You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
With the ongoing disaster approaching its second week, here’s where things stand.
A week ago, forecasters in Southern California warned residents of Los Angeles that conditions would be dry, windy, and conducive to wildfires. How bad things have gotten, though, has taken everyone by surprise. As of Monday morning, almost 40,000 acres of Los Angeles County have burned in six separate fires, the biggest of which, Palisades and Eaton, have yet to be fully contained. The latest red flag warning, indicating fire weather, won’t expire until Wednesday.
Many have questions about how the second-biggest city in the country is facing such unbelievable devastation (some of these questions, perhaps, being more politically motivated than others). Below, we’ve tried to collect as many answers as possible — including a bit of good news about what lies ahead.
A second Santa Ana wind event is due to set in Monday afternoon. “We’re expecting moderate Santa Ana winds over the next few days, generally in the 20 to 30 [mile per hour] range, gusting to 50, across the mountains and through the canyons,” Eric Drewitz, a meteorologist with the Forest Service, told me on Sunday. Drewitz noted that the winds will be less severe than last week’s, when the fires flared up, but he also anticipates they’ll be “more easterly,” which could blow the fires into new areas. A new red flag warning has been issued through Wednesday, signaling increased fire potential due to low humidity and high winds for several days yet.
If firefighters can prevent new flare-ups and hold back the fires through that wind event, they might be in good shape. By Friday of this week, “it looks like we could have some moderate onshore flow,” Drewitz said, when wet ocean air blows inland, which would help “build back the marine layer” and increase the relative humidity in the region, decreasing the chances of more fires. Information about the Santa Anas at that time is still uncertain — the models have been changing, and the wind is tricky to predict the strength of so far out — but an increase in humidity will at least offer some relief for the battered Ventura and Orange Counties.
The Palisades Fire, the biggest in L.A., ripped through the hilly and affluent area between Santa Monica and Malibu, including the Pacific Palisades neighborhood, the second-most expensive zip code in Los Angeles and home to many celebrities. Structures in Big Rock, a neighborhood in Malibu, have also burned. The fire has also encroached on the I-405 and the Getty Villa, and destroyed at least two homes in Mandeville Canyon, a neighborhood of multimillion-dollar homes. Students at nearby University of California, Los Angeles, were told on Friday to prepare for a possible evacuation.
The Eaton Fire, the second biggest blaze in the area, has killed 16 people in Altadena, a neighborhood near Pasadena, according to the Los Angeles Times, making it one of the deadliest fires in the modern history of California.
The 1,000-acre Kenneth fire is 100% contained but still burning near Calabasas and the gated community of Hidden Hills. The Hurst Fire has burned nearly 800 acres and is 89% contained and is still burning near Sylmar, the northernmost neighborhood in L.A. Though there are no evacuation notices for either the Kenneth or the Hurst fires, residents in the L.A. area should monitor the current conditions as the situation continues to be fluid and develop.
The 43-acre Sunset Fire, which triggered evacuations last week in Hollywood and Hollywood Hills, burned no homes and is 100% contained.
The Lidia Fire, which ignited in a remote area south of Acton, California, on Wednesday afternoon, burned 350 acres of brush and is 100% contained.
It can take years to determine the cause of a fire, and investigations typically don’t begin until after the fire is under control and the area is safe to reenter, Edward Nordskog, a retired fire investigator from the Los Angeles Sheriff’s Department, told Heatmap’s Emily Pontecorvo. He also noted, however, that urban fires are typically easier to pinpoint the cause of than wildland fires due to the availability of witnesses and surveillance footage.
The vast majority of wildfires, 85%, are caused by humans. So far, investigators have ruled out lightning — another common fire-starter — because there were no electrical storms in the area when the fires started. In the case of the Palisades Fire, there were no power lines in the area of the ignition, though investigators are now looking into an electrical transmission tower in Eaton Canyon as the possible cause of the deadly fire in Altadena. There have been rumors that arsonists started the fires, but investigators say that scenario is also pretty unlikely due to the spread of the fires and how remote the ignition areas are.
Officially, 24 people have died, but that tally is likely to rise. California Governor Gavin Newsom said Sunday that he expects “a lot more” deaths will be added to the total in the coming days as search efforts continue.
Incoming President Donald Trump slammed the response to the L.A. fires in a Truth Social post on Sunday morning: “This is one of the worst catastrophes in the history of our Country,” he wrote. “They just can’t put out the fires. What’s wrong with them?”
Though there is much blame going around — not all of it founded in reality — the challenges facing firefighters are immense. Last week, because of strong Santa Ana winds, fire crews could not drop suppressants like water or chemical retardant on the initial blazes. (In strong winds, water and retardant will blow away before they reach the flames on the ground.)
Fighting a fire in an urban or suburban area is also different from fighting one in a remote, wild area. In a true wildfire, crews don’t use much water; firefighters typically contain the blazes by creating breaks — areas cleared of vegetation that starve a fire of fuel and keep it from spreading. In an urban or suburban event, however, firefighters can’t simply hack through a neighborhood, and typically have to use water to fight structure fires. Their priority also shifts from stopping the fire to evacuating and saving people, which means putting out the fire itself has to wait.
What’s more, the L.A. area faced dangerous fire weather going into last week — with wind gusts up to 100 miles per hour and dry air — and the persistence of the Santa Ana winds during firefighting operations through the weekend made it extremely difficult for emergency managers to gain a foothold.
Trump and others have criticized Los Angeles for being unprepared for the fires, given reports that some fire hydrants ran dry or had low pressure during operations in Pacific Palisades. According to the Los Angeles Department of Water and Power, about 20% of hydrants were affected, mostly at higher elevations.
The problem isn’t a lack of preparation, however. It’s that the L.A. wildfires are so large and widespread, the county’s preparations were quickly overwhelmed. “We’re fighting a wildfire with urban water systems, and that is really challenging,” Los Angeles Department of Water and Power CEO Janisse Quiñones said in a news conference last week. When houses burn down, water mains can break open. Civilians also put a strain on the system when they use hoses or sprinkler systems to try to protect their homes.
On Sunday, Judy Chu, the Democratic lawmaker representing Altadena, confirmed that fire officials had told her there was enough water to continue the battle in the days ahead. “I believe that we're in a good place right now,” she told reporters. Newsom, meanwhile, has responded to criticism over the water failure by ordering an investigation into the weak or dry hydrants.
So-called “super soaker” planes have had no problem with water access; they’re scooping directly from the ocean.
Yes. Although aerial support was grounded in the early stages of the wildfires due to severe Santa Ana winds, flights resumed during lulls in the storms last week.
There is a misconception, though, that water and retardant drops “put out” fires; they don’t. Instead, aerial support suppresses a fire so crews can get in close and use traditional methods, like cutting a fire break or spraying water. “All that up in the air, all that’s doing is allowing the firefighters [on the ground] a chance to get in,” Bobbie Scopa, a veteran firefighter and author of the memoir Both Sides of the Fire Line, told me last week.
With winds expected to pick up early this week, aerial firefighting operations may be grounded again. “If you have erratic, unpredictable winds to where you’ve got a gust spread of like 20 to 30 knots,” i.e. 23 to 35 miles per hour, “that becomes dangerous,” Dan Reese, a veteran firefighter and the founder and president of the International Wildfire Consulting Group, told me on Friday.
Because of the direction of the Santa Ana winds, wildfire smoke should mostly blow out to sea. But as winds shift, unhealthy air can blow into populated areas, affecting the health of residents.
Wildfire smoke is unhealthy, period, but urban and suburban smoke like that from the L.A. fires can be particularly detrimental. It’s not just trees and brush immolating in an urban fire, it’s also cars, and batteries, and gas tanks, and plastics, and insulation, and other nasty, chemical-filled things catching fire and sending fumes into the air. PM2.5, the inhalable particulates from wildfire smoke, contributes to thousands of excess deaths annually in the U.S.
You can read Heatmap’s guide to staying safe during extreme smoke events here.
“The bad news is, I’m not seeing any rain chances,” Drewitz, the Forest Service meteorologist, told me on Sunday. Though the marine layer will bring wetter air to the Los Angeles area on Friday, his models showed it’ll be unlikely to form precipitation.
Though some forecasters have signaled potential rain at the end of next week, the general consensus is that the odds for that are low, and that any rain there may be will be too light or short-lived to contribute meaningfully to extinguishing the fires.
The chaparral shrublands around Los Angeles are supposed to burn every 30 to 130 years. “There are high concentrations of terpenes — very flammable oils — in that vegetation; it’s made to burn,” Scopa, the veteran firefighter, told me.
What isn’t normal, though, is the amount of rain Los Angeles got ahead of this past spring — 52.46 inches in the preceding two years, the wettest period in the city’s history since the late 1800s — which was followed by a blisteringly hot summer and a delayed start to this year’s rainy season. Since October, parts of Southern California have received just 10% of their normal rainfall
This “weather whiplash” is caused by a warmer atmosphere, which means that plants will grow explosively due to the influx of rain and then dry out when the drought returns, leaving lots of dry fuels ready and waiting for a spark. “This is really, I would argue, a signature of climate change that is going to be experienced almost everywhere people actually live on Earth,” Daniel Swain, a climate scientist at the University of California, Los Angeles, who authored a new study on the pattern, told The Washington Post.
We know less about how climate change may affect the Santa Anas, though experts have some theories.
At least 12,000 structures have burned so far in the fires, which is already exacerbating the strain on the Los Angeles housing market — one of the country’s tightest even before the fires — as thousands of displaced people look for new places to live. “Dozens and dozens of people are going after the same properties,” one real estate agent told the Los Angeles Times. The city has reminded businesses that price gouging — including raising rental prices more than 10% — during an emergency is against the law.
Los Angeles had a shortage of about 370,000 homes before the fires, and between 2021 and 2023, the county added fewer than 30,000 new units per year. Recovery grants and federal aid can lag, and it often takes more than two years for even the first Housing and Urban Development Disaster Recovery Grants’ expenditures to go out.
My colleague Matthew Zeitlin wrote for Heatmap that the economic impact of the Los Angeles fire is already much higher than that of other fires, such as the 2018 Camp fire, partly because of the value of the Pacific Palisades real estate.
The wildfires may “deal a devastating blow to [California’s] fragile home insurance market,” Heatmap’s Matthew Zeitlin wrote last week. In recent years, home insurers have left California or declined to write new policies, at least partially due to the increased risk of wildfires in the state.
Depending on the extent of the damage from the fires, the coffers of California’s FAIR Plan — which insures homeowners who can’t get insurance otherwise, including many in Pacific Palisades and Altadena — could empty, causing it to seek money from insurers, according to the state’s regulations. As Zeitlin writes, “This would mean that Californians who were able to buy private insurance — because they don’t live in a region of the state that insurers have abandoned — could be on the hook for massive wildfire losses.”
First and foremost, sign up for all relevant emergency alerts. Make sure to turn on the sound on your phone and keep it near you in case of a change in conditions. Pack a “go bag” with essentials and consider filling your gas tank now so that you can evacuate at a moment’s notice if needed. Read our guide on what to do if you get a pre-evacuation or an evacuation notice ahead of time so that you’re not scrambling for information if you get an alert.
The free Watch Duty app has become a go-to resource for people affected by the fires, including friends and family of Angelenos who may themselves be thousands of miles away. The app provides information on fire perimeters, evacuation notices, and power outages. Its employees pull information directly from emergency responders’ radio broadcasts and sometimes beat official sources to disseminating it. If you need an endorsement: Emergency responders rely on the app, too.
There are many scams in the wake of disasters as crooks look to take advantage of desperate people — and those who want to help them. To play it safe, you can use a hub like the one established by GoFundMe, which is actively vetting campaigns related to the L.A. fires. If you’re looking to volunteer your time, make a donation of clothing or food, or if you’re able to foster animals the fire has displaced, you can use this handy database from the Mutual Aid Network L.A. There are also many national organizations, such as the Red Cross, that you can connect with if you want to help.
The City of Los Angeles and the Los Angeles Fire Department have asked that do-gooders not bring donations directly to fire stations or shelters; such actions can interfere with emergency operations. Their website provides more information about how you can help — productively — on their website.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
It would have delivered a gargantuan 6.2 gigawatts of power.
The Bureau of Land Management says the largest solar project in Nevada has been canceled amidst the Trump administration’s federal permitting freeze.
Esmeralda 7 was supposed to produce a gargantuan 6.2 gigawatts of power – equal to nearly all the power supplied to southern Nevada by the state’s primary public utility. It would do so with a sprawling web of solar panels and batteries across the western Nevada desert. Backed by NextEra Energy, Invenergy, ConnectGen and other renewables developers, the project was moving forward at a relatively smooth pace under the Biden administration, albeit with significant concerns raised by environmentalists about its impacts on wildlife and fauna. And Esmeralda 7 even received a rare procedural win in the early days of the Trump administration when the Bureau of Land Management released the draft environmental impact statement for the project.
When Esmeralda 7’s environmental review was released, BLM said the record of decision would arrive in July. But that never happened. Instead, Donald Trump issued an executive order as part of a deal with conservative hardliners in Congress to pass his tax megabill, which also effectively repealed the Inflation Reduction Act’s renewable electricity tax credits. This led to subsequent actions by Interior Secretary Doug Burgum to freeze all federal permitting decisions for solar energy.
Flash forward to today, when BLM quietly updated its website for Esmeralda 7 permitting to explicitly say the project’s status is “cancelled.” Normally when the agency says this, it means developers pulled the plug.
I’ve reached out to some of the companies behind Esmeralda 7 but was unable to reach them in time for publication. If I hear from them confirming the project is canceled – or that BLM is wrong in some way – I will let you know.
It’s not perfect, but pretty soon, it’ll be available for under $30,000.
Here’s what you need to know about the rejuvenated Chevrolet Bolt: It’s back, it’s better, and it starts at under $30,000.
Although the revived 2027 Bolt doesn’t officially hit the market until January 2026, GM revealed the new version of the iconic affordable EV at a Wednesday evening event at the Universal Studios backlot in Los Angeles. The assembled Bolt owners and media members drove the new cars past Amity Island from Jaws and around the Old West and New York sets that have served as the backdrops of so many television shows and movies. It was star treatment for a car that, like its predecessor, isn’t the fanciest EV around. But given the giveaway patches that read “Chevy Bolt: Back by popular demand,” it’s clear that GM heard the cries of people who missed having the plucky electric hatchback on the market.
The Bolt died at the height of its powers. The original Bolt EV and Bolt EUV sold in big numbers in the late 2010s and early 2020s, powered by a surprisingly affordable price compared to competitor EVs and an interior that didn’t feel cramped despite its size as a smallish hatchback. In 2023, the year Chevy stopped selling it, the Bolt was the third-best-selling EV in America after Tesla’s top two models.
Yet the original had a few major deficiencies that reflected the previous era of EVs. The most egregious of which was its charging speed that topped out at around 50 kilowatts. Given that today’s high-speed chargers can reach 250 to 350 kilowatts — and an even faster future could be on the way — the Bolt’s pit stops on a road trip were a slog that didn’t live up to its peppy name.
Thankfully, Chevy fixed it. Charging speed now reaches 150 kilowatts. While that figure isn’t anywhere near the 350 kilowatts that’s possible in something like the Hyundai Ioniq 9, it’s a threefold improvement for the Bolt that lets it go from 10% to 80% charged in a respectable 26 minutes. The engineers said they drove a quartet of the new cars down old Route 66 from the Kansas City area, where the Bolt is made, to Los Angeles to demonstrate that the EV was finally ready for such an adventure.
From the outside, the 2027 Bolt is virtually indistinguishable from the old car, but what’s inside is a welcome leap forward. New Bolt has a lithium-ion-phosphate, or LFP battery that holds 65 kilowatt-hours of energy, but still delivers 255 miles of max range because of the EV’s relatively light weight. Whereas older EVs encourage drivers to stop refueling at around 80%, the LFP battery can be charged to 100% regularly without the worry of long-term damage to the battery.
The Bolt is GM’s first EV with the NACS charging standard, the former Tesla proprietary plug, which would allow the little Chevy to visit Tesla Superchargers without an adapter (though its port placement on the front of the driver’s side is backwards from the way older Supercharger stations are built). Now built on GM’s Ultium platform, the Bolt shares its 210-horsepower electric motor with the Chevy Equinox EV and gets vehicle-to-load capability, meaning you’ll be able to tap into its battery energy for other uses such as powering your home.
But it’s the price that’s the real wow factor. Bolt will launch with an RS version that gets the fancier visual accents and starts at $32,000. The Bolt LT that will be available a little later will eventually start as low as $28,995, a figure that includes the destination charge that’s typically slapped on top of a car’s price, to the tune of an extra $1,000 to $2,000 on delivery. Perhaps it’s no surprise that GM revealed this car just a week after the end of the $7,500 federal tax credit for EV purchases (and just a day after Tesla announced its budget versions of the Model Y and Model 3). Bringing in a pretty decent EV at under $30,000 without the help of a big tax break is a pretty big deal.
The car is not without compromises. Plenty of Bolt fans are aghast that Chevy abandoned the Apple CarPlay and Android Auto integrations that worked with the first Bolt in favor of GM’s own built-in infotainment system as the only option. Although the new Bolt was based on the longer, “EUV” version of the original, this is still a pretty compact car without a ton of storage space behind the back seats. Still, for those who truly need a bigger vehicle, there’s the Chevy Equinox EV.
For as much time as I’ve spent clamoring for truly affordable EVs that could compete with entry-level gas cars on prices, the Bolt’s faults are minor. At $29,000 for an electric vehicle in the U.S., there is practically zero competition until the new Nissan Leaf arrives. The biggest threats to the Bolt are America’s aversion to small cars and the rapid rates of depreciation that could allow someone to buy a much larger, gently used EV for the price of the new Chevy. But the original Bolt found a steady footing among drivers who wanted that somewhat counter-cultural car — and this one is a lot better.
“Old economy” companies like Caterpillar and Williams are cashing in by selling smaller, less-efficient turbines to impatient developers.
From the perspective of the stock market, you’re either in the AI business or you’re not. If you build the large language models pushing out the frontiers of artificial intelligence, investors love it. If you rent out the chips the large language models train on, investors love it. If you supply the servers that go in the data centers that power the large language models, investors love it. And, of course, if you design the chips themselves, investors love it.
But companies far from the software and semiconductor industry are profiting from this boom as well. One example that’s caught the market’s fancy is Caterpillar, better known for its scale-defying mining and construction equipment, which has become a “secular winner” in the AI boom, writes Bloomberg’s Joe Weisenthal.
Typically construction businesses do well when the overall economy is doing well — that is, they don’t typically take off with a major technological shift like AI. Now, however, Caterpillar has joined the ranks of the “picks and shovels” businesses capitalizing on the AI boom thanks to its gas turbine business, which is helping power OpenAI’s Stargate data center project in Abilene, Texas.
Just one link up the chain is another classic “old economy” business: Williams Companies, the natural gas infrastructure company that controls or has an interest in over 33,000 miles of pipeline and has been around in some form or another since the early 20th century.
Gas pipeline companies are not supposed to be particularly exciting, either. They build large-scale infrastructure. Their ratemaking is overseen by federal regulators. They pay dividends. The last gas pipeline company that got really into digital technology, well, uh, it was Enron.
But Williams’ shares are up around 28% in the past year — more than Caterpillar. That’s in part, due to its investing billions in powering data centers with behind the meter natural gas.
Last week, Williams announced that it would funnel over $3 billion into two data center projects, bringing its total investments in powering AI to $5 billion. This latest bet, the company said, is “to continue to deliver speed-to-market solutions in grid-constrained markets.”
If we stipulate that the turbines made by Caterpillar are powering the AI boom in a way analogous to the chips designed by Nvidia or AMD and fabricated by TSMC, then Williams, by developing behind the meter gas-fired power plants, is something more like a cloud computing provider or data center developer like CoreWeave, except that its facilities house gas turbines, not semiconductors.
The company has “seen the rapid emergence of the need for speed with respect to energy,” Williams Chief Executive Chad Zamarin said on an August earnings call.
And while Williams is not a traditional power plant developer or utility, it knows its way around natural gas. “We understand pipeline capacity,” Zamarin said on a May earnings call. “We obviously build a lot of pipeline and turbine facilities. And so, bringing all the different pieces together into a solution that is ready-made for a customer, I think, has been truly a differentiator.”
Williams is already behind the Socrates project for Meta in Ohio, described in a securities filing as a $1.6 billion project that will provide 400 megawatts of gas-fired power. That project has been “upsized” to $2 billion and 750 megawatts, according to Morgan Stanley analysts.
Meta CEO Mark Zuckerberg has said that “energy constraints” are a more pressing issue for artificial intelligence development than whether the marginal dollar invested is worth it. In other words, Zuckerberg expects to run out of energy before he runs out of projects that are worth pursuing.
That’s great news for anyone in the business of providing power to data centers quickly. The fact that developers seem to have found their answer in the Williamses and Caterpillars of the world, however, calls into question a key pillar of the renewable industry’s case for itself in a time of energy scarcity — that the fastest and cheapest way to get power for data centers is a mix of solar and batteries.
Just about every renewable developer or clean energy expert I’ve spoken to in the past year has pointed to renewables’ fast timeline and low cost to deploy compared to building new gas-fired, grid-scale generation as a reason why utilities and data centers should prefer them, even absent any concerns around greenhouse gas emissions.
“Renewables and battery storage are the lowest-cost form of power generation and capacity,” Next Era chief executive John Ketchum said on an April earnings call. “We can build these projects and get new electrons on the grid in 12 to 18 months.” Ketchum also said that the price of a gas-fired power plant had tripled, meanwhile lead times for turbines are stretching to the early 2030s.
The gas turbine shortage, however, is most severe for large turbines that are built into combined cycle systems for new power plants that serve the grid.
GE Vernova is discussing delivering turbines in 2029 and 2030. While one manufacturer of gas turbines, Mitsubishi Heavy Industries, has announced that it plans to expand its capacity, the industry overall remains capacity constrained.
But according to Morgan Stanley, Williams can set up behind the meter power plants in 18 months. xAI’s Colossus data center in Memphis, which was initially powered by on-site gas turbines, went from signing a lease to training a large language model in about six months.
These behind the meter plants often rely on cheaper, smaller, simple cycle turbines, which generate electricity just from the burning of natural gas, compared to combined cycle systems, which use the waste heat from the gas turbines to run steam turbines and generate more energy. The GE Vernova 7HA combined cycle turbines that utility Duke Energy buys, for instance, range in output from 290 to 430 megawatts. The simple cycle turbines being placed in Ohio for the Meta data center range in output from about 14 megawatts to 23 megawatts.
Simple cycle turbines also tend to be less efficient than the large combined cycle system used for grid-scale natural gas, according to energy analysts at BloombergNEF. The BNEF analysts put the emissions difference at almost 1,400 pounds of carbon per megawatt-hour for the single turbines, compared to just over 800 pounds for combined cycle.
Overall, Williams is under contract to install 6 gigawatts of behind-the-meter power, to be completed by the first half of 2027, Morgan Stanley analysts write. By comparison, a joint venture between GE Vernova, the independent power producer NRG, and the construction company Kiewit to develop combined cycle gas-fired power plants has a timeline that could stretch into 2032.
The Williams projects will pencil out on their own, the company says, but they have an obvious auxiliary benefit: more demand for natural gas.
Williams’ former chief executive, Alan Armstrong, told investors in a May earnings call that he was “encouraged” by the “indirect business we are seeing on our gas transmission systems,” i.e. how increased natural gas consumption benefits the company’s traditional pipeline business.
Wall Street has duly rewarded Williams for its aggressive moves.
Morgan Stanley analysts boosted their price target for the stock from $70 to $83 after last week’s $3 billion announcement, saying in a note to clients that the company has “shifted from an underappreciated value (impaired terminal value of existing assets) to underappreciated growth (accelerating project pipeline) story.” Mizuho Securities also boosted its price target from $67 to $72, with analyst Gabriel Moreen telling clients that Williams “continues to raise the bar on the scope and potential benefits.”
But at the same time, Moreen notes, “the announcement also likely enhances some investor skepticism around WMB pushing further into direct power generation and, to a lesser extent, prioritizing growth (and growth capex) at the expense of near-term free cash flow and balance sheet.”
In other words, the pipeline business is just like everyone else — torn between prudence in a time of vertiginous economic shifts and wanting to go all-in on the AI boom.
Williams seems to have decided on the latter. “We will be a big beneficiary of the fast rising data center power load,” Armstrong said.