You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Ambient Carbon is doing the methane equivalent of point source carbon capture in dairy barns.
In the world of climate and energy, “emissions” is often shorthand for carbon dioxide, the most abundant anthropogenic greenhouse gas in the world. Similarly, talk of emissions capture and removal usually centers on the growing swath of technologies that either prevent CO2 from entering the atmosphere or pull it back out after the fact.
Discussions and frameworks for reducing methane, which is magnitudes more potent than CO2 in the short-term, have been far less common — but the potential impact could be huge.
“If you can accelerate the decrease of methane in the atmosphere, you actually could have a much more significant climate impact, much faster than with CO2,” Gabrielle Dreyfus, chief scientist at the Institute for Governance & Sustainable Development, told me. “People often talk about gigatons of CO2 removal. But because of the potency of methane, for a similar level of temperature impact, you’re talking about megatons.”
Over the past year or so, this conversation has finally started to gain traction. Last October, the National Academies of Sciences, Engineering, and Medicine released a report on atmospheric methane removal, recommending that the U.S. develop a research agenda for methane removal technologies and establish methodologies to assess their impacts. Dreyfus chaired the committee that authored the report.
And one startup, at least — Denmark-based Ambient Carbon — is trying to commercialize its methane-zapping tech. Last week, the company announced that it had successfully trialed its “methane eradication photochemical system” at a dairy barn in Denmark, eliminating the majority of methane from the barn’s air. It’s also aiming to deploy a prototype in the U.S., at a farm in Indiana, by year’s end.
The way the company’s process works is more akin to point source carbon capture, in which emissions are pulled from a smokestack, than it is to something like direct air capture, in which carbon dioxide is removed from ambient air. Inside a dairy barn, cows are continually belching methane, producing high concentrations of the gas that are typically vented into the atmosphere. Instead, Ambient Carbon captures this noxious air from the barn’s ventilation ducts and brings it into an enclosed reactor.
Inside the reactor, which uses electricity from the grid, UV light activates chlorine molecules, splitting their chemical bonds to form unstable radicals. These radicals then react with methane, breaking down the potent gas and converting it into CO2, water, and other byproducts. The whole process mimics the natural destruction of atmospheric methane, which would normally take a decade or more, while Ambient Carbon’s system does it in a matter of seconds. Much of the chlorine gets recycled back into the process, and the CO2 is released into the air.
That might sound less than ideal. Famously, carbon dioxide is bad. This molecule alone is responsible for two-thirds of all human-caused global warming. But because methane is over 80 times as potent as CO2 over a 20-year timeframe, and since it would eventually break down into carbon dioxide in the atmosphere anyway, accelerating that inevitable process turns out to be a net good for the climate.
“The amount of CO2 produced by methane when it oxidizes has about 50 times smaller climate effect than the methane that produced it,” Zeke Hausfather, a climate scientist and climate research lead at Stripe, told me. “So you get a 98% reduction in the warming effects by converting methane to CO2, which I think is a pretty good deal.”
As he sees it, preventing methane emissions in the first place or destroying the molecules before they’re released, as Ambient Carbon is doing, is far more impactful than pursuing after-the-fact atmospheric methane removal. Because while CO2 can linger in the air for centuries — making removal a necessity for near-term planetary cooling — when it comes to methane, “if you cut emissions, you cool the planet pretty quickly, because all that previous warming from methane goes away over the course of a decade or two.”
Agriculture represents 40% of global methane emissions, the largest single source, making the industry a ripe target for de-methane-ization. Ambient Carbon’s tech is only really effective when methane concentrations are relatively high, the company’s CSO, Matthew Johnson, told me — which still leaves a large addressable market given that in many parts of the world, cows are mostly kept in dairy barns, where methane accumulates.
In its trial, Ambient Carbon’s system eliminated up to 90% of dairy barn methane at concentrations ranging from 4.3 parts per million to 44 parts per million. But while the system can theoretically operate at the lower end of that range, Johnson told me it’s only truly energy efficient at 20 parts per million and above. “It’s a question of cost benefit, because we could remove 99% [of the methane from dairy barns] but if you do that, that marginal cost is more energy,” Johnson explained, telling me that the company’s system will likely aim to remove between 80% to 90% of barn methane.
One reason methane destruction and removal technology hasn’t gained much traction is that capturing methane — whether from the atmosphere, a smokestack, or a ventilation duct — is far more challenging than capturing CO2, given that it’s so much less prevalent in the atmosphere. Atmospheric methane is relatively diffuse, with an average concentration of just about 2 parts per million, compared with roughly 420 parts per million for CO2. “I heard the analogy used that if pulling carbon dioxide out of the atmosphere is finding a needle in a haystack, pulling methane out of the atmosphere is pulling dust off the needle in that haystack,” Dreyfus told me.
Because of methane’s relative chemical stability, removing it from the air also requires a strong oxidant, such as chlorine radicals, to break it down. CO2 on the other hand, can be separated from the air with sorbents or membranes, which is a technically simpler process.
Other nascent approaches to methane destruction and removal include introducing chlorine radicals into the open atmosphere and adding soil amendments to boost the effectiveness of natural methane sinks. Among these options, Ambient Carbon’s approach is the furthest along, most well-understood, and likely also lowest-risk. After its successful field trial, “there is not much uncertainty remaining about whether or not this does the claimed thing,” Sam Abernethy, a methane removal scientist at the nonprofit Spark Climate Solutions, told me. “The main questions remaining are whether they can be cost-effective at progressively lower concentrations, whether they can get more methane destroyed per energy input. And that’s something they’ve been improving every year since they started.”
Venture firms have yet to jump onboard though. Thus far, Ambient Carbon’s funding has come from agricultural partners such as Danone North America and Benton Group Dairies, which are working with the company to conduct its field trials. Additional collaboration and financial support comes from organizations such as the Hofmansgave Foundation, a Danish philanthropic group, and Innovation Fund Denmark. Johnson told me the startup also has a number of unnamed angel investors.
Whether or not this tech could ever become efficient enough to tackle more dilute methane emissions — and thus make true atmospheric methane removal feasible — remains highly uncertain. Questions also remain about how these technologies, if proven to be workable, would ultimately be able to scale. For instance, would methane destruction and removal depend more on government policies and regulations, or on market-based incentives?
In the short term, voluntary corporate commitments appear to be the main drivers of interest when it comes to methane destruction specifically. “A lot of food companies have made public pledges that they’re going to reduce their greenhouse gas emissions,” Johnson told me. As he noted, ubiquitous brands such as Kraft Heinz, General Mills, Danone, and Starbucks have all joined the Dairy Methane Action Alliance, which aims to “accelerate action and ambition to drive down methane emissions across dairy supply chains,” according to its website.
The way Ambient Carbon envisions this market working, its food industry partners would be the ones to encourage farms to buy the startup’s methane-destroying units, and would pay farmers a premium for producing low-emissions products. This would enable farmers to cover the system’s cost within five years, and eventually generate additional revenue. Whether the food companies would pass the green premium onto consumers, however, remains to be seen.
But as with the carbon dioxide removal sector, voluntary corporate commitments and carbon crediting schemes will likely only go so far. “Most of what’s going to drive methane elimination is going to be policy,” Hausfather told me. Denmark, where Ambient Carbon conducted its first trial, is set to become the first country in the world to implement a tax on agricultural emissions, starting in 2030. Europe also has a comprehensive greenhouse gas reduction framework, as do states such as California, Washington, and New York.
“It’s such a low-hanging fruit of climate impacts that it’s hard to imagine it’s not going to be regulated pretty substantially in the future,” Hausfather told me. But stringent regulatory requirements are often shaped by the technologies that have been established as effective. And in that sense, what Ambient Carbon is doing today could help pave the way for the ambitious methane targets of tomorrow.
“Moving from a lot of the voluntary pledges that we have towards more mandatory requirements I think is going to have a really important role to play,” Dreyfus told me. “But I think it’s going to be easier if we have more proven technologies to get there.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The CEO’s $1 billion share buy changes nothing — except in the eyes of his shareholders.
Elon Musk’s signature talent, the thing that made him the world’s richest man, has long been his ability to make Tesla’s stock price soar. It’s a superpower that manifests through a combination of financial lever-pulling and promises of world-changing innovations to come. For this reason, it leads to glaring disconnects such as Tesla having become the world’s most valuable automaker despite selling only a 10th as many vehicles as a true manufacturing superpower like Toyota.
By that yardstick, this week’s news might be his biggest achievement yet.
On Monday, headlines declared that Tesla has turned itself around. Its share price has rebounded after taking a nosedive early this year. In this case, the bullish stock market performance is divorced not only from the reality of the company’s electric car sales, but also from, well, everything else that’s happened lately.
Remember the protests? Remember the celebrities performatively selling their Teslas? The “I bought this before Elon went crazy” bumper stickers? With Musk having abandoned his dalliance with the Trump administration, other crises have taken over the spotlight. Even so, the echo of discontent is visible. Protests dogged the opening of the new Tesla Diner charging station here in Los Angeles, and plenty of Teslas in my neighborhood still have the apology stuck to their bumpers.
Most crucially for Tesla, the anger did real damage to its bottom line. The brand’s sales around the world fell dramatically as public disgust with Musk rose and EV shoppers ran toward a growing number of competitors, especially those from China. But even in the U.S., where cheap Chinese EVs are not an option, Tesla’s dominance has shrunk. In August 2025, the company’s share of the U.S. EV market fell to 38%. That was Tesla’s lowest figure since 2017, before the Model 3 or Model Y rolled off assembly lines. It was enough to inspire another round of speculation over whether the company might be better off freeing itself from the PR albatross that is Elon Musk.
Yet once again, the performance of Tesla’s stock would suggest that none of this had ever happened, or at least that it didn’t matter. Tesla offered Musk a trillion-dollar pay package — so absurd that even the pope felt compelled to condemn it. Musk then turned around and bought a billion dollars of Tesla stock to signal his self-confidence, which in turn propelled Tesla’s share price back up again and wiped out the losses from earlier this year.
The “why” of this financial madness is the same refrain that’s been playing for the past two years, ever since Musk rolled out the disastrous Cybertruck rather than building Tesla’s volume EV business. The man cares about robotics, AI, and autonomy — and decidedly not about building cars — and has convinced shareholders that his pivot in this direction will reap untold rewards. Once again, it’s possible that he’s right.
I am, admittedly, a cynic about Tesla and self-driving, for reasons personal and general. My Model 3 encounters the occasional worrisome blip with its relatively simpler Autopilot system, for instance on the part of Interstate 5 near Disneyland where it suddenly decides it’s on the 45 mile-per-hour access road rather than the freeway and hits the brakes.
This error alone is enough that I wouldn’t entrust my family’s safety to Tesla Full Self-Driving, to say nothing of Musk’s lifelong habit of overstating the abilities of his tech. But I know plenty of people who are already allowing versions of FSD to chauffeur them. Conversations with industry sources often settle on the inevitability of autonomy, if for no other reason than they worry about younger folks who can’t be bothered with learning to drive. Maybe Tesla will win the race to sell them self-driving electric cars. (Or, as a Bloomberg op-ed says, maybe the big buy is just window dressing, though a more apt metaphor might have been lipstick on a pig.)
Either way, it’s not great news for the here and now, the EV market of the present that Musk loves to neglect. South Korean competitors Hyundai and Kia — which are both building cool EVs for today that humans drive and trying to do much of their manufacturing in the United States — are nonetheless getting hammered by Trump tariffs and ICE raids. The federal tax credit set to expire at the end of this month is a particularly hard hit for forthcoming vehicles such as the new Chevy Bolt and Nissan Leaf, which could have reached compellingly cheap prices had the government not killed the incentive and slapped tariffs in its place.
Will Tesla, which has long teased an affordable EV, at least redouble its efforts to sell more cars? If anything can motivate Musk to refocus on Tesla rather than trolling on X, it’s money. To date, the company has sold a little more than 7 million vehicles; 20 million Tesla cars sold is one of the many strings attached to Musk actually earning the entire “trillion-dollar” deal.
Another condition is that he aid the company in its search for his successor, a sign that those who’ve always wanted to see a Tesla without Musk might get their wish sooner rather than later.
On Toyota’s recalls, America’s per-capita emissions, and Sierra Club drama
Current conditions: Drought is worsening in the U.S. Northeast, where cities such as Pittsburgh and Bangor, Maine have recorded 30% less rainfall than average • Temperatures in the Mississippi Valley are soaring into the triple digits, with cities such as Omaha, Nebraska and St. Louis breaking daily temperature records with highs of up to 20 degrees Fahrenheit above average • A heat wave in Mecca, Saudi Arabia, has sent temperatures as high as 114 degrees.
Orsted is offering investors a nearly 70% discount on the new shares issued to raise money to save its American offshore wind projects amid the Trump administration’s aggressive crackdown on the industry. The Danish energy giant won nearly unanimous approval from its shareholders earlier this month for a rights issue aimed at raising $9.4 billion. Shares in the company, which is half owned by the government in Copenhagen, closed around $32 each on Friday. But the offering of 901 million new shares came at a subscription rate of about $10.50 each. Orsted’s projects in the northeastern U.S. already “struggled” with what The Wall Street Journal listed as “supply-chain bottlenecks, higher interest rates, and trouble getting tax credits,” which culminated in the restructuring last year that saw the company “pull out of two high-profile wind projects off the coast of New Jersey.”
The offshore wind industry, as I noted in yesterday’s newsletter, is just starting to fight back. The owners of the Rhode Island offshore project Revolution Wind, which Trump halted unilaterally, filed a lawsuit claiming the administration illegally withdrew its already-finalized permits. After the administration filed a lawsuit to revoke the permits of US Wind’s big project off Maryland’s coast, the company said it intends “to vigorously defend those permits in federal court, and we are confident that the court will uphold their validity and prevent any adverse action against them.” But the multi-agency assault on offshore turbine projects has only escalated in recent months, as the timeline Heatmap’s Emily Pontecorvo produced shows. And Orsted is facing other headwinds. The company just warned investors of lower profits this year after weaker-than-forecast wind speeds reduced the output of its turbines.
Toyota issued a voluntary recall for some 591,000 Toyota and Lexus cars over a slight glitch in the display screen. The 12.3-inch screen could fail to turn on after the car started, or go black while driving. Toyota said it will begin notifying owners if affected vehicles by mid-November. The move came just days after the Japanese auto giant — which owns both its eponymous passenger car brand and the associated luxury line, Lexus — recalled 62,000 electric vehicles, including the Toyota bZ4X SUV and the Lexus RZ300e sedan and its luxury SUV, the RZ450. Subaru, in which Toyota owns a minority stake, is also recalling its electric SUV, the Solterra. With all four EVs, the issue revolved around a faulty windshield defroster that “may not remove frost, ice and/or fog from the windshield glass due to a software issue in the electrical control unit,” the company said in a press release..
States such as Mississippi and Idaho had the lowest drop in energy-related per-capita emissions.EIA
Americans who complain that the U.S. should bear less responsibility for mitigating climate change like to point out that China produces far more planet-heating emissions per year, and that India is not far behind. The cumulative nature of carbon in the atmosphere makes for an easy rebuke, since the U.S. and Western Europe are overwhelmingly responsible for the emissions of the past two centuries. But a less historically abstract response could be that Americans still have by far the highest per capita emissions of any large country. That doesn’t mean the U.S. isn’t making progress on a per capita level, though. Between 2005 and 2023, per capita emissions from primary energy consumption decreased in every U.S. state, with an average drop of 30%, even as the American population grew by 14%, according to a new analysis by the U.S. Energy Information Administration. The dip is largely thanks to the electric power sector burning less coal. Increased electricity generation from natural gas, which releases about half as much carbon per unit of energy when burned as coal, and the growth of renewables such as wind and solar have reduced the need for the dirtier fuel. But the EIA forecasts that overall U.S. emissions are set to climb by 1% as electricity demand increases.
For those keen to shrink their individual carbon output at a much faster pace than American society at large, Heatmap’s award-winning Decarbonize Your Life series walks through the benefits and drawbacks to driving less, eating less steak, installing solar panels, and renovating homes to be more energy efficient.
Following rebellions from various state chapters, the Sierra Club terminated its executive director, Ben Jealous, last month, as I reported here in this newsletter at the time. Now the group has named its new leader: Loren Blackford. The Sierra Club veteran, who served in various senior roles before taking on the interim executive director job last month, won unanimous support from the group’s board of directors on Saturday.
Jealous had previously served as a chief executive of the National Association for the Advancement of Colored People and the 2018 Democratic nominee for Maryland governor before becoming the first non-white leader of the 133-year-old Sierra Club. His appointment marked a symbolic turning of the page from the group’s early chapters under its founder, John Muir, who made numerous derogatory remarks about Black and Native Americans. Jealous was accused of sexual harassment earlier this year.
Thermal battery company Fourth Power just announced $20 million in follow-on funding, building on its $19 million Series A round from 2023. While other thermal storage companies such as Rondo and Antora are targeting the decarbonization of high-temperature industrial processes such as smelting or chemical manufacturing, Fourth Power aims to manufacture long-duration energy storage systems for utilities and power producers.
“In our view, electricity is the biggest problem that needs to be solved,” Fourth Power’s CEO Arvin Ganesan told Heatmap’s Katie Brigham. “There is certainly a future application for heat, but we don’t think that’s where to start.” The company’s tech works by taking in excess renewable electricity from the grid, which is used to heat up liquid tin to 2,400 degrees Celsius, nearly half the temperature of the sun’s surface. That heat is then stored in carbon blocks and later converted back into electricity using thermophotovoltaic cells. This latest funding will accelerate the deployment of the startup’s first one megawatt hour demonstration plant.
The tropical storm that later became Hurricane María formed exactly eight years ago today and went on to lay waste to Puerto Rico’s aging electrical system. The grid remains fragile and expensive, with frequent outages and some of the highest rates in the U.S. on the hours when the power is accessible. That has spurred a boom in rooftop solar panels. Now more than 10% of the island’s electricity consumption comes from rooftop solar power. Data released by the grid operator LUMA Energy showed approximately 1.2 gigawatts of residential and commercial rooftop solar had been installed under Puerto Rico’s net-metering regulations as of June 2025. New analysis by the Institute for Energy Economics and Financial Analysis found that is equal to about 10.3% of Puerto Rico’s total power consumption — and that’s not counting any off-grid systems.
Republicans are more likely to accuse Democrats, and vice versa, but there are also some surprising areas of agreement.
Electricity is getting more expensive. In the past 12 months, electricity prices have increased more than twice as fast as overall inflation — and the most recent government inflation data, released last week, shows prices are continuing to rise.
The Trump administration knows that power bills are a political liability. In a recent interview with Politico, Energy Secretary Chris Wright affirmed that power prices were rising, but blamed the surge on “momentum” from Biden and Obama-era policies. “That momentum is pushing prices up right now,” he said. But the Trump administration, he continued, is “going to get blamed because we’re in office.”
Is he right? Who do Americans blame for rising power prices?
It might not be who you think.
A new Heatmap Pro poll of more than 3,700 registered voters across the United States finds that Americans tend to look beyond national politics for at least some of the causes of electricity price inflation.
When asked who they blame for rising power prices, Americans are more likely to say that rising energy demand, their local utility, and their state government are to blame than they are to cite the Trump or Biden administrations.
Americans also blame extreme weather and the oil and gas industry at least somewhat for electricity inflation. Only then do they blame a national political party.
Beyond those, other trendy national topics made only a dent in how Americans think about rising power prices. About 28% of Americans said that the construction of new data centers bears “a lot” of the blame for spiking power prices. Forty-three percent of Americans said that the data center buildout should get “a little” of the blame, and about a quarter of Americans said data centers were “not at all” responsible.
The renewable energy industry, which President Trump has claimed is causing the surge, also failed to get much traction among Americans. More than a third of respondents said that renewables were “not at all” responsible for rising electricity prices, while 27% said that they bore “a lot” of responsibility. At the same time, Americans aren’t pinning the increase on tariffs: 40% of registered voters said that in their view, the new trade levies were not the cause of higher bills.
In general, Americans aren’t wrong to look to their state government when thinking about their power bills. Although many states participate in regional electricity markets, electricity is primarily regulated at the state level by public utility commissioners. States really do bear more responsibility for power prices than they do over, say, the price of a loaf of bread — or a gallon of gasoline.
No matter their self-reported political affiliation, Americans still tend to blame their state government, rising demand, and their local utility for rising power bills.
But there are trends. Democrats, of course, are far more likely to blame the Trump administration and Republicans — as well as tariffs — for electricity inflation. Republicans likewise blame the Biden administration and Democrats in much greater numbers.
Nearly 80% of Republicans say the renewable energy industry bears some amount of blame for rising prices, although only 36% of GOP respondents said it bore “a lot” of responsibility. But more than half of Republicans also allocated “a lot” or “a little” blame to the oil and gas industry.
Some causes seemed to unite respondents across the parties. Roughly the same share of Democrats, Republicans, and independents said that the buildout of new data centers was putting upward pressure on power prices.
Independent voters turned to the same big three explanations as other registered voters. But they were much more likely to blame Trump, tariffs, and the oil industry than Republicans were. Only a little more than a quarter of independents said that the renewable energy industry bore “a lot” of the blame for power price spikes as well.
In my reporting, I’ve found that surging investment in the local distribution grid — literally, the small-scale poles, wires, and transformers that get electricity to businesses and households — is the biggest driver of rising power prices. Extreme weather, higher natural gas prices, and — in some markets — rising power demand, especially from data centers, also play a role.
Some experts blame those drivers of higher bills on underlying failures — such as too little oversight from state-level regulators or excessive investment from utilities — that show up in this poll result. But just at a mechanical level, many Americans did cite some of the same causes that utility researchers themselves do. Most Americans, for instance, said that extreme weather and especially “investments in the local electric grid” are driving rising bills, although they didn’t assign it the same prominence that I would. About three quarters of respondents said that those causes bore “a lot” or “a little” of the blame.
Of course, just because rising grid spending, extreme weather, and higher gas prices have driven electricity inflation so far doesn’t mean that they will continue to do so. The Energy Information Administration projects that demand will keep rising, especially if the artificial intelligence boom continues. The Trump administration’s decision to hike taxes on electricity equipment — via tariffs and recent changes in President Trump’s spending bill — may eventually push up costs as well. So too will the Trump administration’s regulatory war on some types of new electricity infrastructure, including offshore wind farms and long-distance transmission lines.
Those policies may eventually hit voters — and their wallets. But right now, Americans aren’t looking at Washington, D.C., when thinking about their power bills.
The Heatmap Pro poll of 3,741 American registered voters was conducted by Embold Research via text-to-web responses from August 22 to 29, 2025. The survey included interviews with Americans in all 50 states and Washington, D.C. The margin of sampling error is plus or minus 1.7 percentage points.
Interested in more exclusive polling and insights? Explore Heatmap Pro here.