You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
An interview with Dave White, a water expert at Arizona State University, about what a breakthrough along the Colorado River really means

Arizona, California, and Nevada announced a deal on Monday to reduce the amount of Colorado River water they use, ahead of a bigger overhaul planned for 2026. The agreement is crucial, likely keeping the river from reaching dangerously low levels that would have put water supplies for major cities and agricultural regions at risk. But Colorado River water policy is often knotty and confusing, and it can be difficult to wrap one’s head around just what kind of impact deals like this can have.
To that end, I called up Dave White, the director of the Global Institute of Sustainability and Innovation at Arizona State University and chair of the City of Phoenix’s Water/Wastewater Rate Advisory Committee. He explained how things work now, what the deal means, and how he’d like to see things change in the future — particularly in 2026, when the current set of water allocation rules expire and are replaced. Our conversation has been edited for length and clarity.
There are more than 100 years of law policy agreements, which we collectively call the law of the river. But the most relevant is an agreement called the 2007 Interim Operating Guidelines for the Coordinated Operations of Lake Powell and Lake Mead. That’s the long name, but we typically call it the 2007 agreement.
That agreement created a set of rules that, as the name indicates, helped to guide the operations of Lake Powell and Lake Mead. And along with subsequent agreements, particularly the drought contingency plans in 2019, it has guided the management of the reservoir system on the Colorado River and set forth the allocations managing the flow to the lower basin states.
Right now we’re in the time period between when the interim guidelines were established in 2007, updated with drought contingency plans in 2019, and when we’ll hit a deadline for a new set of operating guidelines in 2026. And so all of this is trying to manage the risk from the reduced water supply on the Colorado River and to help reestablish a balance in the supply-demand equation of water in an era of megadrought, climate change, and high agricultural demand and increasing municipal demand.
The first thing that’s important for folks to realize is that this is a proposal. What was announced was essentially an agreement among the lower basin states — California, Nevada and Arizona — to propose a plan to reduce demand in those states. It will need to go through additional steps to identify more specifics, and then this proposal ultimately will need to be adopted by the seven affected states and then endorsed by the Bureau of Reclamation.
What the proposal does is lay out a framework to reduce water demand in the lower basin by about 3 million acre feet. And for context, one acre foot is about 325,000 gallons of water, or the amount of water used by two to four homes in the western United States per year. That reduction would be taken across multiple sectors: agriculture, tribal communities, and some municipal or urban users, most notably the Metropolitan Water District of California, which is the Los Angeles area.
The idea is to reduce demand through voluntary conservation. And then part of the package is compensation for some of that voluntary conservation in the form of funding from the federal government through the Inflation Reduction Act to the tune of about $1.2 billion. That is an absolutely critical part of the of the story: the Inflation Reduction Act has really enabled this breakthrough, because of the federal funding for those voluntary conservation measures.
Another critical part of the story was that recently the Bureau of Reclamation released what’s called a draft environmental impact statement, and it presented a couple of alternatives to the states for consideration. Those proposals gave us kind of a federal government’s perspective on the framework moving forward. It was essentially a classic negotiating tactic, where the Bureau of Reclamation said, “look, you states have yet to reach a consensus agreement, so we’re going to lay out a plan,” and, as is often the case, everybody was unhappy with parts of that plan.
That helped to stimulate additional negotiations and bring California, in particular, more to the table. So it’s a very important moment in time because it represents a turning point in multi-year negotiations between the states. Importantly, it lays out a path forward for a consensus agreement that is driven by the states as opposed to being imposed upon them by the federal government. So, we’re talking about a breakthrough in negotiations that led to a three-state proposal.
Well, that’s what we’re waiting to see. We don’t have all of those details yet.
Legally, the Bureau of Reclamation needs to go through this process, weigh the different alternatives, evaluate it, identify what they would call a preferred alternative, and then ultimately make a determination. But the Bureau of Reclamation has certainly indicated there’s initial support for this proposal and that the funding would be made available.
We don’t know who specifically would receive how much of that funding but we do know that it will be agriculturalists (essentially farmers and ranchers), some municipalities such as the Metropolitan Water District of California, and some Native American communities.
We are still engaged in what I would call incremental adaptation. This is adapting to the rapidly changing conditions that are presented by this 22-year-long drought, the so-called megadrought in the region. We are also adapting to the impacts of climate change. If you go back, you know, the 2007 agreement was an incremental update to deal with a very significant risk of shortage on the Colorado River system in 2000 to 2005. We had the drought contingency planning process in 2019 that was another incremental adaptation at that time that was meant to get us to 2026, when the current guidelines expire. Environmental conditions continue to rapidly change, while the demand side continues to stay high. And while we’ve made a number of efficiency gains and voluntary reductions, the river is simply over-allocated for the flow that we have seen, especially since the turn of the millennium.
So we’ve been engaging in a series of incremental adaptations. Now, there’s nothing wrong with that. That’s a very smart strategy as you move along, right? You’re incrementally adapting your policy to reflect the changing environmental and social conditions. This is another important incremental adaptation that will hopefully allow us to keep working towards the 2026 guidelines.
What I and many others argue is that we need a more transformative adaptation, we need a more significant restructuring. Now, it’s difficult to do that right now in the midst of a very short-term risk. But eventually, between now and 2026, we need to address some of the structural imbalance, or deficit, in the river. We have over-allocated the river in this era of increasing drought and climate change.
We’ve got to restructure the demand over the course of the next several years, and that’s going to require more transformational kinds of changes. But I also want to point out that’s not limited to reducing demand, right? You can do that through dramatic increases in efficiency. We can produce the same units of product, whether that be food or microchips or homes or businesses, with significantly less water.
The most effective strategy is efficiency. It’s the cheapest. It does not require significantly new infrastructure or new water augmentation. And there are lots of good stories out there, in creating more efficiencies and creating more flexible policies and more adaptability within the way that we manage water. We’ve got to sort of wring every cool new approach we can out of the system.
One that I think is really important is that the city of Phoenix and several of its regional partners in central Arizona are in the planning stages of moving towards an advanced water-purification process. What that means is it would allow the cities to pool their wastewater resources, their effluent, and then be able to treat that water through advanced water purification so we can reuse that water for municipal use. We call that direct, potable reuse of the water.
Central Arizona is incredibly efficient, we reuse about 90% of all the wastewater that we produce in the central Arizona region for power production, for urban irrigation, for agriculture, etc. But we can actually reuse that water to support households and businesses. We can then use that water again. Some of it is consumed by people, but basically cycling the water through the city as many times as possible reduces the need for new raw water.
So the current proposal that’s in the process of being developed by the City of Phoenix Water Services Department is for advanced water purification that, according to the current estimates, would produce about 60,000 gallons of water a day for City of Phoenix residents from wastewater. And so, that’s one way we can be much more efficient in recycling and reusing our water.
I do think it gets to the need for greater public understanding and then, you know, individual and collective action. In single family residential households, for example, 50% or more, on average, of the water use is outside the home for things like residential landscaping and swimming pools. In the Phoenix area, we’ve seen a really significant trend in reducing water demand inside single family homes, thanks to technologies like low water-use toilets and more efficient washing machines and dishwashers and so on. The next frontier is getting more progressive with the way we manage residential landscaping water. And that's something that every individual household can do.
The Southern Nevada Water Authority, the Las Vegas Regional Authority, has been really at the forefront of these kinds of strategies with turf buyback programs, incentivizing homeowners, and creating all sorts of both incentives and policies to reduce that outdoor residential demand. And that’s something where individual households can be empowered.
No, I really don’t. It’s about a sort of risk management in the short term, and then crafting new policy approaches and new management strategies over the long term. So I don’t think these get in the way of each other. The 2019 agreement essentially bought us some time, and this round of proposals and anticipated agreements will continue to buy us some time.
Do I think we need more adaptation, and more significant changes? Absolutely. But I would never criticize these incremental plans, because they’re absolutely necessary to manage short-term risk.
Without these actions, there was a plausible scenario where levels in the reservoirs could drop below the minimum power pool, meaning we wouldn’t be able to create power out of the Hoover Dam. In [the Bureau of Reclamation’s] 24-month studies, we began to see scenarios in which the lake levels dropped below the intakes, meaning we wouldn’t be able to deliver Colorado River water whatsoever to the states.
When you start to see these highly undesirable scenarios where you lose the ability to produce power, you potentially even lose the ability to deliver any water at all from the Colorado system to Arizona, California, or Nevada, you know you’ve got to act and engage in short-term risk management.
The risk that we’ve always seen is that you get some relief from the kind of very strong winter precipitation in the Rocky Mountains and in California that we had this year. But as a colleague says, we cannot let one good winter take the pressure off. I never want to root against good news, and the winter precipitation and the new proposal and potential agreements are good news. But you got to keep the pressure on and keep the emphasis on the long-term strategies.
[Laughs] Yes.
Well, I think you can look at it both ways. Yes, there was the intention that the 2019 plans would get us to 2026. Turns out the 2019 plans got us through 2022. That’s just the reality we’re in. Do I wish the 2019 plans would have gotten us to 2026? Yes. But without the 2019 plans, we would have been at risk of minimum power pool levels even earlier.
I was hopeful the 2007 plans would get us to 2026. But the reality is that the climate is changing, the drought has just been incredibly persistent. I mean, we now know from looking at reconstructions of the past climate that this 22-year period is the driest period in our region in the last 800 years for certain, and very likely in the last 1,200 years. That’s an exceptional period of drought. And so, by some measures, you know, it’s pretty remarkable what the water management community has done to manage the risk without significant disruption to the region. So in some ways, it’s a success story.
The single most important thing everyone recognizes is that we really need to chart a new path forward for agriculture. Particularly for agriculture in the lower basin, and even more specifically for non-food forage crops in the lower basin.
We still use two-thirds or more of our water in the lower basin for agriculture, and most of that is used for forage crops, like alfalfa, which feed livestock. So we very much need to restructure the agricultural sector in the lower basin and think about prioritization of certain types of agriculture in certain locations. And importantly, we need to work with agricultural communities, with landowners and businesses, to help them transition to a future that recognizes there’s less water available. And, you know, this is the challenge that we face: How do we make an intentional, thoughtful, supportive transition to a new, more efficient, and more appropriate type of agriculture in the West?
This region is in an amazing region to grow alfalfa if you have water. And so, there’s lots of rational choices that were made along the way. But in an era of significantly reduced water availability, it is simply not sustainable for us to continue to use that much of our available water for agriculture, and in particular for forage crops mostly to support cattle. And so this has to change.
I fully recognize, though, that these are private property rights, and there needs to be a process for this. We can’t just simply have a situation like what we saw in the Midwest where we just move all of our manufacturing overseas and abandon entire swaths of the country. We have to think about how we can help, whether it’s through compensation, community planning, capacity building, job transitions, etc. But that’s the biggest part of the solution. We need to be very thoughtful about that.
I think one of the key things we really need to get into the planning process [for 2026] is greater adaptability and greater flexibility so we’re able to respond to changing conditions. Under the current guidelines there is a priority rights process where we would have [hypothetically] seen the reduction of essentially all — 100% — of Arizona’s allocation of the Colorado River, before any of California’s rights were reduced. But it seems implausible to eliminate the Colorado River water supply to Phoenix, which is the fifth largest city in the country. These are the third rails of water politics. We have to rethink the way that these water allocation decisions are made, and we’ve got to be much more flexible, much more adaptable, and really think about how we can respond to climate and water conditions.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Rob takes Jesse through our battery of questions.
Every year, Heatmap asks dozens of climate scientists, officials, and business leaders the same set of questions. It’s an act of temperature-taking we call our Insiders Survey — and our 2026 edition is live now.
In this week’s Shift Key episode, Rob puts Jesse through the survey wringer. What is the most exciting climate tech company? Are data centers slowing down decarbonization? And will a country attempt the global deployment of solar radiation management within the next decade? It’s a fun one! Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: Next question — you have to pick one, and then you’ll get a free response section. Do you think AI and data centers energy needs are significantly slowing down decarbonization, yes or no?
Jesse Jenkins: Significantly. Yeah, I guess significantly would … yes, I think so. I think in general, the challenge we have with decarbonization is we have to add new, clean supplies of energy faster than demand growth. And so, in order to make progress on existing emissions, you have to exceed the demand growth, meet all of that growth with clean resources, and then start to drive down emissions.
If you look at what we’ve talked about — are China’s emissions peaking, or global emissions peaking? I mean, that really is a game. It’s a race between how fast we can add clean supply and how fast demand for energy’s growing. And so in the power sector in particular, an area where we’ve made the most progress in recent years in cutting emissions, now having a large, and rapid growth in electricity demand for a whole new sector of the economy — and one that doesn’t directly contribute to decarbonization, like, say, in contrast to electric vehicles or electrifying heating —certainly makes things harder. It just makes that you have to run that race even faster.
I would say in the U.S. context in particular, in a combination of the Trump policy environment, we are not keeping pace, right? We are not going to be able to both meet the large demand growth and eat into the substantial remaining emissions that we have from coal and gas in our power sector. And in particular, I think we’re going to see a lot more coal generation over the next decade than we would’ve otherwise without both AI and without the repeal of the Biden-era EPA regulations, which were going to really drive the entire coal fleet into a moment of truth, right? Are they gonna retrofit for carbon capture? Are they going to retire? Was basically their option, by 2035.
And so without that, we still have on the order of 150 gigawatts of coal-fired power plants in the United States, and many of those were on the way out, and I think they’re getting a second lease on life because of the fact that demand for energy and particularly capacity are growing so rapidly that a lot of them are now saying, Hey, you know what, we can actually make quite a bit of money if we stick around for another 5, 10, 15 years. So yeah, I’d say that’s significantly harder.
That isn’t an indictment to say we shouldn’t do AI. It’s happening. It’s valuable, and we need to meet as much, if not all of that growth with clean energy. But then we still have to try to go faster, and that’s the key.
Mentioned:
This year’s Heatmap Insiders Survey
Last year’s Heatmap Insiders Survey
The best PDF Jesse read this year: Flexible Data Centers: A Faster, More Affordable Path to Power
The best PDF Rob read this year: George Marshall’s Guide to Merleau-Ponty's Phenomenology of Perception
This episode of Shift Key is sponsored by …
Heatmap Pro brings all of our research, reporting, and insights down to the local level. The software platform tracks all local opposition to clean energy and data centers, forecasts community sentiment, and guides data-driven engagement campaigns. Book a demo today to see the premier intelligence platform for project permitting and community engagement.
Music for Shift Key is by Adam Kromelow.
They still want to decarbonize, but they’re over the jargon.
Where does the fight to decarbonize the global economy go from here? The past 12 months, after all, have been bleak. Donald Trump has pulled the United States out of the Paris Agreement (again) and is trying to leave a precursor United Nations climate treaty, as well. He ripped out half the Inflation Reduction Act, sidetracked the Environmental Protection Administration, and rechristened the Energy Department’s in-house bank in the name of “energy dominance.” Even nonpartisan weather research — like that conducted by the National Center for Atmospheric Research — is getting shut down by Trump’s ideologues. And in the days before we went to press, Trump invaded Venezuela with the explicit goal (he claims) of taking its oil.
Abroad, the picture hardly seems rosier. China’s new climate pledge struck many observers as underwhelming. Mark Carney, who once led the effort to decarbonize global finance, won Canada’s premiership after promising to lift parts of that country’s carbon tax — then struck a “grand bargain” with fossiliferous Alberta. Even Europe seems to dither between its climate goals, its economic security, and the need for faster growth.
Now would be a good time, we thought, for an industry-wide check-in. So we called up 55 of the most discerning and often disputatious voices in climate and clean energy — the scientists, researchers, innovators, and reformers who are already shaping our climate future. Some of them led the Biden administration’s climate policy from within the White House; others are harsh or heterodox critics of mainstream environmentalism. And a few more are on the front lines right now, tasked with responding to Trump’s policies from the halls of Congress — or the ivory minarets of academia.
We asked them all the same questions, including: Which key decarbonization technology is not ready for primetime? Who in the Trump administration has been the worst for decarbonization? And how hot is the planet set to get in 2100, really? (Among other queries.) Their answers — as summarized and tabulated by my colleagues — are available in these pages.
You can see whether insiders think data centers are slowing down decarbonization and what folks have learned (or, at least, say they’ve learned) from the repeal of clean energy tax credits in the Inflation Reduction Act.
But from many different respondents, a mood emerged: a kind of exhaustion with “climate” as the right frame through which to understand the fractious mixture of electrification, pollution reduction, clean energy development, and other goals that people who care about climate change actually pursue. When we asked what piece of climate jargon people would most like to ban, we expected most answers to dwell on the various colors of hydrogen (green, blue, orange, chartreuse), perhaps, or the alphabet soup of acronyms around carbon removal (CDR, DAC, CCS, CCUS, MRV). Instead, we got:
“‘Climate.’ Literally the word climate, I would just get rid of it completely,” one venture capitalist told us. “I would love to see people not use 'climate change' as a predominant way to talk to people about a global challenge like this,” seconded a former Washington official. “And who knows what a ‘greenhouse gas emission’ is in the real world?” A lobbyist agreed: “Climate change, unfortunately, has become too politicized … I’d rather talk about decarbonization than climate change.”
Not everyone was as willing to shift to decarbonization, but most welcomed some form of specificity. “I’ve always tried to reframe climate change to be more personal and to recognize it is literally the biggest health challenge of our lives,” the former official said. The VC said we should “get back to the basics of, are you in the energy business? Are you in the agriculture business? Are you in transportation, logistics, manufacturing?”
“You're in a business,” they added, “there is no climate business.”
Not everyone hated “climate” quite as much — but others mentioned a phrase including the word. One think tanker wanted to nix “climate emergency.” Another scholar said: “I think the ‘climate justice’ term — not the idea — but I think the term got spread so widely that it became kind of difficult to understand what it was even referring to.” And one climate scientist didn’t have a problem with climate change, per se, but did say that people should pare back how they discuss it and back off “the notion that climate change will result in human extinction, or the sudden and imminent end to human civilization.”
There were other points of agreement. Four people wanted to ban “net zero” or “carbon neutrality.” One scientist said activists should back off fossil gas — “I know we’re always trying to try convince people of something, but, like, the entire world calls it ’natural gas’” — and another scientist said that they wished people would stop “micromanaging” language: “People continually changing jargon to try and find the magic words that make something different than it is — that annoys me.”
Two more academics added they wish to banish discussion of “overshoot”: “It’s not clear if it's referring to temperatures or emissions — I just don't think it's a helpful frame for thinking about the problem.”
“Unit economics,” “greenwashing,” and — yes — the whole spectrum of hydrogen colors came in for a lashing. But perhaps the most distinctive ban suggestion came from Todd Stern, the former chief U.S. climate diplomat, who negotiated the Kyoto Protocol and the Paris Agreement.
“I hate it when people say ’are you going to COP?’” he told me, referring to the United Nations’ annual climate summit, officially known as the Conference of the Parties. His issue wasn’t calling it “COP,” he clarified. It was dropping the definite article.
“The way I see it, no one has the right to suddenly become such intimate pals with ‘COP.’ You go to the ball game or the conference or what have you. And you go to ‘the COP,’” he said. “I am clearly losing this battle, but no one will ever hear me drop the ‘the.’”
Now, since I talked to Stern, the United States has moved to drop the COP entirely — with or without the “the” — because Trump took us out of the climate treaty under whose aegis the COP is held. But precision still counts, even in unfriendly times. And throughout the rest of this package, you’ll find insiders trying to find a path forward in thoughtful, insightful, and precise ways.
You’ll also find them remaining surprisingly upbeat — and even more optimistic, in some ways, than they were last year. Twelve months ago, 30% of our insider panel thought China would peak its emissions in the 2020s; this year, a plurality said the peak would come this decade. Roughly the same share of respondents this year as last year thought the U.S. would hit net zero in the 2060s. Trump might be setting back American climate action in the near term. But some of the most important long-term trends remain unchanged.
OUR PANEL INCLUDED… Gavin Schmidt, director of the NASA Goddard Institute for Space Studies | Ken Caldeira, senior scientist emeritus at the Carnegie Institution for Science and visiting scholar at Stanford University | Kate Marvel, research physicist at the NASA Goddard Institute for Space Studies | Holly Jean Buck, associate professor of environment and sustainability at the University at Buffalo | Kim Cobb, climate scientist and director of the Institute at Brown for Environment and Society | Jennifer Wilcox, chemical engineering professor at the University of Pennsylvania and former U.S. Assistant Secretary for Fossil Energy and Carbon Management | Michael Greenstone, economist and director of the Energy Policy Institute at the University of Chicago | Solomon Hsiang, professor of global environmental policy at Stanford University | Chris Bataille, global fellow at Columbia University’s Center on Global Energy Policy | Danny Cullenward, senior fellow at the Kleinman Center for Energy Policy at the University of Pennsylvania | J. Mijin Cha, environmental studies professor at UC Santa Cruz and fellow at Cornell University’s Climate Jobs Institute | Lynne Kiesling, director of the Institute for Regulatory Law and Economics at Northwestern University | Daniel Swain, climate scientist at the University of California Agriculture and Natural Resources | Emily Grubert, sustainable energy policy professor at the University of Notre Dame | Jon Norman, president of Hydrostor | Chris Creed, managing partner at Galvanize Climate Solutions | Amy Heart, senior vice president of public policy at Sunrun | Kate Brandt, chief sustainability officer at Google | Sophie Purdom, managing partner at Planeteer Capital and co-founder of CTVC | Lara Pierpoint, managing director at Trellis Climate | Andrew Beebe, managing director at Obvious Ventures | Gabriel Kra, managing director and co-founder of Prelude Ventures | Joe Goodman, managing partner and co-founder of VoLo Earth Ventures | Erika Reinhardt, executive director and co-founder of Spark Climate Solutions | Dawn Lippert, founder and CEO of Elemental Impact and general partner at Earthshot Ventures | Rajesh Swaminathan, partner at Khosla Ventures | Rob Davies, CEO of Sublime Systems | John Arnold, philanthropist and co-founder of Arnold Ventures | Gabe Kleinman, operating partner at Emerson Collective | Amy Duffuor, co-founder and general partner at Azolla Ventures | Amy Francetic, managing general partner and founder of Buoyant Ventures | Tom Chi, founding partner at At One Ventures | Francis O’Sullivan, managing director at S2G Investments | Cooper Rinzler, partner at Breakthrough Energy Ventures | Gina McCarthy, former administrator of the U.S. Environmental Protection Agency | Neil Chatterjee, former commissioner of the Federal Energy Regulatory Commission | Representative Scott Peters, member of the U.S. House of Representatives | Todd Stern, former U.S. special envoy for climate change | Representative Sean Casten, member of the U.S. House of Representatives | Representative Mike Levin, member of the U.S. House of Representatives | Zeke Hausfather, climate research lead at Stripe and research scientist at Berkeley Earth | Shuchi Talati, founder and executive director of the Alliance for Just Deliberation on Solar Geoengineering | Nat Bullard, co-founder of Halcyon | Bill McKibben, environmentalist and founder of 350.org | Ilaria Mazzocco, senior fellow at the Center for Strategic and International Studies | Leah Stokes, professor of environmental politics at UC Santa Barbara | Noah Kaufman, senior research scholar at Columbia University’s Center on Global Energy Policy | Arvind Ravikumar, energy systems professor at the University of Texas at Austin | Jessica Green, political scientist at the University of Toronto | Jonas Nahm, energy policy professor at Johns Hopkins SAIS | Armond Cohen, executive director of the Clean Air Task Force | Costa Samaras, director of the Scott Institute for Energy Innovation at Carnegie Mellon University | John Larsen, partner at Rhodium Group | Alex Trembath, executive director of the Breakthrough Institute | Alex Flint, executive director of the Alliance for Market Solutions
The Heatmap Insiders Survey of 55 invited expert respondents was conducted by Heatmap News reporters during November and December 2025. Responses were collected via phone interviews. All participants were given the opportunity to record responses anonymously. Not all respondents answered all questions.
Plus, which is the best hyperscaler on climate — and which is the worst?
The biggest story in energy right now is data centers.
After decades of slow load growth, forecasters are almost competing with each other to predict the most eye-popping figure for how much new electricity demand data centers will add to the grid. And with the existing electricity system with its backbone of natural gas, more data centers could mean higher emissions.
Hyperscalers with sustainability goals are already reporting higher emissions, and technology companies are telling investors that they plan to invest hundreds of billions, if not trillions of dollars, into new data centers, increasingly at gigawatt scale.
And yet when we asked our Heatmap survey participants “Do you think AI and data centers’ energy needs are significantly slowing down decarbonization?” only about 34% said they would, compared to 66% who said they wouldn’t.
There were some intriguing differences between different types of respondents. Among our “innovator” respondents — venture capitalists, founders, and executives working at climate tech startups — the overwhelming majority said that AI and data centers are not slowing down decarbonization. “I think it’s the inverse — I think we want to launch the next generation of technologies when there’s demand growth and opportunity to sell into a slightly higher priced, non-commoditized market,” Joe Goodman co-founder and managing partner at VoLo Earth Ventures, told us.
Not everyone in Silicon Valley is so optimistic, however. “I think in a different political environment, it may have been a true accelerant,” one VC told us. “But in this political environment, it’s a true albatross because it’s creating so many more emissions. It’s creating so much stress on the grid. We’re not deploying the kinds of solutions that would be effective."
Scientists were least in agreement on the question. While only 47% of scientists thought the growth of data centers would significantly slow down decarbonization, most of the pessimistic camp was in the social sciences. In total, over 62% of the physical scientists we surveyed thought data centers weren’t slowing down decarbonization, compared to a third of social scientists.
Michael Greenstone, a University of Chicago economist, told us he didn’t see data centers and artificial intelligence as any different from any other use of energy. “I also think air conditioning and lighting, computing, and 57,000 other uses of electricity are slowing down decarbonization,” he said. The real answer is the world is not trying to minimize climate change.”
Mijin Cha, an assistant professor of environment studies at the University of California Santa Cruz, was even more gloomy, telling us, “Not only do I think it’s slowing down decarbonization, I think it is permanently extending the life of fossil fuels, especially as it is now unmitigated growth.”
Some took issue with the premise of the question, expressing skepticism of the entire AI industry. “I’m actually of the opinion that most of the AI and data center plans are a massive bubble,” a scientist told us. “And so, are there plans that would be disruptive to emissions? Yes. Are they actually doing anything to emissions yet? Not obvious.”
We also asked respondents to name the “best” and “worst” hyperscalers, large technology companies pursuing the data center buildout. Many of these companies have some kind of renewables or sustainability goal, but there are meaningful differences among them. Google and Microsoft look to match their emissions with non-carbon-power generation in the same geographic area and at the same time. The approach used by Meta and Amazon, on the other hand, is to develop renewable projects that have the biggest “bang for the buck” on global emissions by siting them in areas with high emissions that the renewable generation can be said to displace.
Among our respondents, the 24/7 “time and place” approach is the clear winner.
Google was the “best” pick for 19 respondents, including six who said “Google and Microsoft.” By contrast, Amazon and Meta had just three votes combined.
As for the “worst,” there was no clear consensus, although two respondents from the social sciences picked “everyone besides Microsoft and Google” and “everyone but Google and Microsoft.” Another one told us, “The best is a tie between Microsoft and Google. Everyone else is in the bottom category.”
A third social scientist summed it up even more pungently. “Google is the best, Meta is the worst. Evil corporation” — though with more expletives than that.
The Heatmap Insiders Survey of 55 invited expert respondents was conducted by Heatmap News reporters during November and December 2025. Responses were collected via phone interviews. All participants were given the opportunity to record responses anonymously. Not all respondents answered all questions.