You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Will the rise of machine learning and artificial intelligence break the climate system? In recent months, utilities and tech companies have argued that soaring use of AI will overwhelm electricity markets. Is that true — or is it a sales pitch meant to build more gas plants? And how much electricity do data centers and AI use today?
In this week’s episode, Rob and Jesse talk to Jonathan Koomey, an independent researcher, lecturer, and entrepreneur who studies the energy impacts of the internet and information technology. We discuss why AI may not break the electricity system and the long history of anxiety over computing’s energy use. Shift Key is hosted by Robinson Meyer, executive editor of Heatmap, and Jesse Jenkins, a Princeton professor of energy systems engineering.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: Before we go any further — and I think you just hinted at your answer, here, but I want to tackle it directly — which is that I think people look at the hockey stick graphs for AI use, and they look at current energy use for AI, and they look at load growth data coming from the utilities, and they go, “Oh my gosh, AI is going to absolutely overrun our energy system. It’s going to cause emissions to shoot up,” because again, this is just extrapolating from what’s recent.
But of course, part of the whole AI mythos is like, once it starts, you can’t stop it. There is a story out there that, frankly, you see as much from folks who are worried about the climate as you do from AI boosters, which is that very soon, we'’e going to be using a huge amount of energy on AI. And I want to ask you this directly: Should we be worried about AI, number one, overrunning the energy system? Or number two, AI causing a massive spike in carbon emissions that dooms us to, let's say, pass 2.5C that uses up the rest of our carbon budget? Is that something you're worried about? And just how do you think about this?
Jonathan Koomey: Everyone needs to calm the heck down. So we talked about the original baseline, right? So the baseline, data centers are 1% of the world's electricity. And maybe AI now is 0.1%, right? For Google, it’s 0.15%, whatever. But 10% of the 1% is AI.
So let’s say that doubles — let’s say that triples in the next few years, or even goes up fivefold. That gets to about half a percent. So I think it will pale in comparison to the other growth drivers that Jesse was talking about in electrification. Because if you think about light vehicles, if you electrified all light vehicles in the U.S., that’s like a 20% or 25% increase in electricity consumption. And if you did that over 20 years, that’s like 1-ish% per year. Right? So that's, that to me is a very credible thing that’s likely to happen. And then when you add heat pumps, you add industrial electrification, a lot more.
I think there will be local impacts. There will be some places where AI and data centers more generally will be important and will drive load growth, but it is not a national story. It is a local story. And so a place like Ireland that has, I think at last count 17%, 18% of its load from data centers, if that grows, that could give them real challenges. Same thing, Loudoun County in Virginia. But you really do have to separate the national story or the global story from the local story.
Jesse Jenkins: I think it was just about a week ago, Nvidia which is the leading producer of the graphics processing units that have become now the main workhorse chips for generative AI computing, they released their new best-in-class chip. And as they revealed that chip, they — for the first time, it sounded like — started to emphasize the energy efficiency improvements of the GPU. And the basic story the CEO told is that it would take about 73% less electricity and a shorter period of time to train AIs on this new chip than it did on their previous best-in-class chip. So that’s just one generation of GPU with nearly three-quarters reduction in the amount of energy consumed per ... I don't know how you measure the units of large language model training, but per smarts trained into generative AI. So yeah, huge gains.
And one might say, well, can that continue forever? And I guess we should maybe get your thoughts on that. But it has continued at least for the last 10 to 20 years. And so there’s a lot of reason to believe that there’s continued gains to be made.
Koomey: Most people, when they think of efficiency, they think of Moore’s Law. They think of shrinking transistors. And anyone who follows this knows that every year or two, there’s another article about how Moore’s Law is ending, or slowing, or you know, it’s getting harder. And there’s no question about it, it’s absolutely getting harder and harder to shrink the transistors. But it turns out shrinking transistors is only one way to improve efficiency and performance. For a long time, the industry relied on that.
From the early days of microprocessors, starting in ’71, over time, they would ramp up the clock speed. And at the same time, they would ramp down the voltage of the chip. And that was called Dennard scaling. It allowed them to keep ramping up performance without getting to crazy levels of leakage current and heat and melting the chip and the whole thing. That worked for a long time, til the early 2000s. And then they hit the threshold voltage for silicon, which is like one volt. So once you hit that, you can no longer do that trick. And they needed new tricks.
So what they did was they, most of you remember who were around at that time, there was this big shift to multiple cores on a chip. That was an innovation in hardware architecture that allowed them, for a time, to improve efficiency by going to software that could run on multiple cores, so you could multiprocess various activities. So that’s one way you can improve things. You can also work on the software — you can improve the efficiency of the software, you can improve the algorithms that you use.
So even if Moore's law shrinkage of transistors stops, which it hasn’t fully stopped. But even if it did, there are a lot of other things we can do. And AI in particular is relatively new. Basically, people threw a whole bunch of money at existing processors because there was this rush to deploy technology. But now, everyone’s stepping back and saying, well, look at the cost of the energy cost and the infrastructure cost. Is there a way to do this better? And sure, there definitely is, and Nvidia proved it in their presentation that you referred to.
This episode of Shift Key is sponsored by…
KORE Power provides the commercial, industrial, and utility markets with functional solutions that advance the clean energy transition worldwide. KORE Power's technology and manufacturing capabilities provide direct access to next generation battery cells, energy storage systems that scale to grid+, EV power & infrastructure, and intuitive asset management to unlock energy strategies across a myriad of applications. Explore more at korepower.com.
Watershed's climate data engine helps companies measure and reduce their emissions, turning the data they already have into an audit-ready carbon footprint backed by the latest climate science. Get the sustainability data you need in weeks, not months. Learn more at watershed.com.
Music for Shift Key is by Adam Kromelow.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
On Sierra Club drama, OBBB’s price hike, and deep-sea mining blowback
Current conditions: Hurricane Erin is making landfall in the Caribbean as the first major storm of the season, lashing islands with winds of up to 80 miles per hour and 7 inches of rain • More than 152 fires have broken out across Greece in the past 24 hours alone as Europe battles a heatwave • Typhoon Podul is expected to make landfall over southeastern Taiwan on Wednesday morning, lashing the island with winds of up to 96 miles per hour.
The Department of Energy selected 11 nuclear projects from 10 reactor startups on Tuesday for a pilot program “with the goal to construct, operate, and achieve criticality of at least three test reactors” by next July 4. The Trump administration then plans to fast-track the successful technologies for commercial licensing. The effort is part of the United States’ attempt at catching up with China, which last year connected its first high-temperature gas-cooled reactor to the grid. The technologies in the program vary among the reactors selected for the program, with some reactors based on Generation IV designs using coolants other than water and others pitching smaller but otherwise traditional light water reactors. None of the selected models will produce more than 300 megawatts of power. The U.S. hopes these smaller machines can be mass produced to bring down the cost of nuclear construction and deploy atomic energy in more applications, including on remote military bases, and even, as NASA announced last week, the moon.
Here are the companies:
The Sierra Club terminated executive director Ben Jealous this week, ending a rocky tenure that culminated earlier this summer in votes of no confidence among statewide chapters, Inside Climate News’ Lee Hedgepeth reported. A former chief executive of the National Association for the Advancement of Colored People and the 2018 Democratic nominee for Maryland governor, Jealous’ rise to the green group’s top job in November 2022 seemed like a watershed moment for what is arguably the nation's most prominent environmental groups. The first non-white leader of the 133-year-old organization promised to close the book on the Sierra Club’s internal wrestling with the racist legacy of its founder, John Muir.
But budget cuts, layoffs, and fights with the group’s union marred his time at the helm. In June, the executive committee of the Sierra Club’s Oregon Chapter voted unanimously to request a vote of no-confidence in Jealous from the national organization’s board, citing his hiring of a senior staff member who was registered as lobbyist for the cryptocurrency exchange Crypto.com, The New York Times’ Claire Brown reported. Weeks later, the Missouri Chapter voted unanimously to make the same request. Allies on the board accused Jealous’ critics of a racist “pattern of misinformation, character assassination, and discrimination” against the first Black man to hold the top job. But the board placed Jealous on leave last month and, on Monday, said in a statement that it had “unanimously voted to terminate Ben Jealous’ employment for cause.”
Get Heatmap AM directly in your inbox every morning:
The price of power purchase agreements in the U.S. has increased by 4% on average since the passage of President Donald Trump’s One Big Beautiful Bill. That’s according to data released this morning by the industry group LevelTen Energy, which called the calculations “the clearest signal yet that the market has already begun to reprice in light of these new risks and headwinds.”
Of the 86 U.S. developers surveyed from the LevelTen Marketplace, 86% said “they are now adapting their approach — either by accelerating construction timelines, reprioritizing project pipelines, or both.” Next Monday, the Treasury Department is due to issue guidance for renewable energy projects accessing federal tax credits, following Trump’s executive order directing the Internal Revenue Service to place new restrictions on solar and wind developers. Industry groups have been “circling the wagons” since the orders release, according to Heatmap’s Emily Pontecorvo, bracing for restrictions that will push up prices for renewables.
The United States is the only major country that hasn’t ratified the United Nations’ 1994 Law of the Sea treaty. Yet the Trump administration has used the country’s “observer” status to push for finalizing a code under the UN-affiliated International Seabed Authority that would allow for permitting commercial mining on the ocean floor. Trump also signed an executive order in April to unilaterally license deep-sea mining if global rules don’t come into effect. At the center of the effort is the Canadian startup The Metals Company, which has designed special machines to harvest mineral-rich nodules on the deep-sea floor. The company and its backers say it’s a cleaner, faster way to increase global mineral supplies than opening more mines on land. But skeptics — including France and China — warn that the rush to industrialize one of the planet’s last untouched wildernesses risks harming fragile and scarcely understood ecosystems, and criticized Washington for threatening to go it alone without international regulations in place.
China was the first country to publicly condemn Trump’s order in April, but Brazil and Panama spoke at last month’s ISA meeting in Kingston, Jamaica, to express support for Beijing’s position, Canary Media’s Clare Fieseler reported from the Caribbean capital.
The sweltering streets of Midtown Manhattan on July 29, 2025. Spencer Platt/Getty Images
Great news for anyone who, like me, is getting increasingly spooked about microplastics: New research in the journal Sustainable Food Technology found that grapevine cane films could be a great alternative to petrochemical plastics. They’re transparent, leave behind no harmful residues, and biodegrade into soil within 17 days. “These films demonstrate outstanding potential for food packaging applications,” Srinivas Janaswamy, an associate professor in South Dakota State University's Department of Dairy and Food Science, said in a press release. “That is my dream.”
Jesse gives Rob a lesson in marginal generation, inframarginal rent, and electricity supply curves.
Most electricity used in America today is sold on a wholesale power market. These markets are one of the most important institutions structuring the modern U.S. energy economy, but they’re also not very well understood, even in climate nerd circles. And after all: How would you even run a market for something that’s used at the second it’s created — and moves at the speed of light?
On this week’s episode of Shift Key Summer School, Rob and Jesse talk about how electricity finds a price and how modern power markets work. Why run a power market in the first place? Who makes the most money in power markets? How do you encourage new power plants to get built? And what do power markets mean for renewables?
Shift Key is hosted by Jesse Jenkins, a professor of energy systems engineering at Princeton University, and Robinson Meyer, Heatmap’s executive editor.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, YouTube, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Jesse Jenkins: If I’m just a utility operating on my own, I want to basically run my fleet on what we call economic dispatch, which is rank ordering them from cheapest to most expensive on a fuel or variable cost basis, and trying to maximize my use of the less expensive generators and only turn on the more expensive generators when I need them.
That introduces this idea of a marginal generator, where the marginal generator is the last one I turned on that has some slack to move up or down as demand changes. And what that means is that if I have one more megawatt-hour of demand in that hour — or over a five-minute period, or whatever — or 1 megawatt-hour less, then I’m going to crank that one generator up or down. And so the marginal cost of that megawatt-hour of demand is the variable cost of that marginal generator. So if it’s a gas plant that can turn up or down, say it’s $40 a megawatt-hour to pay for its fuel, the cost on the margin of me turning on my lights and consuming a little bit more is that that one power plant is going to ramp its power up a little bit, or down if I turn something off.
And so the way we identify what the marginal value of supplying a little bit more electricity or consuming a little bit more electricity is the variable cost of that last generator, not the average cost of all the generators that are operating, because that’s the one that would change if I were to increase or decrease my output.
Does that make any sense?
Robinson Meyer: It does. In other words, the marginal cost for the whole system is a property of the power plant on the margin, which I realize is tautological. But basically, the marginal cost for increasing output for the entire system by 1 megawatt-hour is actually a property of the one plant that you would turn on to produce that megawatt-hour.
Jesse Jenkins: That’s right, exactly. And that can change over the course of the day. So if demand’s really high, that might be my gas plant that’s on the margin. But if demand is low, or in the middle of the day, that gas plant might be off, and the marginal generator during those periods might be the coal plant or even the nuclear plant at the bottom of the supply curve.
Mentioned:
Jesse’s slides on electricity pricing in the short run
Jesse’s lecture slides on electricity pricing in the long run
Shift Key Summer School episodes 1, 2, and 3
This episode of Shift Key is sponsored by …
Accelerate your clean energy career with Yale’s online certificate programs. Gain real-world skills, build strong networks, and keep working while you learn. Explore the year-long Financing and Deploying Clean Energy program or the 5-month Clean and Equitable Energy Development program. Learn more here.
Join clean energy leaders at RE+ 25, September 8–11 in Las Vegas. Explore opportunities to meet rising energy demand with the latest in solar, storage, EVs, and more at North America’s largest energy event. Save 20% with code HEATMAP20 at re-plus.com.
Music for Shift Key is by Adam Kromelow.
Generate Capital’s Jonah Goldman makes his case.
The Inflation Reduction Act sparked a predictable surge in clean energy-related investments from the law’s signing in 2022 through the 2024 election, before President Trump’s second term ushered in an era of cancellations, closures, and downsizing. Of the domestic projects announced since the IRA’s passage, a total of 35 have been nixed or scaled back so far this year — more than in all of 2023 and 2024 combined, according to estimates from the environmental advocacy organization E2. This accounts for over $22 billion in lost investment and 16,500 in lost jobs.
“There’s a drastic decrease in the amount of new [clean energy] investments,” E2’s Michael Timberlake told me. After the IRA’s passage, he explained, nearly every month saw over a billion dollars invested in new clean energy projects. But since December of last year, monthly investment has come in below a billion dollars more often than not.
Domestic electric vehicle and battery manufacturing projects have been hit the hardest, as these sectors are staring down a federal bureaucracy clearly hostile to their tech on the one hand and Chinese competitors that are already leagues ahead of them on the other. But there is a bright spot: E2’s data shows that the grim outlook for clean energy projects is largely confined to the manufacturing sector. Many large-scale energy generation projects might actually, maybe, be mostly okay.
That’s what Jonah Goldman of the infrastructure investment firm Generate Capital is banking on. As electricity demand rises for the first time in over a decade, the need to deploy cost-competitive grid energy is only increasing. Thus, Goldman sees plenty of reason to continue investing in a renewables buildout — solar especially, which can often be deployed more quickly, flexibly, and economically than any other form of generation, politics aside.
“What is not a question really anymore is whether these projects are going to get built,” Goldman told me. “There’s just not another option. Even if you think of doubling our investment in gas generation, you still don’t get to this incredible increase in power demand that we need in order to reach the projections that we’re getting.”
Taking a closer look at the post-IRA projects that have been either canceled or scaled back shows that solar is indeed the most resilient investment of the bunch. Since the IRA’s passage, about 12% of announced solar projects have been canceled or downsized, compared to 25% of wind projects, 19% of EV projects, and 34% of EV battery projects. Only three of the 35 projects hit this year were related to solar, and only one of those was for solar generation.
Despite the overall dour domestic investment outlook, Timberlake thus agrees with Goldman that solar in particular isn’t grinding to a halt anytime soon. The market signal for clean energy, Timberlake said, is “indisputable.” The buildout might happen more slowly than it otherwise would have, as the administration continues to unspool regulatory red tape for these projects, but it’ll happen.
And, of course, it will get more expensive. Because while Trump’s One Big Beautiful Bill maintains investment and production tax credits for most clean energy technologies through 2033, it cuts credits for solar and wind projects that either start construction after July 2026, or, if they haven’t started by then, are placed in service after 2027.
While Goldman hates what that will do to electricity prices, he doesn’t seem too worried about it hurting Generate’s ability to invest. For the moment, he told me, this timeline leaves the firm with a strong pipeline of opportunities not only in solar, but also in other categories like battery energy storage, geothermal, and sustainable fuels that have largely retained their IRA incentives. “You’re still talking about hundreds of billions of dollars of available investments that don’t wear that risk at all,” he said.
In fact, there are also already so many renewables projects under construction or set to begin soon that “we’ve got more investable opportunities than we have capital to invest,” Goldman explained. Rather than a lull, the tax credit cutoff date is now creating an incentive for investors to throw their support behind projects that appear poised to meet the deadlines.
That won’t last forever. After the credits phase out, investment could certainly dip, Goldman said, “until either those incentives are restored — which they still could be — or the market figures out how to effectively price those projects without that incentive.” Because tax-credit eligible projects that began construction prior to July 2026 will still be coming online for the next few years, Goldman predicts the lull could start around 2029.
He’s not convinced the incentives are gone for good, though. Solar and wind tax credits have suffered through many periods of uncertainty during their decades-long history, always ultimately enduring. And while the industry shouldn’t bank on a mid-term congressional shakeup laying the groundwork for a credit extension, it’s always a possibility — especially given looming electricity price hikes. That could rile up voters enough to begin chipping away at the partisan divides that have formed around clean energy, fossil fuels, and how the heck to power all of these AI data centers.
“We’re no longer talking about a political issue, despite the fact that they made this a political issue.” Goldman told me. “What we need is more electrons on the grid for as affordable a price as possible. And some of those will be generated from gas, and some of those will be generated from renewables.”
The U.S. is also not the only place for infrastructure investors to make money. While domestic clean energy investment may be down, the first half of 2025 saw global private infrastructure funding increase significantly compared with the prior two years. Data center and renewables-focused funds drove the trend, making up 45% and 36% of total investment raised, respectively. The “power and transmission” sector — which includes fossil fuel-fired generation — comprised a mere 12%.
But given that climate funds from all corners of the globe do primarily invest in the U.S., this certainly points to a sustained interest in building domestic clean energy infrastructure. Or, as Goldman put it, “the fundamentals of the market are complicated but only pointing in one direction — a deep thirst for quick, buildable power. And there’s only certain technologies that can fill that deep thirst.”