You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
An interview with science writer Melissa L. Sevigny about Brave the Wild River: The Untold Story of Two Women Who Mapped the Botany of the Grand Canyon

In late June 1938, three small boats pushed off from the banks of Green River, Utah, with plans to run the raging Colorado River through the Grand Canyon, all the way to Lake Mead. In addition to Grape Nuts, a bottle of Four Roses whiskey, and the latest USGS survey maps tied up with a “lucky string,” the boats carried something rather unusual on board: women.
At the time that Elzada Clover and her assistant, Lois Jotter, set out to become the first botanists to catalog the Grand Canyon, rumors still swirled that prehistoric creatures might lurk in its labyrinthine side canyons. Only 12 non-native expeditions had made the trip down the Colorado River since John Wesley Powell’s inaugural 1869 trip, and almost all of those rafters were men (the only woman to have attempted the journey vanished without a trace, along with her husband).
Though Clover and Jotter had serious work ahead of them, the contemporary coverage focused almost exclusively on the fact that the pair were women. Clover and Jotter weren’t much better respected by the men accompanying them; in addition to their significant scientific duties, they served as cooks for the crew on the entire 43-day journey. Even in spite of the distractions, though, Clover and Jotter’s catalog of over 400 species, including four previously unknown cactus species, remains the botanical ur-text of the region: “There was simply no other comprehensive plant list [of the Grand Canyon] published prior to the closure of Glen Canyon Dam,” explains science writer Melissa L. Sevigny’s Brave the Wild River: The Untold Story of Two Women Who Mapped the Botany of the Grand Canyon, an excellent new book about the river expedition. “Anyone who wanted to understand how the vegetation had changed — because of dams, exotic species, or any of the other human and natural influences at work on ecosystems in the past half-century — had to refer to Clover and Jotter’s work.”
Sevigny aimed to do Clover and Jotter justice by restoring them to their rightful place in science — and remembered history. But her book is also a rollicking, keep-you-up-at-night adventure story, told in utterly enveloping and immediate prose. Happily, Sevigny is earning her accolades; the book has received a rare triple-crown of early starred reviews from Publishers Weekly, Kirkus Reviews, and Booklist.
Brave the Wild River is out on May 23. Ahead of its publication, I had the chance to speak with Sevigny about Clover and Jotter, her writing process, and the continued uphill battle of women in the sciences today. Our conversation has been edited and condensed for clarity.
It was the fact that they were female scientists that drew me in. I always wanted to be a scientist; I wanted to be a geologist when I was a kid. I stayed on that path for quite a while and then I became a writer. I feel myself drawn to those stories because I suspect they might have changed things for me if I had known more stories about women in science when I was on that path.
I was surprised that I had never heard of these two women before, Elzada Clover and Lois Jotter. I’ve lived in Arizona all my life. I thought I knew a lot about its history, and yet somehow their names had never come up. Something about that really compelled me and the more I looked, the more I realized I couldn’t find what I was looking for, which was the story of the botanical work that they did. If I wanted to know that story, I was going to have to write it myself.
I was lucky enough right from the start to have the diaries of both of these women. A diary is such an immersive document, you really do feel like you’re in their heads. They’re writing things down that maybe they wouldn’t say out loud to anyone. And so I got to know them first through their diaries, which were wonderfully descriptive, and through letters, which are another really intimate form of communication. They had friends and family that they were very close with and that they would write these letters to on the trip. Whenever they could stop and post a letter, they would do that.
But I also had to do some other things to get into their heads and one of them was raft the Grand Canyon myself. I was incredibly nervous. I’d never done a whitewater rafting trip before. But I knew I was going to need to do that.
I went with a botany crew; we were tasked with weeding out an invasive species of grass. I wanted to do that so I could get a sense of what it was like to actually have to work as a botanist on the river. It was a small group: We had three boats and six people, just like they did. Of course, a lot of things have changed since 1938 about river rafting, but it did feel like a very immersive experience. I remember at one point, turning around to watch the boat behind me come through a rapid and I thought, ‘Oh, there’s Lorin Bell.’ That is a character from 1938 in my book; it was not, in fact, Lorin Bell. Time, it feels different down at the bottom of the Grand Canyon. And sometimes I did forget that it wasn’t 1938.
I’m grateful to them for having the foresight to keep the materials because while they were alive, people often told them — or gave them the impression — that what they did wasn’t that important. And if they had listened to those people, they wouldn’t have kept these materials. The fact that they saved their diaries, they saved their letters, they saved the newspaper clippings, and they donated them to these archives shows a lot of foresight and a lot of courage. I couldn’t have written this book if they hadn’t felt that way.
I did keep my own diary. I made sure I wrote in it every night. I also had a waterproof river map with me and I made notes on it before the trip of things I wanted to make sure I looked at. Because there would be a moment in the diaries where they would say, like, “We looked up and we saw the Desert View watchtower.” That would be the whole description. And so I knew, okay, stop and look up here so that you can describe what they were seeing.
When I got home, I typed up little bits of description out of my diary and I printed them out and I cut them up with scissors and then I actually would tape them into my draft and work at integrating them in.
That’s a direct quote from something that Lois Jotter said. I found out pretty quickly that both these women wanted to be remembered as botanists and they struggled because people wanted to talk about them as if they were the first women to succeed at rafting the Grand Canyon. Elzada Clover actually pushed back against that for a very specific reason: She would refer to herself as the first non-native woman to raft the Grand Canyon. She knew that the region had a long Indigenous history — Navajo and Hopi both have stories of running this river long before a white person came along and did it. Elzada knew that and so that was one reason she pushed back against that label.
But the second reason was that she did want to be remembered as a scientist, as a botanist, and I don’t think that really happened for her during her lifetime. But it’s difficult to center a story on science when the fact that they were women shaped so much of their experience. When I first dove into writing this book, I wanted to stay on the science and I really thought the sexism that they experienced would be a smaller thread — I thought it would be there, but I didn’t want it to center it. But as I was writing, it was impossible to ignore all of the obstacles they faced because they were women, so I hope I managed to strike the right balance and do justice to their story. It was a frustration for them when they were alive and it was a difficulty for me when I was writing, like “How can we tell this as a science story when they’re constantly being told that they shouldn’t be scientists?”
I think that’s absolutely right. And I’m glad you said you were shocked by that because I was fairly shocked too, and then I was embarrassed for being shocked. I expected going into it — this is embarrassing to admit — I really expected the sexism would almost be kind of funny, you know, it would be like, “Look at how those people acted in the 1930s!” And it is funny, but it’s a much darker humor than I expected because women are still facing all of these things today.
Maybe not to the same degree — it might be a little more hidden or subtle now — but all of the same things that [Clover and Jotter] experienced: struggle getting a job, struggle getting a promotion, struggle to be taken seriously, to have a seat at the table. Smaller things too, like people fixating on their physical appearance, telling them to smile. All of those things still happen to women today. I wasn’t expecting to write as much about that going into this book as I did, but I knew I had to because it was a very real part of their story and an extremely relevant part of their story.
It’s become only more relevant as time goes on. Clover and Jotter were the only people to make a formal plant list published in a Western scientific journal before Glen Canyon Dam went up. Today, there’s been a shift in thinking about the Colorado River. In their era, it was a given that people were going to build dams and they were going to harness this river. But today, a lot of people want to figure out how we can undo some of that damage, how we can protect the rivers, cultural values, and environmental values. And in that discussion, it’s hard to know how to do that if you don’t know what the river used to look like.
Clover and Jotter’s plant lists are just one part of that story. There’s also Indigenous wisdom about the plants along the river. There are other pre-dam records, but together it creates a picture of how this place used to look. Not saying that we can make it look like that again, but it gives us a way to pin our baselines in place so as we move forward, we can understand what kind of processes we need to restore this river. How do we want to protect it?
Yeah, so many things. Gosh. I was lucky to be able to track down some of their relatives and some of their former students and had really wonderful interviews with them. But there’s always questions, like, did you get it quite right?
There’s a key moment in the book where [Clover and Jotter] lose part of their plant collection and all I have are these little scraps and I don’t know exactly how that happened. Like, what were you planning? Who did you give that collection to, who was entrusted with it, and then what happened? I’d love to fill in those kinds of details.
I’d also like to ask them how they feel about how their botanical work has been used today. So many things changed from the 1930s to the present day and they lived through those changes, but because I don’t have as detailed records later in their life, I don’t know how they felt about what happened to the Colorado River, how they felt about how their work was used or ignored or misused over that time. I would just love to sit and talk with them about that. That’s one of many, many questions I would have.
This was a story about two ordinary women. I mean, I think they were remarkable, I wrote a whole book about them. But sometimes when we tell stories about science, we focus on the lone genius in the laboratory discovering a new element or breaking the laws of physics. Most science actually gets done in a much more incremental fashion. It’s about ordinary people who are passionate about some part of the natural world and they go out and they chase that curiosity and they move our knowledge forward. Just a little step. That’s what [Clover and Jotter] did and I think that’s how science works.
I started this conversation by saying that I wanted to be a scientist, right? I hope that young people or people of any age who are interested in science will see that it’s not something done by geniuses locked away in laboratories. Anybody can be a scientist.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
With policy chaos and disappearing subsidies in the U.S., suddenly the continent is looking like a great place to build.
Europe has long outpaced the U.S. in setting ambitious climate targets. Since the late 2000s, EU member states have enacted both a continent-wide carbon pricing scheme as well as legally binding renewable energy goals — measures that have grown increasingly ambitious over time and now extend across most sectors of the economy.
So of course domestic climate tech companies facing funding and regulatory struggles are now looking to the EU to deploy some of their first projects. “This is about money,” Po Bronson, a managing director at the deep tech venture firm SOSV told me. “This is about lifelines. It’s about where you can build.” Last year, Bronson launched a new Ireland-based fund to support advanced biomanufacturing and decarbonization startups open to co-locating in the country as they scale into the European market. Thus far, the fund has invested in companies working to make emissions-free fertilizers, sustainable aviation fuel, and biofuel for heavy industry.
It’s still rare to launch a fund abroad, and yet a growing number of U.S. companies and investors are turning to Europe to pilot new technology and validate their concepts before scaling up in more capital-constrained domestic markets.
Europe’s emissions trading scheme — and the comparably stable policy environment that makes investors confident it will last — gives emergent climate tech a greater chance at being cost competitive with fossil fuels. For Bronson, this made building a climate tech portfolio somewhere in Europe somewhat of a no-brainer. “In Europe, the regulations were essentially 10 years ahead of where we wanted the Americas and the Asias to be,” Bronson told me. “There were stricter regulations with faster deadlines. And they meant it.”
Of the choice to locate in Ireland, SOSV is in many ways following a model piloted by tech giants Google, Microsoft, Apple, and Meta, all of which established an early presence in the country as a gateway to the broader European market. Given Ireland’s English-speaking population, low corporate tax rate, business-friendly regulations, and easy direct flights to the continent, it’s a sensible choice — though as Bronson acknowledged, not a move that a company successfully fundraising in the U.S. would make.
It can certainly be tricky to manage projects and teams across oceans, and U.S. founders often struggle to find overseas talent with the level of technical expertise and startup experience they’re accustomed to at home. But for the many startups struggling with the fundraising grind, pivoting to Europe can offer a pathway for survival.
It doesn’t hurt that natural gas — the chief rival for many clean energy technologies — is quite a bit more expensive in Europe, especially since Russia’s invasion of Ukraine in 2022. “A lot of our commercial focus today is in Europe because the policy framework is there in Europe, and the underlying economics of energy are very different there,” Raffi Garabedian, CEO of Electric Hydrogen, told me. The company builds electrolyzers that produce green hydrogen, a clean fuel that can replace natural gas in applications ranging from heavy industry to long-haul transport.
But because gas is so cheap in the U.S., the economics of the once-hyped “hydrogen economy” have gotten challenging as policy incentives have disappeared. With natural gas in Texas hovering around $3 per thousand cubic feet, clean hydrogen just can’t compete. But “you go to Spain, where renewable power prices are comparable to what they are in Texas, and yet natural gas is eight bucks — because it’s LNG and imported by pipeline — it’s a very different context,” Garabedian explained.
Two years ago, the EU adopted REDIII — the third revision of its Renewable Energy Directive — which raises the bloc’s binding renewable share target to 42.5% by 2030 and broadens its scope to cover more sectors, including emissions from industrial processes and buildings. It also sets new rules for hydrogen, stipulating that by 2030, at least 42% of the hydrogen used for industrial processes such as steel or chemical production must be green — that is, produced using renewable electricity — increasing to 60% by 2035.
Member countries are now working to transpose these continent-wide regulations into national law, a process Garabedian expects to be finalized by the end of this year or early next. Then, he told me, companies will aim to scale up their projects to ensure that they’re operational by the 2030 deadline. Considering construction timelines, that “brings you to next year or the year after for when we’re going to see offtakes signed at much larger volumes,” Garabedian explained. Most European green hydrogen projects are aiming to help decarbonize petroleum, petrochemical, and biofuel refining, of all things, by replacing hydrogen produced via natural gas.
But that timeline is certainly not a given. Despite its many incentives, Europe has not been immune to the rash of global hydrogen project cancellations driven by high costs and lower than expected demand. As of now, while there are plenty of clean hydrogen projects in the works, only a very small percent have secured binding offtake agreements, and many experts disagree with Garabedian’s view that such agreements are either practical or imminent. Either way, the next few years will be highly determinative.
The thermal battery company Rondo Energy is also looking to the continent for early deployment opportunities, the startup’s Chief Innovation Officer John O’Donnell told me, though it started off close to home. Just a few weeks ago, Rondo turned on its first major system at an oil field in Central California, where it replaced a natural gas-powered boiler with a battery that charges from an off-grid solar array and discharges heat directly to the facility.
Much of the company’s current project pipeline, however, is in Europe, where it’s planning to install its batteries at a chemical plant in Germany, an industrial park in Denmark, and a brewery in Portugal. One reason these countries are attractive is that their utilities and regulators have made it easier for Rondo’s system to secure electricity at wholesale prices, thus allowing the company to take advantage of off-peak renewable energy rates to charge when energy is cheapest. U.S. regulations don’t readily allow for that.
“Every single project there, we’re delivering energy at a lower cost,” O’Donnell told me. He too cited the high price of natural gas in Europe as a key competitive advantage, pointing to the crippling effect energy prices have had on the German chemical industry in particular. “There’s a slow motion apocalypse because of energy supply that’s underway,” he said.
Europe has certainly proven to be a more welcoming and productive policy environment than the U.S., particularly since May, when the Trump administration cut billions of dollars in grants for industrial decarbonization projects — including two that were supposed to incorporate Rondo’s tech. One $75 million grant was for the beverage company Diageo, which planned to install heat batteries to decarbonize its operations in Illinois and Kentucky. Another $375 million grant was for the chemicals company Eastman, which wanted to use Rondo’s batteries at a plastics recycling plant in Texas.
While nobody knew exactly what programs the Trump administration would target, John Tough, co-founder at the software-focused venture firm Energize Capital, told me he’s long understood what a second Trump presidency would mean for the sector. Even before election night, Tough noticed U.S. climate investors clamming up, and was already working to raise a $430 million fund largely backed by European limited partners. So while 90% of the capital in the firm’s first fund came from the U.S., just 40% of the capital in this latest fund does.
“The European groups — the pension funds, sovereign wealth funds, the governments — the conviction they have is so high in climate solutions that our branding message just landed better there,” Tough told me. He estimates that about a quarter to a third of the firm’s portfolio companies are based in Europe, with many generating a significant portion of their revenue from the European market.
But that doesn’t mean it was easy for Energize to convince European LPs to throw their weight behind this latest fund. Since the American market often sets the tone for the global investment atmosphere, there was understandable concern among potential participants about the performance of all climate-focused companies, Tough explained.
Ultimately however, he convinced them that “the data we’re seeing on the ground is not consistent with the rhetoric that can come from the White House.” The strong performance of Energize’s investments, he said, reveals that utility and industrial customers are very much still looking to build a more decentralized, digitized, and clean grid. “The traction of our portfolio is actually the best it’s ever been, at the exact same time that the [U.S.-based] LPs stopped focusing on the space,” Tough told me.
But Europe can’t be a panacea for all of U.S. climate tech’s woes. As many of the experts I talked to noted, while Europe provides a strong environment for trialing new tech, it often lags when it comes to scale. To be globally competitive, the companies that are turning to Europe during this period of turmoil will eventually need to bring down their costs enough to thrive in markets that lack generous incentives and mandates.
But if Europe — with its infinitely more consistent and definitively more supportive policy landscape — can serve as a test bed for demonstrating both the viability of novel climate solutions and the potential to drive down their costs, then it’s certainly time to go all in. Because for many sectors — from green hydrogen to thermal batteries and sustainable transportation fuels — the U.S. has simply given up.
Current conditions: The Philippines is facing yet another deadly cyclone as Super Typhoon Fung-wong makes landfall just days after Typhoon Kalmaegi • Northern Great Lakes states are preparing for as much as six inches of snow • Heavy rainfall is triggering flash floods in Uganda.
The United Nations’ annual climate conference officially started in Belém, Brazil, just a few hours ago. The 30th Conference of the Parties to the UN Framework Convention on Climate Change comes days after the close of the Leaders Summit, which I reported on last week, and takes place against the backdrop of the United States’ withdrawal from the Paris Agreement and a general pullback of worldwide ambitions for decarbonization. It will be the first COP in years to take place without a significant American presence, although more than 100 U.S. officials — including the governor of Wisconsin and the mayor of Phoenix — are traveling to Brazil for the event. But the Trump administration opted against sending a high-level official delegation.
“Somehow the reduction in enthusiasm of the Global North is showing that the Global South is moving,” Corrêa do Lago told reporters in Belém, according to The Guardian. “It is not just this year, it has been moving for years, but it did not have the exposure that it has now.”

New York regulators approved an underwater gas pipeline, reversing past decisions and teeing up what could be the first big policy fight between Governor Kathy Hochul and New York City Mayor-elect Zohran Mamdani. The state Department of Environmental Conservation issued what New York Focus described as crucial water permits for the Northeast Supply Enhancement project, a line connecting New York’s outer borough gas network to the fracking fields of Pennsylvania. The agency had previously rejected the project three times. The regulators also announced that the even larger Constitution pipeline between New York and New England would not go ahead. “We need to govern in reality,” Hochul said in a statement. “We are facing war against clean energy from Washington Republicans, including our New York delegation, which is why we have adopted an all-of-the-above approach that includes a continued commitment to renewables and nuclear power to ensure grid reliability and affordability.”
Mamdani stayed mostly mum on climate and energy policy during the campaign, as Heatmap’s Robinson Meyer wrote, though he did propose putting solar panels on school roofs and came out against the pipeline. While Mamdani seems unlikely to back the pipeline Hochul and President Donald Trump have championed, during a mayoral debate he expressed support for the governor’s plan to build a new nuclear plant upstate.
Late last week, Pine Gate Renewables became the largest clean energy developer yet to declare bankruptcy since Trump and Congress overhauled federal policy to quickly phase out tax credits for wind and solar projects. In its Chapter 11 filings, the North Carolina-based company blamed provisions in Trump’s One Big Beautiful Bill Act that put strict limits on the use of equipment from “foreign entities of concern,” such as China. “During the [Inflation Reduction Act] days, pretty much anyone was willing to lend capital against anyone building projects,” Pol Lezcano, director of energy and renewables at the real estate services and investment firm CBRE, told the Financial Times. “That results in developer pipelines that may or may not be realistic.”
Sign up to receive Heatmap AM in your inbox every morning:
The Southwest Power Pool’s board of directors approved an $8.6 billion slate of 50 transmission projects across the grid system’s 14 states. The improvements are set to help the grid meet what it expects to be doubled demand in the next 10 years. The investments are meant to harden the “backbone” of the grid, which the operator said “is at capacity and forecasted load growth will only exacerbate the existing strain,” Utility Dive reported. The grid operator also warned that “simply adding new generation will not resolve the challenges.”
Oil giant Shell and the industrial behemoth Mitsubishi agreed to provide up to $17 million to a startup that plans to build a pilot plant capable of pulling both carbon dioxide and water from the atmosphere. The funding would cover the direct air capture startup Avnos’ Project Cedar. The project could remove 3,000 metric tons of carbon from the atmosphere every year, along with 6,000 tons of clean freshwater. “What you’re seeing in Shell and Mitsubishi investing here is the opportunity to grow with us, to sort of come on this commercialization journey with us, to ultimately get to a place where we’re offering highly cost competitive CO2 removal credits in the market,” Will Kain, CEO of Avnos, told E&E News.
The private capital helps make up for some of the federal funding the Trump administration is expected to cut as part of broad slashes to climate-tech investments. But as Heatmap’s Emily Pontecorvo reported last month from north of the border, Canada is developing into a hot zone of DAC development.
The future of remote sensing will belong to China. At least, that’s what the research suggests. This broad category involves the use of technologies such as lasers, imagery, and hyperspectral imagery, and is key to everything from autonomous driving to climate monitoring. At least 47% of studies in peer-reviewed publications on remote sensing now originate in China, while just 9% come from the United States, according to the New York University paper. That research clout is turning into an economic advantage. China now accounts for the majority of remote sensing patents filed worldwide. “This represents one of the most significant shifts in global technological leadership in recent history,” Debra Laefer, a professor in the NYU Tandon Civil and Urban Engineering program and the lead author, said in a statement.
The company is betting its unique vanadium-free electrolyte will make it cost-competitive with lithium-ion.
In a year marked by the rise and fall of battery companies in the U.S., one Bay Area startup thinks it can break through with a twist on a well-established technology: flow batteries. Unlike lithium-ion cells, flow batteries store liquid electrolytes in external tanks. While the system is bulkier and traditionally costlier than lithium-ion, it also offers significantly longer cycle life, the ability for long-duration energy storage, and a virtually impeccable safety profile.
Now this startup, Quino Energy, says it’s developed an electrolyte chemistry that will allow it to compete with lithium-ion on cost while retaining all the typical benefits of flow batteries. While flow batteries have already achieved relatively widespread adoption in the Chinese market, Quino is looking to India for its initial deployments. Today, the company announced that it’s raised $10 million from the Hyderabad-based sustainable energy company Atri Energy Transitions to demonstrate and scale its tech in the country.
“Obviously some Trump administration policies have weakened the business case for renewables and therefore also storage,” Eugene Beh, Quino’s founder and CEO, told me when I asked what it was like to fundraise in this environment. “But it’s actually outside the U.S., where the appetite still remains very strong.”
The deployment of battery energy storage in India lags far behind the pace of renewables adoption, presenting both a challenge and an opportunity for the sector. “India does have an opportunity to leapfrog into a more flexible, resilient, and sustainable power system,” Shreyas Shende, a senior research associate at Johns Hopkins’ Net Zero Industrial Policy Lab, told me. The government appears eager to make it happen, setting ambitious targets and offering ample incentives for tech-neutral battery storage deployments, as it looks to lean into novel technologies.
“Indian policymakers have been trying to double down on the R&D and innovation landscape because they’re trying to figure out, how do you reduce dependence on these lithium ion batteries?” Shende said. China dominates the global lithium-ion market, and also has a fractious geopolitical relationship with India, So much like the U.S., India is eager to reduce its dependence on Chinese imports. “Anything that helps you move away from that would only be welcome as long as there’s cost compatibility,” he added
Beh told me that India also presents a natural market for Quino’s expansion, in large part because the key raw material for its proprietary electrolyte chemistry — a clothing dye derived from coal tar — is primarily produced in China and India. But with tariffs and other trade barriers, China poses a much more challenging environment to work in or sell from these days, making the Indian market a simpler choice.
Quino’s dye-based electrolyte is designed to be significantly cheaper than the industry standard, which relies on the element vanadium dissolved in an acidic solution. In vanadium flow batteries, the electrolyte alone can account for roughly 70% of the product’s total cost, Beh said. “We’re using exactly the same hardware as what the vanadium flow battery manufacturers are doing,” he told me minus the most expensive part. “Instead, we use our organic electrolyte in place of vanadium, which will be about one quarter of the cost.”
Like many other companies these days, Beh views data centers as a key market for Quino’s tech — not just because that’s where the money’s at, but also due to one of flow batteries’ core advantages: their extremely long cycle lives. While lithium-ion energy storage systems can only complete from 3,000 to 5,000 cycles before losing 20% or more of their capacity, with flow batteries, the number of cycles doesn’t correlate with longevity at all. That’s because their liquid-based chemistry allows them to charge and discharge without physically stressing the electrodes.
That’s a key advantage for AI data centers, which tend to have spiky usage patterns determined by the time of day and events that trigger surges in web traffic. Many baseload power sources can’t ramp quickly enough to meet spikes in demand, and gas peaker plants are expensive. That makes batteries a great option — especially those that can respond to fluctuations by cycling multiple times per day without degrading their performance.
The company hasn’t announced any partnerships with data center operators to date — though hyperscalers are certainly investing in the Indian market. First up will be getting the company’s demonstration plants online in both California and India. Quino already operates a 100-kilowatt-hour pilot facility near Buffalo, New York, and was awarded a $10 million grant from the California Energy Commission and a $5 million grant from the Department of Energy this year to deploy a larger, 5-megawatt-hour battery at a regional health care center in Southern California. Beh expects that to be operational by the end of 2027.
But its plans in India are both more ambitious and nearer-term. In partnership with Atri, the company plans to build a 150- to 200-megawatt-hour electrolyte production facility, which Beh says should come online next year. With less government funding in the mix, there’s simply less bureaucracy to navigate, he explained. Further streamlining the process is the fact that Atri owns the site where the plant will be built. “Obviously if you have a motivated site owner who’s also an investor in you, then things will go a lot faster,” Beh told me.
The goal for this facility is to enable production of a battery that’s cost-competitive with vanadium flow batteries. “That ought to enable us to enter into a virtuous cycle, where we make something cheaper than vanadium, people doing vanadium will switch to us, that drives more demand, and the cost goes down further,” Beh told me. Then, once the company scales to roughly a gigawatt-hour of annual production, he expects it will be able to offer batteries with a capital cost roughly 30% lower than lithium-ion energy storage systems.
If it achieves that target, in theory at least, the Indian market will be ready. A recent analysis estimates that the country will need 61 gigawatts of energy storage capacity by 2030 to support its goal of 500 gigawatts of clean power, rising to 97 gigawatts by 2032. “If battery prices don’t fall, I think the focus will be towards pumped hydro,” Shende told me. That’s where the vast majority of India’s energy storage comes from today. “But in case they do fall, I think battery storage will lead the way.”
The hope is that by the time Quino is producing at scale overseas, demand and investor interest will be strong enough to support a large domestic manufacturing plant as well. “In the U.S., it feels like a lot of investment attention just turned to AI,” Beh told me, explaining that investors are taking a “wait and see” approach to energy infrastructure such as Quino. But he doesn’t see that lasting. “I think this mega-trend of how we generate and use electricity is just not going away.”