in doing whatever can be done to reduce CO2 emissions, and driving hybrids — to say nothing of walking, biking, and taking public transit — can be crucial to that too.
Are hybrid cars essentially a stopgap to full EV adoption? At this point, it feels like the definitive answer is yes. Car companies like General Motors, Ford, Volvo, and Volkswagen all say they plan to phase out internal combustion entirely by the middle of the next decade, and even if they try to renege on their promises, governments from Brussels to California are banning the sale of new gasoline cars around the same time.
Between regulations and market forces — especially China’s aggressive EV push — the writing is on the wall for gasoline cars. Reducing emissions will be the single most crucial guiding force for the auto industry over the next few decades. In the meantime, and for that very reason, more and more hybrid options are coming to market.
Sure, the Prius’ sales figures don’t look great, but the venerable Toyota Tacoma truck is heavily expected to offer a hybrid option soon. The Toyota Sienna minivan is now only offered as a hybrid, as is the quirky new Toyota Crown sedan. Honda brought back the Accord Hybrid for 2023 and the all-new CR-V Hybrid looks promising as well. Mazda is finally dipping its toes into that market with the new CX-90 plug-in hybrid. Even the beloved Mazda Miata, the gold standard for affordable sports cars, is heavily rumored to have some kind of electrification when an all-new one arrives in the next few years. And as of this year, every new Volvo you can buy is a hybrid if it’s not a full EV.
The point is, while EVs are getting the splashy headlines, car companies aren’t yet done with hybrids. Not by a long shot. In fact, electrification is likely to become even more common as we start to approach the end of the internal combustion era, particularly as battery costs start to go down.
Think of it this way: If the Chevy Corvette can go hybrid, so can you.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Any household savings will barely make a dent in the added costs from Trump’s many tariffs.
Donald Trump’s tariffs — the “fentanyl” levies on Canada, China, and Mexico, the “reciprocal” tariffs on nearly every country (and some uninhabited islands), and the global 10% tariff — will almost certainly cause consumer goods on average to get more expensive. The Yale Budget Lab estimates that in combination, the tariffs Trump has announced so far in his second term will cause prices to rise 2.3%, reducing purchasing power by $3,800 per year per household.
But there’s one very important consumer good that seems due to decline in price.
Trump administration officials — including the president himself — have touted cheaper oil to suggest that the economic response to the tariffs hasn’t been all bad. On Sunday, Secretary of the Treasury Scott Bessent told NBC, “Oil prices went down almost 15% in two days, which impacts working Americans much more than the stock market does.”
Trump picked up this line on Truth Social Monday morning. “Oil prices are down, interest rates are down (the slow moving Fed should cut rates!), food prices are down, there is NO INFLATION,” he wrote. He then spent the day posting quotes from Fox Business commentators echoing that idea, first Maria Bartiromo (“Rates are plummeting, oil prices are plummeting, deregulation is happening. President Trump is not going to bend”) then Charles Payne (“What we’re not talking about is, oil was $76, now it’s $65. Gasoline prices are going to plummet”).
But according to Neil Dutta, head of economic research at Renaissance Macro Research, pointing to falling oil prices as a stimulus is just another example of the “4D chess” theory, under which some market participants attribute motives to Trump’s trade policy beyond his stated goal of reducing trade deficits to as near zero (or surplus!) as possible.
Instead, oil markets are primarily “responding to the recession risk that comes from the tariff and the trade war,” Dutta told me. “That is the main story.” In short, oil markets see less global trade and less global production, and therefore falling demand for oil. The effect on household consumption, he said, was a “second order effect.”
It is true that falling oil prices will help “stabilize consumption,” Dutta told me (although they could also devastate America’s own oil industry). “It helps. It’ll provide some lift to real income growth for consumers, because they’re not spending as much on gasoline.” But “to fully offset the trade war effects, you basically need to get oil down to zero.”
That’s confirmed by some simple and extremely back of the envelope math. In 2023, households on average consumed about 700 gallons of gasoline per year, based on Energy Information Administration calculations that the average gasoline price in 2023 was $3.52, while the Bureau of Labor Statistics put average household gasoline expenditures at about $2,450.
Let’s generously assume that due to the tariffs and Trump’s regulatory and diplomatic efforts, gas prices drop from the $3.26 they were at on Monday, according to AAA, to $2.60, the average price in 2019. (GasBuddy petroleum analyst Patrick De Haanwrote Monday that the tariffs combined with OPEC+ production hikes could lead gas prices “to fall below $3 per gallon.”)
Let’s also assume that this drop in gas prices does not cause people to drive more or buy less fuel-efficient vehicles. In that case, those same 700 gallons cost the average American $1,820, which would generate annual savings of $630 on average per household. If we went to the lowest price since the Russian invasion of Ukraine, about $3 per gallon, total consumption of 700 gallons would cost a household about $2,100, saving $350 per household per year.
That being said, $1,820 is a pretty low level for annual gasoline consumption. In 2021, as the economy was recovering from the Covid recession and before gas prices popped, annual gasoline expenditures only got as low as $1,948; in 2020 — when oil prices dropped to literally negative dollars per barrel and gas prices got down to $1.85 a gallon — annual expenditures were just over $1,500.
In any case, if you remember the opening paragraphs of this story, even the most generous estimated savings would go nowhere near surmounting the overall rise in prices forecast by the Yale Budget Lab. $630 is less than $3,800! (JPMorgan has forecast a more mild increase in prices of 1% to 1.5%, but agrees that prices will likely rise and purchasing power will decline.)
But maybe look at it this way: You might be able to drive a little more than you expected to, even as your costs elsewhere are going up. Just please be careful! You don’t want to get into a bad accident and have to replace your car: New car prices are expected to rise by several thousand dollars due to Trump’s tariffs.
With cars about to get more expensive, it might be time to start tinkering.
More than a decade ago, when I was a young editor at Popular Mechanics, we got a Nissan Leaf. It was a big deal. The magazine had always kept long-term test cars to give readers a full report of how they drove over weeks and months. A true test of the first true production electric vehicle from a major car company felt like a watershed moment: The future was finally beginning. They even installed a destination charger in the basement of the Hearst Corporation’s Manhattan skyscraper.
That Leaf was a bit of a lump, aesthetically and mechanically. It looked like a potato, got about 100 miles of range, and delivered only 110 horsepower or so via its electric motors. This made the O.G. Leaf a scapegoat for Top Gear-style car enthusiasts eager to slander EVs as low-testosterone automobiles of the meek, forced upon an unwilling population of drivers. Once the rise of Tesla in the 2010s had smashed that paradigm and led lots of people to see electric vehicles as sexy and powerful, the original Leaf faded from the public imagination, a relic of the earliest days of the new EV revolution.
Yet lots of those cars are still around. I see a few prowling my workplace parking garage or roaming the streets of Los Angeles. With the faded performance of their old batteries, these long-running EVs aren’t good for much but short-distance city driving. Ignore the outdated battery pack for a second, though, and what surrounds that unit is a perfectly serviceable EV.
That’s exactly what a new brand of EV restorers see. Last week, car site The Autopiancovered DIYers who are scooping up cheap old Leafs, some costing as little as $3,000, and swapping in affordable Chinese-made 62 kilowatt-hour battery units in place of the original 24 kilowatt-hour units to instantly boost the car’s range to about 250 miles. One restorer bought a new battery on the Chinese site Alibaba for $6,000 ($4,500, plus $1,500 to ship that beast across the sea).
The possibility of the (relatively) simple battery swap is a longtime EV owner’s daydream. In the earlier days of the electrification race, many manufacturers and drivers saw simple and quick battery exchange as the solution for EV road-tripping. Instead of waiting half an hour for a battery to recharge, you’d swap your depleted unit for a fully charged one and be on your way. Even Tesla tested this approach last decade before settling for good on the Supercharger network of fast-charging stations.
There are still companies experimenting with battery swaps, but this technology lost. Other EV startups and legacy car companies that followed Nissan and Tesla into making production EVs embraced the rechargeable lithium-ion battery that is meant to be refilled at a fast-charging station and is not designed to be easily removed from the vehicle. Buy an electric vehicle and you’re buying a big battery with a long warranty but no clear plan for replacement. The companies imagine their EVs as something like a smartphone: It’s far from impossible to replace the battery and give the car a new life, but most people won’t bother and will simply move on to a new car when they can’t take the limitations of their old one anymore.
I think about this impasse a lot. My 2019 Tesla Model 3 began its life with a nominal 240 miles of range. Now that the vehicle has nearly six years and 70,000 miles on it, its maximum range is down to just 200, while its functional range at highway speed is much less than that. I don’t want to sink money into another vehicle, which means living with an EV’s range that diminishes as the years go by.
But what if, one day, I replaced its battery? Even if it costs thousands of dollars to achieve, a big range boost via a new battery would make an older EV feel new again, and at a cost that’s still far less than financing a whole new car. The thought is even more compelling in the age of Trump-imposed tariffs that will raise already-expensive new vehicles to a place that’s simply out of reach for many people (though new battery units will be heavily tariffed, too).
This is no simple weekend task. Car enthusiasts have been swapping parts and modifying gas-burning vehicles since the dawn of the automotive age, but modern EVs aren’t exactly made with the garage mechanic in mind. Because so few EVs are on the road, there is a dearth of qualified mechanics and not a huge population of people with the savvy to conduct major surgery on an electric car without electrocuting themselves. A battery-replacing owner would need to acquire not only the correct pack but also potentially adapters and other equipment necessary to make the new battery play nice with the older car. Some Nissan Leaf modifiers are finding their replacement packs aren’t exactly the same size, shape or weight, The Autopian says, meaning they need things like spacers to make the battery sit in just the right place.
A new battery isn’t a fix-all either. The motors and other electrical components wear down and will need to be replaced eventually, too. A man in Norway who drove his Tesla more than a million miles has replaced at least four battery packs and 14 motors, turning his EV into a sort of car of Theseus.
Crucially, though, EVs are much simpler, mechanically, than combustion-powered cars, what with the latter’s belts and spark plugs and thousands of moving parts. The car that surrounds a depleted battery pack might be in perfectly good shape to keep on running for thousands of miles to come if the owner were to install a new unit, one that could potentially give the EV more driving range than it had when it was new.
The battery swap is still the domain of serious top-tier DIYers, and not for the mildly interested or faint of heart. But it is a sign of things to come. A market for very affordable used Teslas is booming as owners ditch their cars at any cost to distance themselves from Elon Musk. Old Leafs, Chevy Bolts and other EVs from the 2010s can be had for cheap. The generation of early vehicles that came with an unacceptably low 100 to 150 miles of range would look a lot more enticing if you imagine today’s battery packs swapped into them. The possibility of a like-new old EV will look more and more promising, especially as millions of Americans realize they can no longer afford a new car.
On the shifting energy mix, tariff impacts, and carbon capture
Current conditions: Europe just experienced its warmest March since record-keeping began 47 years ago • It’s 105 degrees Fahrenheit in India’s capital Delhi where heat warnings are in effect • The risk of severe flooding remains high across much of the Mississippi and Ohio Valleys.
The severe weather outbreak that has brought tornadoes, extreme rainfall, hail, and flash flooding to states across the central U.S. over the past week has already caused between $80 billion and $90 billion in damages and economic losses, according to a preliminary estimate from AccuWeather. The true toll is likely to be costlier because some areas have yet to report their damages, and the flooding is ongoing. “A rare atmospheric river continually resupplying a firehose of deep tropical moisture into the central U.S., combined with a series of storms traversing the same area in rapid succession, created a ‘perfect storm’ for catastrophic flooding and devastating tornadoes,” said AccuWeather’s chief meteorologist Jonathan Porter. The estimate takes into account damages to buildings and infrastructure, as well as secondary effects like supply chain and shipping disruptions, extended power outages, and travel delays. So far 23 people are known to have died in the storms. “This is the third preliminary estimate for total damage and economic loss that AccuWeather experts have issued so far this year,” the outlet noted in a release, “outpacing the frequency of major, costly weather disasters since AccuWeather began issuing estimates in 2017.”
AccuWeather
Low-emission energy sources accounted for 41% of global electricity generation in 2024, up from 39.4% in 2023, according to energy think tank Ember’s annual Global Electricity Review. That includes renewables as well as nuclear. If nuclear is left out of the equation, renewables alone made up 32% of power generation last year. Overall, renewables added a record 858 terawatt hours, nearly 50% more than the previous record set in 2022. Hydro was the largest source of low-carbon power, followed by nuclear. But wind and solar combined overtook hydro last year, while nuclear’s share of the energy mix reached a 45-year low. More solar capacity was installed in 2024 than in any other single year.
Ember
The report notes that demand for electricity rose thanks to heat waves and air conditioning use. This resulted in a slight, 1.4% annual increase in fossil-fuel power generation and pushed power-sector emissions to a new all-time high of 14.5 billion metric tons. “Clean electricity generation met 96% of the demand growth not caused by hotter temperatures,” the report said.
President Trump’s new tariffs will have a “limited” effect on the amount of solar components the U.S. imports from Asia because the U.S. already imposes tariffs on these products, according to a report from research firm BMI. That said, the U.S. still relies heavily on imported solar cells, and the new fees are likely to raise costs for domestic manufacturers and developers, which will ultimately be passed on to buyers and could slow solar growth. “Since the U.S.’s manufacturing capacity is insufficient to meet demand for solar, wind, and grid components, we do expect that costs will increase for developers due to the tariffs which will now be imposed upon these components,” BMI wrote.
In other tariff news, the British government is adjusting its 2030 target of ending the sale of new internal combustion engine cars to ease some of the pain from President Trump’s new 25% auto tariffs. Under the U.K.’s new EV mandate, carmakers will be able to sell new hybrids through 2035 (whereas the previous version of the rules banned them by 2030), and gas and diesel vans can also be sold through 2035. The changes also carve out exemptions for luxury supercar brands like McLaren and Aston Martin, which will be allowed to keep selling new ICE vehicles beyond 2030 because, the government says, they produce so few. The goal is to “help ease the transition and give industry more time to prepare.” British Transport Secretary Heidi Alexander insisted the changes have been “carefully calibrated” and their impact on carbon emissions is “negligible.” As The New York Timesnoted, the U.S. is the largest single-country export market for British cars.
The Environmental Protection Agency has approved Occidental Petroleum’s application to capture and sequester carbon dioxide at its direct air capture facility in Texas, and issued permits that will allow the company to drill and inject the gas more than one mile underground. The Stratos DAC plant is being developed by Occidental subsidiary 1PointFive. As Heatmap’s Katie Brigham has reported, Stratos is designed to remove up to 500,000 metric tons of CO2 annually and set to come online later this year. Its success (or failure) could shape the future of DAC investment at a time when the Trump administration is hollowing out the Department of Energy’s nascent Carbon Dioxide Removal team and casting doubt over the future of the DOE’s $3.5 billion Regional Direct Air Capture Hubs program. While Stratos is not a part of the hubs program, it will use the same technology as Occidental’s South Texas DAC hub.
The Bezos Earth Fund and the Global Methane Hub are launching a $27 million effort to fund research into selectively breeding cattle that emit less methane.