You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Vermont is on the verge of becoming the first state to try it.

Dozens of cities and states have tried to sue the oil industry for damages related to climate change over the past several years, and so far, none of these cases has been successful. In fact, not one has even made it to trial.
In the meantime, the price tag for climate-related impacts has climbed ever higher, and states are growing more desperate for help with the bill. Out of that desperation, a new legal strategy was born, one that may have a better chance of getting fossil fuel companies to pay up. And Vermonters may be the first to benefit.
It’s called a climate superfund bill, and versions of it are floating through legislative chambers in New York, Massachusetts, and Maryland, in addition to Vermont. Though each bill is slightly different, the general premise is the same: Similar to the way the federal Superfund law allows the Environmental Protection Agency to seek funds retroactively from polluters to clean up contaminated sites, states will seek to bill fossil fuel companies retroactively for the costs of addressing, avoiding, and adapting to the damages that the emissions from their products have caused.
Though New York was the first state to introduce a climate superfund bill two years ago, Vermont may be the first to get it through a legislature. On Friday, the Vermont Senate voted 21 to five to approve amendments to the bill, and will vote next week on whether to send it to the House. An equivalent bill in the House is cosponsored by nearly two-thirds of state representatives and the policy also won the support of Vermont’s Attorney General.
If it gets past the governor’s desk, the bill will kick off a multiyear process that, in the most optimistic case, could bring money into the state by 2028. The first step is for the state Treasurer to assess the cost to Vermont, specifically, of emissions from the extraction and combustion of fossil fuels from 1995 to 2024, globally. Regulators will then request compensation from responsible parties in proportion to the emissions each company contributed. The state will identify responsible parties by focusing only on the biggest emitters, companies whose products generated at least a billion tons of emissions during that time. The money will go toward implementing a state “resilience and implementation strategy” to be mapped out in the next two years.
The idea of states retroactively billing fossil fuel companies for damages outside the context of a lawsuit might sound a little far-fetched. Or, at least, I thought it was when I first heard about it. How can that be legal?
Anthony Iarrapino, the lead lobbyist supporting the bill for the Conservation Law Foundation, a New England-based environmental law nonprofit, explained it this way. There is established case law that deals with retroactive liability in the context of hazardous waste — again, the Superfund law. “Even if your activities were legal at the time you undertook them, if they result in making a mess, then you can be on the hook for cleaning that mess,” he told me. “The idea here is looking at climate disruption as a polluted site.”
How is that fair? Well, the legal precedents supporting the Superfund law and similar policies turn on a key question. Did the companies understand that their activities were potentially harmful at the time they engaged in them? “If, objectively, you knew or should have known that your conduct, whether it was legal or not, was likely to result in damages that would impose costs on society,” Iarrapino said, “then it's fair, from a lookback perspective, to hold you accountable when those damages begin to manifest in the environment or in impacts to human health.” That’s because, according to precedent, you essentially assumed the risk that at some point in the future, you might be on the hook.
By now there’s a mountain of evidence that fossil fuel companies like Exxon did, in fact, know how damaging their products would be several decades before the period covered by the Vermont bill, based on internal research not shared with the public at the time. But Ben Edgerly Walsh, an advocate at the Vermont Public Interest Research Group, told me that even absent that evidence, they should have recognized the risk based on the scientific consensus that emerged in the 1970s and 1980s. To wit: Vermont chose 1995 as the start year for its bill because that’s when the first United Nations climate change conference was held.
“We shouldn't have to bear the cost of this ourselves,” said Walsh. “These oil companies that are still making hundreds of billions of dollars in profit annually should have to pay their fair share for the cost of the climate crisis they caused.”
Underpinning the bill — as well as many of the related lawsuits — is the advancement of “attribution science,” or the ability to quantify the economic losses that a region has borne due to anthropogenic climate change, as well as future losses that are already baked in, and then attribute them back to particular emitters. In testimony for the Vermont superfund bill, Justin Mankin, an associate professor at Dartmouth, stressed that these are peer reviewed, consensus, scientific methods — and that in general, they are conservative. “It is my opinion that we are systematically underestimating the economic cost of climate change to date,” he told the Vermont Judiciary Committee in February. “And that is because all of these climate damage cost assessment methods are inherently conservative, or limited by data.”
The bill’s sponsors also looked to research from Richard Heede, creator of the famous “Carbon Majors” database, which calculated the emissions of major fossil fuel companies based on the amount of oil, gas, and coal they each extracted and found that some 70% of fossil fuel emissions since 1988 can be attributed to 100 companies. In testimony to the Vermont Senate, Heede estimated that about 68 companies would be captured by the bill’s billion-ton threshold.
Of course, the fossil fuel industry patently disputes the science that Heede and Mankin expounded. The American Petroleum Institute submitted testimony warning of the “difficulties of establishing a conclusive link between anthropogenic climate change and alleged injuries to Vermont” and arguing that the emissions from individual companies over the last several decades cannot “be determined with great accuracy.” The group also called it “unfair” to charge the companies that sold oil and gas, considering they “did not combust fossil fuels but simply extracted or refined them in order to meet the needs and demands of the people.”
That might be where the biggest weak spot in the climate superfund bills — as well as the climate damages lawsuits — lies. There’s an underlying philosophical question, Martin Lockman, a climate law fellow at Columbia University, told me. Who in the supply chain is responsible for the pollution from fossil fuels?
The answer turns on a moral argument that fossil fuel companies have made enormous profits from fossil fuels for decades, all while knowing what the harms would be. “From a moral perspective, I think that these are very justified,” said Lockman, “but that will certainly get opened in litigation.”
If any of the climate superfund bills pass, they will absolutely be challenged in court. One reason they may see more success than the more direct lawsuits, however, is that they flip the burden of proof. If Vermont sued oil companies for damages, the burden would be on Vermont to prove its case, and as the defendants, the oil companies would get a “bag of tricks” to use to stall the case and make it very expensive to pursue, said Iarrapino. For example, many of these lawsuits have been delayed by years-long arguments over whether they should be tried in state or federal court, or whether the oil companies have to release certain documents.
“Even though it’s the same harms and the same contexts,” Iarrapino told me, “you’ve got a balance of power where they can win the case by losing slowly.” But if oil companies sue Vermont, for example, by calling its law unconstitutional, the burden of proof will be on them, and the state will have no incentive to delay the case.
I should note here that the federal Superfund law is not exactly the ideal model for this policy. Much of the time, the EPA can’t track down a company to ascribe blame for the contamination, and taxpayers end up footing the bill of the cleanup. Even when it does find a responsible party, said party often ends up litigating the amount owed for years. The Passaic River in New Jersey was declared a Superfund site 40 years ago, and the EPA is still fighting with Occidental over how much it should pay for the cleanup.
Iarrapino thinks there’s one key difference in the proposed climate superfund program. At contaminated sites, there can be a lot of potential polluters and so it’s difficult to assign blame. The Vermont bill attaches liability directly to the act of extracting and refining fossil fuels for combustion. “You either did that or you didn't do that,” he said. When it comes to companies like Exxon and BP, “that is their whole reason for existing.” That doesn’t mean companies won’t use all the firepower they have to dispute the amount they owe, however.
It may seem unfair for a single state, especially one as small as Vermont, to win compensation first when the damages are global and unequally distributed. But Lockman of Columbia said if these bills are successful, fossil fuel companies may stop fighting liability entirely and instead push the federal government to take action so they can be held to a more consistent standard across the country.
When I first reached Iarrapino, he told me that just downstairs from his office, someone was sawing and hammering the walls because the first floor had been entirely underwater when Montpelier flooded last summer. Three businesses that were in the building are gone. A recent estimate puts the cost of state-wide damages from the storm at $600 million.
“At this point,” he said, “what else does a state like Vermont have to lose?”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Agriculture startups are suddenly some of the hottest bets in climate tech, according to the results of our Insiders Survey.
Innovations in agriculture can seem like the neglected stepchild of the climate tech world. While food and agriculture account for about a quarter of global emissions, there’s not a lot of investment in the space — or splashy breakthroughs to make the industry seem that investible in the first place. In transportation and energy, “there is a Tesla, there is an EnPhase,” Cooper Rinzler, a partner at Breakthrough Energy Ventures, told me. “Whereas in ag tech, tell me when the last IPO that was exciting was?”
That may be changing, however. Multiple participants in Heatmap’s Insiders Survey cited ag tech companies Pivot Bio and Nitricity — both of which are pursuing alternate approaches to conventional ammonia-based fertilizers — as among the most exciting climate tech companies working today.
Studies estimate that fertilizer production and use alone account for roughly 5% of global emissions. That includes emissions from the energy-intensive Haber–Bosch process, which synthesizes ammonia by combining nitrogen from the air with hydrogen at extremely high temperatures, as well as nitrous oxide released from the soil after fertilizer is applied. N2O is about 265 times more potent than carbon dioxide over a 100-year timeframe and accounts for roughly 70% of fertilizer-related emissions, as soil microbes convert excess nitrogen that crops can’t immediately absorb into nitrous oxide.
“If we don’t solve nitrous oxide, it on its own is enough of a radiative force that we can’t meet all of our goals,” Rinzler said, referring to global climate targets at large.
Enter what some consider one of the most promising agricultural innovations, perhaps since the invention of the Haber–Bosch process itself over a century ago — Pivot Bio. This startup, founded 15 years ago, engineers soil microbes to convert about 400 times more atmospheric nitrogen into ammonia than non-engineered microbe strains naturally would. “They are mini Haber–Bosch facilities, for all intents and purposes,” Pivot Bio’s CEO Chris Abbott told me, referring to the engineered microbes themselves.
The startup has now raised over $600 million in total funding and is valued at over $2 billion. And after toiling in the ag tech trenches for a decade and a half, this will be the first full year the company’s biological fertilizers — which are applied to either the soil or seed itself — will undercut the price of traditional fertilizers.
“Farmers pay 20% to 25% less for nitrogen from our product than they do for synthetic nitrogen,” Abbott told me. “Prices [for traditional fertilizers] are going up again this spring, like they did last year. So that gap is actually widening, not shrinking.”
Peer reviewed studies also show that Pivot’s treatments boost yields for corn — its flagship crop — while preliminary data indicates that the same is true forcotton, which Pivot expanded into last year. The company also makes fertilizers for wheat, sorghum, and other small grains.
Pivot is now selling these products in stores where farmers already pick up seeds and crop treatments, rather than solely through its independent network of sales representatives, making the microbes more likely to become the default option for growers. But they won’t completely replace traditional fertilizer anytime soon, as Pivot’s treatments can still meet only about 20% to 25% of a large-scale crop’s nitrogen demand, especially during the early stages of plant growth, though it’s developing products that could push that number to 50% or higher, Abbott told me.
All this could have an astronomical environmental impact if deployed successfully at scale. “From a water perspective, we use about 1/1000th the water to produce the same amount of nitrogen,” Abbott said. From an emissions perspective, replacing a ton of synthetic nitrogen fertilizer with Pivot Bio’s product prevents the equivalent of around 11 tons of carbon dioxide from entering the atmosphere. Given the quantity of Pivot’s fertilizer that has been deployed since 2022, Abbott estimates that scales to approximately 1.5 million tons of cumulative avoided CO2 equivalent.
“It’s one of the very few cases that I’ve ever come across in climate tech where you have this giant existing commodity market that’s worth more than $100 billion and you’ve found a solution that offers a cheaper product that is also higher value,” Rinzler told me. BEV led the company’s Series B round back in 2018, and has participated in its two subsequent rounds as well.
Meanwhile, Nitricity — a startup spun out of Stanford University in 2018 — is also aiming to circumvent the Haber–Bosch process and replace ammonia-based and organic animal-based fertilizers such as manure with a plant-based mixture made from air, water, almond shells, and renewable energy. The company said that its proprietary process converts nitrogen and other essential nutrients derived from combusted almond shells into nitrate — the form of nitrogen that plants can absorb. It then “brews” that into an organic liquid fertilizer that Nitricity’s CEO, Nico Pinkowski, describes as looking like a “rich rooibos tea,” capable of being applied to crops through standard irrigation systems.
For confidentiality reasons, the company was unable to provide more precise technical details regarding how it sources and converts sufficient nitrogen into a usable form via only air, water, and almond shells, given that shells don’t contain much nitrogen, and turning atmospheric nitrogen into a plant-ready form typically involves the dreaded Haber–Bosch process.
But investors have bought in, and the company is currently in the midst of construction on its first commercial-scale fertilizer factory in Central California, which is expected to begin production this year. Funding for the first-of-a-kind plant came from Trellis Climate and Elemental Impact, both of which direct philanthropic capital toward early-stage, capital-intensive climate projects. The facility will operate on 100% renewable power through a utility-run program that allows customers to opt into renewable-only electricity by purchasing renewable energy certificates,
Pinkowski told me the new plant will represent a 100‑fold increase in Nitricity’s production capacity, which currently sits at 80 tons per year from its pilot plant. “In comparison to premium conventional fertilizers, we see about a 10x reduction in emissions,” Pinkowski told me, factoring in greenhouse gases from both production and on-field use. “In comparison to the most standard organic fertilizers, we see about a 5x reduction in emissions.”
The company says trial data indicates that its fertilizer allows for more efficient nitrogen uptake, thus lowering nitrous oxide emissions and allowing farmers to cut costs by simply applying less product. According to Pinkowski, Nitricity’s current prices are at parity or slightly lower than most liquid organic fertilizers on the market. And that has farmers really excited — the new plant’s entire output is already sold through 2028.
“Being able to mitigate emissions certainly helps, but it’s not what closes the deal,” he told me. “It’s kind of like the icing on the cake.”
Initially, the startup is targeting the premium organic and sustainable agriculture market, setting it apart from Pivot Bio’s focus on large commodity staple crops. “You saw with the electrification of vehicles, there was a high value beachhead product, which was a sports car,” Pinkowski told me. “In the ag space, that opportunity is organics.”
But while big-name backers have lined up behind Pivot and Nitricity, the broader ag tech sector hasn’t been as fortunate in its friends, with funding and successful scale-up slowing for many companies working in areas such as automation, indoor farming, agricultural methane mitigation, and lab-grown meat.
Everyone’s got their theories for why this could be, with Lara Pierpoint of Trellis telling me that part of the issue is “the way the federal government is structured around this work.” The Department of Agriculture allocates relatively few resources to technological innovation compared to the Department of Energy, which in turn does little to support agricultural work outside of its energy-specific mandate. That ends up meaning that, as Pierpoint put it, ”this set of activities sort of falls through the cracks” of the government funding options, leaving agricultural communities and companies alike struggling to find federal programs and grant opportunities.
“There’s also a mismatch between farmers and the culture of farming and agriculture in the United States, and just even geographically where the innovation ecosystems are,” Emily Lewis O’Brien, a principal at Trellis who led the team’s investment in Nitricity, told me of the social and regional divides between entrepreneurs, tech investors and rural growers. “Bridging that gap has been a little bit tricky.”
Still, investors remain optimistic that one big win will help kick the money machines into motion, and with Pivot Bio and Nitricity, there are finally some real contenders poised to transform the sector. “We’re going to wake up one day and someone’s going to go, holy shit, that was fast,” Abbott told me. “And it’s like, well you should have been here for the decade of hard work before. It’s always fast at the end.”
The most popular scope 3 models assume an entirely American supply chain. That doesn’t square with reality.
“You can’t manage what you don’t measure,” the adage goes. But despite valiant efforts by companies to measure their supply chain emissions, the majority are missing a big part of the picture.
Widely used models for estimating supply chain emissions simplify the process by assuming that companies source all of their goods from a single country or region. This is obviously not how the world works, and manufacturing in the United States is often cleaner than in countries with coal-heavy grids, like China, where many of the world’s manufactured goods actually come from. A study published in the journal Nature Communications this week found that companies using a U.S.-centric model may be undercounting their emissions by as much as 10%.
“We find very large differences in not only the magnitude of the upstream carbon footprint for a given business, but the hot spots, like where there are more or less emissions happening, and thus where a company would want to gather better data and focus on reducing,” said Steven Davis, a professor of Earth system science in the Stanford Doerr School of Sustainability and lead author of the paper.
Several of the authors of the paper, including Davis, are affiliated with the software startup Watershed, which helps companies measure and reduce their emissions. Watershed already encourages its clients to use its own proprietary multi-region model, but the company is now working with Stanford and the consulting firm ERG to build a new and improved tool called Cornerstone that will be freely available for anyone to use.
“Our hope is that with the release of scientific papers like this one and with the launch of Cornerstone, we can help the ecosystem transition to higher quality open access datasets,” Yohanna Maldonado, Watershed’s Head of Climate Data told me in an email.
The study arrives as the Greenhouse Gas Protocol, a nonprofit that publishes carbon accounting standards that most companies voluntarily abide by, is in the process of revising its guidance for calculating “scope 3” emissions. Scope 3 encompasses the carbon that a company is indirectly responsible for, such as from its supply chain and from the use of its products by customers. Watershed is advocating that the new standard recommend companies use a multi-region modeling approach, whether Watershed’s or someone else’s.
Davis walked me through a hypothetical example to illustrate how these models work in practice. Imagine a company that manufactures exercise bikes — it assembles the final product in a factory in the U.S., but sources screws and other components from China. The typical way this company would estimate the carbon footprint of its supply chain would be to use a dataset published by the U.S. Environmental Protection Agency that estimates the average emissions per dollar of output for about 400 sectors of the U.S. economy. The EPA data doesn’t get down to the level of detail of a specific screw, but it does provide an estimate of emissions per dollar of output for, say, hardware manufacturing. The company would then multiply the amount of money it spent on screws by that emissions factor.
Companies take this approach because real measurements of supply chain emissions are rare. It’s not yet common practice for suppliers to provide this information, and supply chains are so complex that a product might pass through several different hands before reaching the company trying to do the calculation. There are emerging efforts to use remote sensing and other digital data collection and monitoring systems to create more accurate, granular datasets, Alexia Kelly, a veteran corporate sustainability executive and current director at the High Tide Foundation, told me. In the meantime, even though sector-level emissions estimates are rough approximations, they can at least give a company an indication of which parts of their supply chain are most problematic.
When those estimates don’t take into account country of origin, however, they don’t give companies an accurate picture of which parts of their supply chains need the most attention.
The new study used Watershed’s multi-region model to look at how different types of companies’ emissions would change if they used supply chain data that better reflected the global nature of supply chains. Davis is the first to admit that the study’s findings of higher emissions are not surprising. The carbon accounting field has long been aware of the shortcomings of single-region models. There hasn’t been a big push to change that, however, because the exercise is already voluntary and taking into account global supply chains is significantly more difficult. Many countries don’t publish emissions and economic data, and those that do use a variety of methods to report it. Reconciling those differences adds to the challenge.
While the overall conclusion isn’t surprising, the study may be the first to show the magnitude of the problem and illustrate how more accurate modeling could redirect corporate sustainability efforts. “As far as I know, there is no similar analysis like this focused on corporate value chain emissions,” Derik Broekhoff, a senior scientist at the Stockholm Environment Institute, told me in an email. “The research is an important reminder for companies (and standard setters like the Greenhouse Gas Protocol), who in practice appear to be overlooking foreign supply chain emissions in large numbers.”
Broekhoff said Watershed’s upcoming open-source model “could provide a really useful solution.” At the same time, he said, it’s worth noting that this whole approach of calculating emissions based on dollars spent is subject to significant uncertainty. “Using spending data to estimate supply chain emissions provides only a first-order approximation at best!”
The decision marks the Trump administration’s second offshore wind defeat this week.
A federal court has lifted Trump’s stop work order on the Empire Wind offshore wind project, the second defeat in court this week for the president as he struggles to stall turbines off the East Coast.
In a brief order read in court Thursday morning, District Judge Carl Nichols — a Trump appointee — sided with Equinor, the Norwegian energy developer building Empire Wind off the coast of New York, granting its request to lift a stop work order issued by the Interior Department just before Christmas.
Interior had cited classified national security concerns to justify a work stoppage. Now, for the second time this week, a court has ruled the risks alleged by the Trump administration are insufficient to halt an already-permitted project midway through construction.
Anti-offshore wind activists are imploring the Trump administration to appeal this week’s injunctions on the stop work orders. “We are urging Secretary Burgum and the Department of Interior to immediately appeal this week’s adverse federal district court rulings and seek an order halting all work pending appellate review,” Robin Shaffer, president of Protect Our Coast New Jersey, said in a statement texted to me after the ruling came down.
Any additional delays may be fatal for some of the offshore wind projects affected by Trump’s stop work orders, irrespective of the rulings in an appeal. Both Equinor and Orsted, developer of the Revolution Wind project, argued for their preliminary injunctions because even days of delay would potentially jeopardize access to vessels necessary for construction. Equinor even told the court that if the stop work order wasn’t lifted by Friday — that is, January 16 — it would cancel Empire Wind. Though Equinor won today, it is nowhere near out of the woods.
More court action is coming: Dominion will present arguments on Friday in federal court against the stop work order halting construction of its Coastal Virginia offshore wind project.