You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
On new 2030 projections, stronger hurricanes, and green hydrogen
Current conditions: Rare rainstorms have flooded parts of the Sahara Desert • Storm Kirk is expected to bring flooding to parts of northern France • Wyoming’s 75,000-acre Elk Fire has been burning for nearly two weeks.
Hurricane Milton, currently a Category 5 storm, is expected to make landfall this evening near Tampa, Florida, as a Category 4 hurricane with 130 mph winds, according to the National Weather Service. It will bring between 10 and 15 feet of storm surge (possibly more, depending on which forecast you’re following), plus tornadoes. The conditions have already started to deteriorate and will continue to do so throughout the day. “There is no recent precedent for a major hurricane to take this path toward Florida,” said AccuWeather Director of Forecasting Operations Dan DePodwin. “This is an increasing significant risk of devastating, catastrophic impacts to this region.”
AccuWeather
Climate change caused by the burning of fossil fuels almost certainly made Hurricane Milton and Hurricane Helene a lot worse, according to two new rapid attribution studies by World Weather Attribution and Climate Central. A storm like Hurricane Helene is about two-and-a-half times more likely in the region today compared to what would be expected in a “cooler pre-industrial climate,” WWA found. That means Helene, the kind of storm one would expect to see once every 130 years on average, is now expected to develop at a rate of about once every 53 years. Separately, Climate Central looked at Hurricane Milton, which already has the distinction of being the fifth strongest Atlantic storm on record. The nonprofit’s findings show that Milton’s rapid intensification — one of the fastest and most powerful instances of the phenomenon in history — is primarily due to high sea surface temperatures in the weeks before Milton developed, which was made at least 400 times more likely by climate change and up to 800 times more likely.
“While hurricane seasons eventually end, global temperatures haven’t stopped going up,” wrote Heatmap’s Jeva Lange. “That, perhaps, is the more terrifying subtext of the attribution studies: There will be more Miltons and Helenes.”
There are several big energy reports out this week, and taken together, their findings tell a nuanced story of an energy transition that’s well underway, but still moving too slowly. Let’s start with the big one: The International Energy Agency’s Renewables 2024 report, published this morning. It says that the world is on track to add 5,500 gigawatts of new clean energy capacity by 2030, 80% of which will come from solar PV alone. That means renewables will account for half of global electricity generation by the end of the decade.
IEA
While this is huge progress (the report notes that 5,500 GW is roughly equal the power capacity of China, the European Union, India, and the U.S. combined), it is not enough to meet the COP28 goal of tripling renewable capacity by 2030. But! The IEA stresses that it is “entirely possible” to meet this target if governments can get their acts together, set bold new emission reduction targets in the coming months, and work together to lower the energy transition costs for poorer countries. “The market can deliver on renewables, and now governments need to prioritize investing in storage, grids, and other forms of clean flexibility to enable this transformation,” said Dave Jones, director of global insights at energy think tank Ember. “The next half decade is going to be one heck of a ride.”
So, that’s renewables. Let’s look at what all this means for emissions and, most importantly, warming.
An energy transition report published this morning from Norwegian risk management company DNV concludes, rather remarkably, that energy-related emissions are set to peak this year and begin a steady decline thanks to the plummeting costs of solar and batteries, especially in China. “Emissions peaking is a milestone for humanity,” said Remi Eriksen, group president and CEO of DNV. However, the projected rate of emission reduction is only enough to limit warming to 2.2 degrees Celsius by 2100. “We must now focus on how quickly emissions decline and use the available tools to accelerate the energy transition,” Eriksen added.
The Rhodium Climate Outlook 2024 report, out yesterday, concluded that there is a less than 7% chance of the world limiting global warming to 2 degrees Celsius “if current trends in policy and technology development continue.” In fact, it projected a “very likely” increase between 2 degrees Celsius and *gulp* 3.7 degrees Celsius by century’s end. However, odds of limiting warming to 2 degrees jump to 96% if all countries can get to net-zero emissions by 2070. To date, 149 countries (representing 88% of global emissions) have made net-zero or carbon neutrality commitments, though it remains to be seen if and when they’ll meet those goals.
Get Heatmap AM directly in your inbox every morning:
The cost of “green” hydrogen – that which is produced with clean energy – is likely to remain “prohibitively expensive,” according to a new study published yesterday in the journal Joule. The fuel is seen as key to curbing emissions from hard-to-abate sectors (industry, for example), and many are banking on the price of production falling. But the researchers say the high storage and distribution costs are often overlooked. Taking those costs into consideration, carbon capture and storage is cheaper than green hydrogen when it comes to curbing emissions, the researchers found. “Even if production costs decrease in line with predictions, storage and distribution costs will prevent hydrogen being cost-competitive in many sectors,” said lead author Roxana Shafiee, a postdoctoral fellow at the Harvard University Center for the Environment. “Our results challenge a growing idea that hydrogen will be the ‘Swiss army knife of decarbonization’ and suggest that the opportunities for hydrogen may be narrower than previously thought.”
“After 40 years in a career, hopefully, I get a little leeway from the folks who are accustomed to seeing me cool as a cucumber. But the truth is that with climate-driven extremes putting us in a place that we haven’t been before, it’s very difficult to stay cool, calm, and collected.” –Meteorologist John Morales on his emotional on-air reaction to Hurricane Milton’s rapid intensification.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
New York City may very well be the epicenter of this particular fight.
It’s official: the Moss Landing battery fire has galvanized a gigantic pipeline of opposition to energy storage systems across the country.
As I’ve chronicled extensively throughout this year, Moss Landing was a technological outlier that used outdated battery technology. But the January incident played into existing fears and anxieties across the U.S. about the dangers of large battery fires generally, latent from years of e-scooters and cellphones ablaze from faulty lithium-ion tech. Concerned residents fighting projects in their backyards have successfully seized upon the fact that there’s no known way to quickly extinguish big fires at energy storage sites, and are winning particularly in wildfire-prone areas.
How successful was Moss Landing at enlivening opponents of energy storage? Since the California disaster six months ago, more than 6 gigawatts of BESS has received opposition from activists explicitly tying their campaigns to the incident, Heatmap Pro® researcher Charlie Clynes told me in an interview earlier this month.
Matt Eisenson of Columbia University’s Sabin Center for Climate Law agreed that there’s been a spike in opposition, telling me that we are currently seeing “more instances of opposition to battery storage than we have in past years.” And while Eisenson said he couldn’t speak to the impacts of the fire specifically on that rise, he acknowledged that the disaster set “a harmful precedent” at the same time “battery storage is becoming much more present.”
“The type of fire that occurred there is unlikely to occur with modern technology, but the Moss Landing example [now] tends to come up across the country,” Eisenson said.
Some of the fresh opposition is in rural agricultural communities such as Grundy County, Illinois, which just banned energy storage systems indefinitely “until the science is settled.” But the most crucial place to watch seems to be New York City, for two reasons: One, it’s where a lot of energy storage is being developed all at once; and two, it has a hyper-saturated media market where criticism can receive more national media attention than it would in other parts of the country.
Someone who’s felt this pressure firsthand is Nick Lombardi, senior vice president of project development for battery storage company NineDot Energy. NineDot and other battery storage developers had spent years laying the groundwork in New York City to build out the energy storage necessary for the city to meet its net-zero climate goals. More recently they’ve faced crowds of protestors against a battery storage facility in Queens, and in Staten Island endured hecklers at public meetings.
“We’ve been developing projects in New York City for a few years now, and for a long time we didn’t run into opposition to our projects or really any sort of meaningful negative coverage in the press. All of that really changed about six months ago,” Lombardi said.
The battery storage developer insists that opposition to the technology is not popular and represents a fringe group. Lombardi told me that the company has more than 50 battery storage sites in development across New York City, and only faced “durable opposition” at “three or four sites.” The company also told me it has yet to receive the kind of email complaint flood that would demonstrate widespread opposition.
This is visible in the politicians who’ve picked up the anti-BESS mantle: GOP mayoral candidate Curtis Sliwa’s become a champion for the cause, but mayor Eric Adams’ “City of Yes” campaign itself would provide for the construction of these facilities. (While Democratic mayoral nominee Zohran Mamdani has not focused on BESS, it’s quite unlikely the climate hawkish democratic socialist would try to derail these projects.)
Lombardi told me he now views Moss Landing as a “catalyst” for opposition in the NYC metro area. “Suddenly there’s national headlines about what’s happening,” he told me. “There were incidents in the past that were in the news, but Moss Landing was headline news for a while, and that combined with the fact people knew it was happening in their city combined to create a new level of awareness.”
He added that six months after the blaze, it feels like developers in the city have a better handle on the situation. “We’ve spent a lot of time in reaction to that to make sure we’re organized and making sure we’re in contact with elected officials, community officials, [and] coordinated with utilities,” Lombardi said.
And more on the biggest conflicts around renewable energy projects in Kentucky, Ohio, and Maryland.
1. St. Croix County, Wisconsin - Solar opponents in this county see themselves as the front line in the fight over Trump’s “Big Beautiful” law and its repeal of Inflation Reduction Act tax credits.
2. Barren County, Kentucky - How much wood could a Wood Duck solar farm chuck if it didn’t get approved in the first place? We may be about to find out.
3. Iberia Parish, Louisiana - Another potential proxy battle over IRA tax credits is going down in Louisiana, where residents are calling to extend a solar moratorium that is about to expire so projects can’t start construction.
4. Baltimore County, Maryland – The fight over a transmission line in Maryland could have lasting impacts for renewable energy across the country.
5. Worcester County, Maryland – Elsewhere in Maryland, the MarWin offshore wind project appears to have landed in the crosshairs of Trump’s Environmental Protection Agency.
6. Clark County, Ohio - Consider me wishing Invenergy good luck getting a new solar farm permitted in Ohio.
7. Searcy County, Arkansas - An anti-wind state legislator has gone and posted a slide deck that RWE provided to county officials, ginning up fresh uproar against potential wind development.
Talking local development moratoria with Heatmap’s own Charlie Clynes.
This week’s conversation is special: I chatted with Charlie Clynes, Heatmap Pro®’s very own in-house researcher. Charlie just released a herculean project tracking all of the nation’s county-level moratoria and restrictive ordinances attacking renewable energy. The conclusion? Essentially a fifth of the country is now either closed off to solar and wind entirely or much harder to build. I decided to chat with him about the work so you could hear about why it’s an important report you should most definitely read.
The following chat was lightly edited for clarity. Let’s dive in.
Tell me about the project you embarked on here.
Heatmap’s research team set out last June to call every county in the United States that had zoning authority, and we asked them if they’ve passed ordinances to restrict renewable energy, or if they have renewable energy projects in their communities that have been opposed. There’s specific criteria we’ve used to determine if an ordinance is restrictive, but by and large, it’s pretty easy to tell once a county sends you an ordinance if it is going to restrict development or not.
The vast majority of counties responded, and this has been a process that’s allowed us to gather an extraordinary amount of data about whether counties have been restricting wind, solar and other renewables. The topline conclusion is that restrictions are much worse than previously accounted for. I mean, 605 counties now have some type of restriction on renewable energy — setbacks that make it really hard to build wind or solar, moratoriums that outright ban wind and solar. Then there’s 182 municipality laws where counties don’t have zoning jurisdiction.
We’re seeing this pretty much everywhere throughout the country. No place is safe except for states who put in laws preventing jurisdictions from passing restrictions — and even then, renewable energy companies are facing uphill battles in getting to a point in the process where the state will step in and overrule a county restriction. It’s bad.
Getting into the nitty-gritty, what has changed in the past few years? We’ve known these numbers were increasing, but what do you think accounts for the status we’re in now?
One is we’re seeing a high number of renewables coming into communities. But I think attitudes started changing too, especially in places that have been fairly saturated with renewable energy like Virginia, where solar’s been a presence for more than a decade now. There have been enough projects where people have bad experiences that color their opinion of the industry as a whole.
There’s also a few narratives that have taken shape. One is this idea solar is eating up prime farmland, or that it’ll erode the rural character of that area. Another big one is the environment, especially with wind on bird deaths, even though the number of birds killed by wind sounds big until you compare it to other sources.
There are so many developers and so many projects in so many places of the world that there are examples where either something goes wrong with a project or a developer doesn’t follow best practices. I think those have a lot more staying power in the public perception of renewable energy than the many successful projects that go without a hiccup and don’t bother people.
Are people saying no outright to renewable energy? Or is this saying yes with some form of reasonable restrictions?
It depends on where you look and how much solar there is in a community.
One thing I’ve seen in Virginia, for example, is counties setting caps on the total acreage solar can occupy, and those will be only 20 acres above the solar already built, so it’s effectively blocking solar. In places that are more sparsely populated, you tend to see restrictive setbacks that have the effect of outright banning wind — mile-long setbacks are often insurmountable for developers. Or there’ll be regulations to constrict the scale of a project quite a bit but don’t ban the technologies outright.
What in your research gives you hope?
States that have administrations determined to build out renewables have started to override these local restrictions: Michigan, Illinois, Washington, California, a few others. This is almost certainly going to have an impact.
I think the other thing is there are places in red states that have had very good experiences with renewable energy by and large. Texas, despite having the most wind generation in the nation, has not seen nearly as much opposition to wind, solar, and battery storage. It’s owing to the fact people in Texas generally are inclined to support energy projects in general and have seen wind and solar bring money into these small communities that otherwise wouldn’t get a lot of attention.