You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:

Here’s a grim fact: The most destructive fires in recent American history swept over a state with the country’s strictest wildfire-specific building code, including in some of the neighborhoods that are now largely smoldering rubble.
California’s wildfire building code, Chapter 7A, went into effect in 2008, and it mandates fire-resistant siding, tempered glass, vegetation management, and vents for attics and crawlspaces designed to resist embers and flames. The code is the “most robust” in the nation, Lisa Dale, a lecturer at the Columbia Climate School and a former environmental policy advisor for the State of Colorado, told me. It applies to nearly any newly built structure in one of the zones mapped out by state and local officials as especially prone to fire hazard.
The adoption of 7A followed years of code development and mapping of hazardous areas, largely in response to devastating urban wildfires such as the Tunnel Fire, which claimed more than 3,000 structures and 25 lives in Oakland and Berkeley in 1991, and kicked off renewed efforts to harden Californian homes.
The Federal Emergency Management Agency’s report on the 1991 fire makes for familiar reading as the Palisades and Eaton fires still smolder. The wildland-urban interface, it says, was put at extreme risk by a combination of dry air, little rainfall, hot winds blowing east to west, built-up vegetation that was too close to homes, steep hills, and limited access to municipal water. The report also castigates the “unregulated use of wood shingles as roof and siding material.”
This was not the first time a destructive fire on the wildland-urban interface had been partially attributed to ignitable building materials. The 1961 Bel-Air fire, for instance, which claimed almost 200 homes, including that of Burt Lancaster, and the 1959 Laurel Canyon fire were both, FEMA said, evidence of “the wood roof and separation from natural fuels problems,” as were fires in 1970 and 1980 near where the Tunnel Fire eventually struck in 1970 and 1980.
But it was the sheer scale of the Tunnel Fire that prompted action by California lawmakers.
Throughout the 1990s, fire-resilient roofing requirements were ramped up, designating which materials were allowed in fire hazard areas and throughout the state. By all accounts, the building code works — but only when and where it’s in force. Dale told me that compliant homes were five times as likely to survive a wildfire. Research by economists Judson Boomhower and Patrick Baylis found that the code “reduced average structure loss risk during a wildfire by 16 percentage points, or about a 40% reduction.”
“The challenge from the perspective of wildfire vulnerability is that those codes are relatively recent, and the housing stock turns over really slowly, so we have this enormous stock of already built homes in dangerous places that are going to be out there for decades,” Boomhower told me.
The 7A building code applies only to new buildings, however. In long-settled areas of California like Pacific Palisades, which has little new housing construction or even existing home turnover due to high costs and permitting complications, especially in areas under the jurisdiction of the California Coastal Commission, many houses are not just failing to comply with Chapter 7A, but also with any housing code at all.
Looking at which homes had survived past fires, Steve Quarles, who helped advise the California State Fire Marshal on developing 7A, told me, “What really mattered was if it was built under any building code.” Many homes destroyed by the fires in Los Angeles likely were not. In Pacific Palisades, fire management is a frequent topic of concern and discussion. But as late as 2018, local media in Pacific Palisades noted that the area still had some homes with wood shingle roofs.
While a complete inventory of homes lost in the Palisades and Eaton fires has yet to be taken, the neighborhoods were full of older homes. According to CalFire incident reports, of the almost 47,000 structures in the zone of the Palisades Fire, more than 8,000 were built before 1939, and 44,560 were built before 2009. For the Eaton Fire area, of the around 41,000 structures, almost 14,000 were built before 1939, and only around 1,000 were built since 2010.
A Pacific Palisades home designed by architect Greg Chasen and built in 2024, however, survived the fire and went viral on X after he posted a photo of it still standing after the flames had moved through. The home embodied some of the best practices for fire-safe building, according to Bloomberg, including keeping vegetation away from the building, a metal roof, tempered glass, and fire-resistant siding.
When Michael Wara, the director of Stanford University’s Climate and Energy Policy Program, spoke with firefighters and insurance industry officials in the process of drafting a 2021 report for the Stanford Woods Institute for the Environment on strategies for mitigating wildfire risk, they told him that, from their perspective, wildfires are often a matter of “home ignition,” meaning that while building near forested areas puts any home at risk, the risk of a home itself igniting varies based on how it’s built and the vegetation clearance around it. “Existing homes in high fire threat areas” built before the implementation of California’s wildfire building codes, Wara wrote, “are a massive problem.” At the time he published the paper, there were somewhere between 700,000 and 1.3 million pre-building code homes still standing in “high or very high threat areas.”
The flipside of focusing on “home ignition” and the building code is that the building code works better over time, as more and more homes comply with it thanks to normal turnover, people extensively renovating, or even tearing down old homes — or rebuilding after fires. Homes that are close to homes that don’t ignite in a fire are more likely to survive.
One study that looked at the 2018 Camp Fire, which destroyed more than 18,000 structures and claimed more than 80 lives in the Northern California town of Paradise, sampled homes built before 1997, between 1997 and 2018, and from 2018 onwards, and found that only 11.5% of pre-1997 homes survived, compared to 38.5% from 1997 and after. The researchers also found that building survivability had a kind of magnifying effect, with distance from the nearest destroyed structure and the number structures destroyed in the immediate area among “the strongest predictors of survival.”
“The more homes that comply, the less chance you get those structural ignitions and the less chance you get those huge disasters like this,” Doug Green, who manages Headwaters Economics’ Community Assistance for Wildfire Program, told me. “It takes people doing the right thing to their own home — dealing with vegetation, making sure roofs are clean, having right roofing. It’s really a community-wide strategy to stop fires that happen like this.”
But just as any home hardening — or just building to code — is more effective the more the homes around you do it as well, it’s just as true in reverse. “If your next door neighbors don’t do that work, the effectiveness of your efforts will be less,” Dale said. “Building codes ultimately work best when we get an entire landscape or neighborhood to adopt them.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The president of the Clean Economy Project calls for a new approach to advocacy — or as she calls it, a “third front.”
Roughly 50,000 people are in Brazil this week for COP30, the annual United Nations climate summit. If history is any guide, they will return home feeling disappointed. After 30 years of negotiations, we have yet to see these summits deliver the kind of global economic transformation we need. Instead, they’ve devolved into rituals of hand-wringing and half measures.
The United States has shown considerable inertia and episodic hostility through each decade of climate talks. The core problem isn’t politics. It’s perspective. America has been treating climate as a moral challenge when the real stakes are economic prosperity.
I’ve spent my career advancing the moral case from inside the environmental movement. Over the decades we succeeded at rallying the faithful, but we failed to deliver change at the scale and speed required. We passed regulations only to watch them be repealed. We pledged to cut emissions and missed the mark, again and again.
People think of climate change as a crisis to contain when it’s really a competition to win. We need to build what’s next, not stop what’s bad. And what’s at stake isn’t just emissions; it’s whether America leads or lags in the next era of global economic growth.
That calls for a new approach to climate action — a third front.
In the early 1900s, the first front focused on conservation — protecting forests, nature, and wildlife. The second front, in the 1960s and 70s, tackled pollution — cleaning up our air and water, regulating toxins, and safeguarding public health. Both were about “stopping” harm. They worked because they aimed at industries where slowing down made sense.
But energy doesn’t fit that mold. International pledges and national regulations to “stop” carbon emissions are destined to fail without affordable and accessible fossil-fuel replacements. Why? Because low-cost energy makes people’s lives better. Longer life expectancies, better health care, lower infant mortality, and higher literacy follow in its wake. Energy is foundational for prosperity, powering nearly every part of our modern lives.
No high-income country has low energy consumption. Prosperity depends on abundant energy. Global energy demand will keep rising, as poor countries install more refrigerators and air conditioning, and rich countries build more data centers and advanced manufacturing. Today, fossil fuels provide 80% of primary energy because they are cheap and easy to move around. That’s why the tools of “stopping harm” that we used to protect rivers and forests will not win the race. Innovation, not limits, leads to progress.
The third front is not about blocking fossil fuels; it’s about beating them. Stopping fossil fuels doesn’t fix the electric grid or reinvent steelmaking. By contrast, lowering the cost of clean technologies will spur economic growth, create jobs in rural counties, and lower electricity bills for working families.
Yet clean energy projects in the U.S. are routinely delayed by red tape, outdated rules, and policy whiplash. A transmission line often takes more than a decade to plan, permit, and construct. Meanwhile, China has added more than 8,000 miles of ultra‑high‑voltage transmission in just four years, compared with fewer than 400 miles here at home. American entrepreneurs are ready to build but our systems and rules haven’t caught up.
And the urgency to fix the problem is mounting. Electricity prices and energy demand are surging, while terawatts of clean energy projects pile up in the interconnection queue. We are struggling to build a 21st century economy on 20th century infrastructure.
The third front of climate action starts with building faster and smarter. That responsibility lies with policymakers at every level. In the U.S., Congress and federal agencies must treat energy infrastructure as economic competitiveness, not just environmental policy. State and local regulators must expedite permitting. Regional grid operators must speed up interconnection and integration of new technologies.
But government’s role is to clear the path, not dictate the outcome. The private sector — entrepreneurs pioneering technologies from long-duration storage to advanced geothermal to next-generation nuclear — is ready to build. What they need is for policymakers to remove the obstacles. We can use public policy not to command markets, but rather to unlock them, reward innovation, and create certainty that encourages investment.
The same logic applies globally. The multilateral climate system has focused on negotiating emission limits, but we need a renewed effort toward lowering the cost of clean energy so it can outcompete fossil fuels in every market, from the richest economies to the poorest. Whether through the UN, the G-20, or the Clean Energy Ministerial, the international community must play a role in that shift — not through collating new pledges, but by taking action on cost reduction, technology deployment, and removing barriers to scale. Through economic cooperation and competition, both, domestic policies around the world need to align toward making clean energy win on economics, backed by private capital and innovation.
It’s time to measure progress not only by tons of carbon avoided, but also by how much new energy capacity we add, how quickly clean projects come online, and how much private capital moves into clean industries.
There is a cure for the fatigue induced from 30 years of climate summits and setbacks. It’s a new playbook built on economic growth and shared prosperity. The goal is not only to reduce emissions. We must build a system where clean energy is so affordable, abundant, and reliable that it becomes the obvious choice. Not because people are told to use it, but because it is better.
On Trump's global gas up, a Garden State wind flub, and Colorado coal
Current conditions: From Cleveland to Syracuse, cities on the Great Lakes are bracing for heavy snowfall • Rainfall in Northern California could top 6 inches today • Thousands evacuated in the last few hours in Taiwan as Typhoon Fung-wong makes landfall.
The bill that would fund the government through the end of the year and end the nation’s longest federal shutdown eliminates support for the Department of Agriculture’s climate hubs. The proposed compromise to reopen the government would slash funding for USDA’s 10 climate hubs, which E&E News described as producing “regional research and data on extreme weather, natural disasters and droughts to help farmers make informed decisions.”
There were, however, some green shoots. A $730 million line item in the military’s budget could go to microgrids, renewables, or nuclear reactors. The bill also contains millions of dollars for the cleanup of so-called forever chemicals, which had stalled under the Trump administration. Still, the damage from the shutdown was severe. As Heatmap reported throughout the record-breaking funding lapse, the administration slashed funding for a backup energy storage system at a children’s hospital, major infrastructure projects in New York City, and droves of grants for clean energy.

Call it American exceptionalism. The effects of President Donald Trump’s One Big Beautiful Bill Act and America’s world-leading artificial intelligence development “have meaningfully altered” the International Energy Agency’s forecasts of global fossil fuel usage and emissions, Heatmap’s Matthew Zeitlin wrote this morning. The trajectory of global temperature rise may be, as I have written in this newsletter, so far largely unaffected by the new American administration’s policies. But multiple scenarios outlined in the Paris-based IEA’s 2025 World Energy Outlook predict “gas demand continues growing into the 2030s, due mainly to changes in U.S. policies and lower gas prices.”
That stands in contrast to China, a comparison that was inevitable this week as the world gathers for the United Nations climate summit in Belém, Brazil — the first that Washington is all but ignoring as the Trump administration moves to withdraw the U.S. from the Paris Agreement. As I wrote here yesterday, China's emissions remained flat in the last quarter, extending a streak that began in March 2024.
Sign up to receive Heatmap AM in your inbox every morning:
Heatmap’s Jael Holzman had a big scoop last night: Yet another offshore wind project on the East Coast is kaput. The lawyers representing the Leading Light Wind offshore project filed a letter on November 7 to the New Jersey Board of Public Utilities informing the regulator it “no longer sees any way to complete construction and wants to pull the plug,” Jael wrote. “The Board is well aware that the offshore wind industry has experienced economic and regulatory conditions that have made the development of new offshore wind projects extremely difficult,” counsel Colleen Foley wrote in the letter, a copy of which Jael got her hands on. The project was meant to be built 35 miles off New Jersey’s coast, and was expected to provide about 2.4 gigawatts of electricity to the power-starved state.
It’s the latest casualty of Trump’s “total war on wind,” and comes as other projects in Maryland and New England are fighting to retain permits amid the administration’s multi-agency onslaught.
Xcel Energy proposed extending the life of its Comanche 2 coal-fired power plant for 12 months past its shutdown date in December. The utility giant, backed by state officials and consumer advocates, told the Colorado Public Utilities Commission on Monday that maintaining power production from the 50-year-old unit was important as the power plant scrambled to maintain enough power generation following the breakdown of the coal plant's third unit. The 335-megawatt Comanche 2 generator in Pueblo is expected to get approval to keep running. “We need it for resource adequacy and reliability, underlining that need for reliability and resource adequacy are central issues,” Robert Kenney, CEO of Xcel Energy’s Colorado subsidiary, told The Colorado Sun. The move comes as Trump’s Department of Energy is ordering coal plants in states such as Michigan to keep operating months past closure deadlines at the cost of millions of dollars per month to ratepayers, as I have previously written.
Pennsylvania, meanwhile, may be preparing to withdraw from the Regional Greenhouse Gas Initiative, the cap-and-trade market in which much of the Northeast’s biggest states partake. A state budget deal described by Spotlight PA reporter Stephen Caruso on X would remove the commonwealth from the market.
Germany and Spain vowed to give $100 million to the World Bank’s Climate Investment Funds, a $13 billion multilateral financing pool to help poor countries deal with the effects of climate change. The funding, announced Monday at an event at the U.N.’s Cop30 summit in Brazil, is “an opportunity too large to ignore,” Tariye Gbadegesin, chief executive officer of Climate Investment Funds, said in a statement. While mitigation work has long held priority in international lending, adaptation work to give some relief to the countries that contributed the least to climate change but pay the highest tolls from extreme weather has often received scant support. In his controversial memo calling for a sober, new direction for global funding, billionaire philanthropist Bill Gates called on countries to take adaptation more seriously. For more on what he said, read the rundown Heatmap’s Robinson Meyer wrote.
Right in time for the region’s most iconic season, when even celebrants in farflung parts of this country think of the old Puritan lands during Halloween and Thanksgiving, I bring to you what might be the most New England story ever. A blade broke off a wind turbine near Plymouth, Massachusetts, last week and landed in — get ready for it — a cranberry bog. The roughly 90-foot blade left behind debris, but “no one was hurt, and the turbine automatically shut itself down as designed,” the local fire chief said.
Rob and Jesse unpack one of the key questions of the global fight against climate change with the Centre for Research on Energy and Clean Air’s Lauri Myllyvirta.
Robinson Meyer and Jesse Jenkins are off this week. Please enjoy this selection from the Shift Key archive.
China’s greenhouse gas emissions were essentially flat in 2024 — or they recorded a tiny increase, according to a November report from the Centre for Research on Energy and Clean Air, or CREA. A third of experts surveyed by the report believe that its coal emissions have peaked. Has the world’s No. 1 emitter of carbon pollution now turned a corner on climate change?
Lauri Myllyvirta is the co-founder and lead analyst at CREA, an independent research organization focused on air pollution and headquartered in Finland. Myllyvirta has worked on climate policy, pollution, and energy issues in Asia for the past decade, and he lived in Beijing from 2015 to 2019.
On this week’s episode of Shift Key, Rob and Jesse talk with Lauri about whether China’s emissions have peaked, why the country is still building so much coal power (along with gobs of solar and wind), and the energy-intensive shift that its economy has taken in the past five years. Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: When we think about Chinese demand emissions going forward, it sounds like — somewhat to my surprise, perhaps — this is increasingly a power sector story, which is … is that wrong? Is it an industrial story? Is it a …
Lauri Myllyvirta: I want to emphasize the steel sector besides power. So if you simply look at what the China Steel Association is projecting, which is a gradual, gentle decline in total output and the increase in the availability of scrap. If you use that to replace coal-based with electricity-based steelmaking, you can achieve an about 40% reduction in steelmaking emissions over the next decade.
Of course, some of that is going to shift to electricity, so you need the clean electricity as well to realize it. But that’s at least as large an opportunity as there is on the power sector, so that’s what I’m telling everyone — that if you want to understand what China can accomplish over the next decade, it’s these two sectors, first and foremost.
Jesse Jenkins: Yeah. I mean, there’s some positive overall trends, right? If you look at the arc that we’re seeing in each sector, with renewables growth starting to outpace demand growth in electricity and eat into coal in absolute terms, not just market share, with the transition in the steel industry — which is sort of a story that we’ve seen in multiple countries as they move through different phases, right? As you’re building out your primary infrastructure, the first time you don’t have enough scrap, but as the infrastructure and rate of car recycling and things like that goes up, you now have a much larger supply. And that’s the case in the U.S., where the vast majority of our steel now comes from scrap.
And then, you know, the slowdown in the construction boom — China’s built an enormous amount of infrastructure and housing, and there’s only so much more that they need. And so the pace of that construction is likely to fall, as well. And then finally, the big shift to EVs in the transportation sector. So you’ve got your four largest-emitting sources on a very positive trajectory when it comes to greenhouse gas emissions.
Mentioned:
CREA’s reports on China’s emissions trajectory
Chinese EV companies beat their own targets in 2024
How China Created an EV Juggernaut
Jeremy Wallace: China Can’t Decide if It Wants to Be the World’s First ‘Electrostate’
This episode of Shift Key is sponsored by …
Hydrostor is building the future of energy with Advanced Compressed Air Energy Storage. Delivering clean, reliable power with 500-megawatt facilities sited on 100 acres, Hydrostor’s energy storage projects are transforming the grid and creating thousands of American jobs. Learn more at hydrostor.ca.
Uplight is a clean energy technology company that helps energy providers unlock grid capacity by activating energy customers and their connected devices to generate, shift, and save energy. The Uplight Demand Stack — which integrates energy efficiency, electrification, rates, and flexibility programs — improves grid resilience, reduces costs, and accelerates decarbonization for energy providers and their customers. Learn more at uplight.com/heatmap.
Music for Shift Key is by Adam Kromelow.