You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Of all the imaginative ways to die in New York City — getting pushed in front of a subway car, flattened by a falling a/c unit, clocked by an exploding manhole cover, etc. — perhaps the unlikeliest is Death By Toxic Black Mold.
That hasn’t stopped me from thinking about it ... all the time. Every New Yorker seems to know someone who’s discovered the inky starbursts in their building and had months of migraines, runny noses, and sore throats snap into horrible clarity. Toxic black mold. With a name like that, how could you not be terrified?
Fungi have been a little more top-of-mind lately, though, because they’re everywhere.
I mean that beyond the literal sense that “fungi are everywhere,” which they also are: We’ve found them in Antarctica, gnawing through Shackleton and Scott’s century-old huts; at the bottom of the ocean, in multi-million-year-old mud; on antiseptically clean hospital walls; and at the site of the Chernobyl nuclear disaster. Naturally, they survive “surprisingly well” in space.
Over the past decade or so, fungi have begun to infest our stories as well. This is particularly true of horror and sci-fi, including HBO’s recent The Last of Us adaptation, which expands on the 2013 game’s fungal zombie backstory. In 2017, Star Trek: Discovery introduced the idea that the whole universe is connected by mycelia, a concept explained to viewers by the fictional astromycologist Paul Stamets — not to be confused with Eldon Stammets, the mushroom-obsessed serial killer from season one of Hannibal (2013), nor the real mycologist Paul Stamets, after whom both characters were named (Bryan Fuller, a Stamets superfan, worked on both shows). Other memorable fungal sightings in fiction include Mike Carey’s The Girl With All the Gifts (2014); multiple Jeff VanderMeers but perhaps most obviously Annihilation (2014, with a film adaptation in 2018); Silvia Moreno-Garcia’s Mexican Gothic (2020); and N. K. Jemisin’s The City We Became (2020) — though there are many more. Taking a full inventory, it can almost seem as if, over the course of about a decade, writers collectively realized fungi are the perfect monsters: efficient, unknowable, hungry.
On the one hand, of course. We’re repelled by mold and mushrooms for the same reason we’re disgusted by rats or insects: They are symbols of death, disease, and decay, a reminder that in the end, we’re nothing more than fleshy neighborhoods for “postmortem fungal communities.”
But if there is something primordial about our fungus revulsion, there is something obtuse about it, too. Our lives have been entangled with fungi’s for as long as we’ve been human. The oldest dental records ever studied, belonging to cannibalized 50,000-year-old Neanderthals, indicate ancient hominids ate “primitive penicillin,” possibly for the same medical purposes that we use the mold-derived antibiotic today. Otzi the Iceman was wearing Birch polypores on a leather thong around his neck when he died. Some (admittedly fringe) scientists even believe mushrooms were the spark that set our Homo erectus ancestors on their journey to the higher consciousness of Homo sapiens.
What, then, soured in our multi-millennia-long human-fungus relationship to make us — as mycologist David Arora puts it — the “fungophobic society” we are today? The medical community’s acceptance of germ theory, and our modern obsession with cleanliness, are components, surely.
There is another possibility, too: The closer we’ve looked at fungi, the stranger they reveal themselves to be, and the richer and more possible our wildest fictions become.
Mushrooms might seem to sprout abruptly and at random. But in truth, they’re just the visible fruiting body of a much larger subterranean organism. Great speculative fiction works much the same way: While a story can appear to have sprouted from nothing, it’s been fed, just below the surface, by a tangle of science, headlines, and current events.
In the aftermath of the Hiroshima bombing in 1945, for example, fiction warped the horrors of nuclear science for films like Godzilla (1954), Them! (1954), and Tarantula (1955). And after the moon landing in 1969, Star Wars (1977), Close Encounters of the Third Kind (1977), and Alien (1979) all wondered who else might be up there?
When it comes to mycology, though, science is still getting started. Fungi didn’t even become their own taxonomic kingdom until 1969; before then, scientists just thought they were really weird plants.
Westerners have long approached fungi with suspicion. “The fields were spotted with monstrous fungi of a size and colour never matched before … Death sprang also from the water-soaked earth,” Arthur Conan Doyle wrote in Sir Nigel (1905-06), using fungi as an ominous mood-setter. Edgar Allen Poe wasn’t a fan either: “Minute fungi overspread the whole exterior” of the House of Usher, he wrote in 1839, “hanging in a fine tangled web-work from the eaves.” Folk explanations posited that mushrooms shot from the ground where lightning struck, and “a vast body of Victorian fairy lore connected mushrooms and toadstools with elves, pixies, hollow hills, and the unwitting transport of subjects to fairyland,” explains Mike Jay in The Public Domain Review.
Brits were especially revolted by the “pariahs of the plant world,” to the great disappointment of R.T. Rolfe, who penned a rousing 1925 defense titled Romance of the Fungal World. In Shakespeare’s day, it was questionable if mushrooms were even safely edible; “a hogg wont touch um,” warned Edmund Gayton in his 1695 Art of Longevity. Americans inherited this wariness — “the general opinion [in the U.S. is] all forms of fungus growth are either poisonous or unwholesome,” observed one cookbook writer in 1899 — though many were beginning to come around by the late 19th century, taking cues from the more adventurous eaters of France. Not every culture has been quite so squeamish: mushrooms have long been cultivated in Asia; are a staple of Eastern European, African, and Slavic cuisines; and Indigenous groups throughout the Americas have likewise long enjoyed all that fungi have to offer.
The reevaluation of fungi in refined English society came about almost entirely by accident, via the fortuitous contamination of Alexander Fleming’s staphylococci cultures by the genus Penicillium in 1928. Still, it wouldn’t be until the second half of the 20th century when fungus science really started to get weird — even weirder, you might say, than fiction.
Because the fungi, it appeared, were talking to each other.
When ecologist Suzanne Simard captured the public imagination by describing in a 1997 issue of Nature how trees use webs of underground fungi to communicate with each other, networks — conceptually — were already having a moment. The internet, and the “network of cables and routers” that comprised it, had been around since the 1970s, mycologist Merlin Sheldrake explains in Entangled Life, but when the World Wide Web became available to users in 1991, network science started informing everything from epidemiology to neuroscience. Nature tapped into this buzz by coining the “Wood Wide Web” on its cover to describe Simard’s research, and in doing so, mesmerizingly blurred science-fiction, tech, and biology.
The oft-quoted theory of the Wood Wide Web suggests that fungal threads called mycelium colonize root systems of forest trees, and in doing so, facilitate the exchange of defense signals and other “wisdom” by moving nutrients between plants. “Mother” trees, for example, can supposedly nurture samplings in their communities by shipping excess carbon via fungi. Reviewer Philip Ball went as far as to marvel in Prospect, after reading an account of these and other systems in Sheldrake’s Entangled Life, that “fungi force us to reconsider what intelligence even means.” (Sheldrake’s enthusiasm for the Wood Wide Web is more restrained; he uses it disparagingly to illustrate “plant-centrism in action”).
Ball wasn’t the only one awed, though. References to the “alien language” of fungi began popping up everywhere in popular science writing, as McMaster University’s Derek Woods has observed. Paul Stamets’ Mycelium Running helped bring Simard’s research to a more general audience in 2005, while Peter Wohlleben’s The Hidden Life of Trees (2015), and Simard’s own Finding the Mother Tree (2021) followed — not to mention “dozens of imitative articles,” TED talks, documentaries, and offshoot studies. As recently as last year, The Guardian was trumpeting that “Mushrooms communicate with each other using up to 50 ‘words’.”
Some scientists have since raised doubts about the Wood Wide Web, characterizing the research as potentially “overblown” and “unproven" — but it’s a good story, isn’t it? Not to mention a rich jumping-off point for writers who were paying attention to the headlines. One can trace a line directly from Simard’s research, through Stamets’ amplification, straight to Bryan Fuller’s mycelium plane in Star Trek: Discovery.
Yet the phenomenon, as described, sounds far more Edenic than the terrifying, often sentient, man-eating, mind-controlling, city-conquering fungi that have overwhelmingly appeared in modern sci-fi and horror. Is today’s fungal antagonist just a product of those centuries of folk superstitions? Or is something else in the zeitgeist making our skin crawl?
Let’s return, for a moment, to the ways I’ve imagined dying in New York City.
Though the chances of being taken out by a subway or an unsecured a/c unit are slim, they have, tragically, actually happened. But when you start to look into Deaths by Toxic Black Mold, the picture gets a lot murkier.
Few people, verging on none, have definitively died of black mold exposure. You wouldn’t know that, though, from the headlines of the early aughts, which are peppered with celebrity lawsuits over mold, culminating in TMZ tying the mysterious 2009 and 2010 deaths of Clueless actress Brittany Murphy and her husband to mold inhalation (ultimately disproven by their autopsies).
But mold hysteria didn’t originate in Beverly Hills. It comes from Ohio. In the mid ’90s, 12 babies in Cleveland died of lung hemorrhaging and the main suspect was an outbreak of black mold allegedly brought on by unusually heavy rains. CDC investigators found all of the afflicted infants lived in homes with bad water damage, and, in many cases, those homes also had Stachybotrys, a moisture-loving black mold. Soon, stories linking the fungus to the deaths were making national news.
Reevaluations of the outbreak later cast doubt on the correlation. In 1999, the CDC walked back its initial assessment, citing “serious shortcomings in the collection, analysis, and reporting of data.” More skepticism followed: If Stachybotrys is common wherever there is water-damaged wood, why were only babies in the Cleveland area being affected? And how do you explain that some of the babies lived in homes where no Stachybotrys was ever found?
Still, the story stuck, and the link between black mold and a whole host of health problems, including many that remain completely unproven, took root in the public consciousness. Soon, everyone was suing over black mold. “A single insurance company handled 12 cases in 1999,” mycologist Nicholas Money writes in Carpet Monsters and Killer Spores; by 2001, “the company fielded more than 10,000 claims.” The Washington Post likewise observed in 2013 that “experts say mold is not more prevalent these days; instead, we are more aware of it.”
Hypochondriacs eyeing mildew spots on their bathroom ceilings weren’t the only ones reading about deadly mold, of course. Writers were, too. And now fungi had two strikes against them: They possessed a weird alien intelligence and they were dangerous.
Then came the possibility they could control our minds.
The parasitic fungal genus Ophiocordyceps is at least 48 million years old. It has likely survived as long as it has because of its stranger-than-fiction method of propagating: Ophiocordyceps spores infect an ant and “hijack” its brain, forcing it to abandon its colony, climb a high leaf, and affix itself there with a bite. The ant then dies, still clinging to the leaf with its jaws, and the fungus sprouts out of its body, raining spores down onto other unlucky ants.
Humans turning into, or being consumed alive by, fungi had long fascinated writers (see: “The Voice in the Night” by William Hope Hodgson from 1907, or Stephen King’s 1973 “Gray Matter”). But with our increased cultural awareness of Ophiocordyceps in the 21st century, fungal mind control went from being a revolting body horror trope to a plausible sci-fi starting point. Neil Druckmann, the creative director of The Last of Us, has said he learned about the fungus from a 2008 episode of BBC’s Planet Earth, and he went on to use it as the basis for the zombies in his 2013 video game.
Though Druckmann was an early adopter of Ophiocordyceps, the fungus didn’t exactly remain obscure. “Zombie fungi are not known to use humans as hosts. At least yet,” The Columbus Dispatchwrote in 2014 (and filed, cryptically, in its “how to” section). The X-Men comics introduced “Cordyceps Jones,” a “talking parasitic fungal spore, intergalactic casino proprietor, and notorious crime boss,” as a new villain in 2021. The New York Times even saw fit to inform its readers, “After This Fungus Turns Ants Into Zombies, Their Bodies Explode.” Try scrolling past that.
Through this process of scientific discoveries, eye-catching headlines, and a little exaggeration, it took only a handful of decades for fungi to make the leap from “pariahs of the plant world” to the perfect horror villain. The climate crisis will likely be a further creative accelerant. Thanks to intensified hurricanes and flooding, mold will be an ongoing issue in homes nationwide. Plus, fungi are nothing if not survivors, and some are already pushing past the climatological boundaries — and antifungals — that used to contain them.
Even The Last of Us added an explanation in the HBO adaption that the warming planet is what allowed Ophiocordyceps to evolve and make the leap from cooler-bodied insects to comparatively hot humans. The good news is, mycologists say this is all but impossible in real life due to the vast biological differences between humans and ants; the bad news is, a deadly fungal pandemic is absolutely possible and, shocker, experts say we’re not at all prepared for it.
At least, not institutionally. Fiction has already hashed out how Fauna vs. Funga could go in a hundred different ways. Sometimes, the fungus comes to us from outer space. Sometimes, it possesses alien sentience; other times, it just represents the indifferent efficiency of nature. Sometimes, it takes over our minds and turns us against each other. Sometimes, it brings us together to fight back.
Fiction is also beginning to wonder if those villainous fungi might just be our friends. Think of those universe-binding spores that connect us in Star Trek, or the fungal-facilitated hivemind in a popular Hugo Award-winning series, which likewise eludes a straightforward antagonist narrative. It only makes sense: If spores are intelligent colonizers, well, so are we. Maybe the next step will be to put our heads — or at least, our hyphae and neurons — together.
Because while science reveals fungi to be weirder by the day, it also further reinforces that we can’t live without them. They nourish us, heal us, relieve us, protect us, and one day, maybe, will save us.
And oh, how they entertain us.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Businesses were already bracing for a crash. Then came another 50% tariff on Chinese goods.
When I wrote Heatmap’s guide to driving less last year, I didn’t anticipate that a good motivation for doing so would be that every car in America was about to get a lot more expensive.
Then again, no one saw the breadth and depth of the Trump administration’s tariffs coming. “We would characterize this slate of tariffs as ‘worse than the worst case scenario,’” one group of veteran securities analysts wrote in a note to investors last week, a sentiment echoed across Wall Street and reflected in four days of stock market turmoil so far.
But if the economic downturn has renewed your interest in purchasing a bike or e-bike, you’ll want to act fast — and it may already be too late. Because Trump’s “Liberation Day” tariffs stack on top of his other tariffs and duties, the U.S. bicycle trade association PeopleForBikes calculated that beginning on April 9, the day the newest tariffs come into effect, the duty on e-bikes from China would be 79%, up from nothing at all under President Biden. The tariff on most non-electric bikes from China, meanwhile, would spike to 90%, up from 11% on January 1 of this year. Then on Tuesday, the White House announced that it would add another 50% tariff on China on top of that whole tariff stack, starting Wednesday, in retaliation for Beijing’s counter-tariffs.
Prior to the latest announcement, Jay Townley, a founding partner of the cycling industry consulting firm Human Powered Solutions, had told me that if the Trump administration actually followed through on a retaliatory 50% tariff on top of those duties, then “we’re out of business because nobody can afford to bring in a bicycle product at 100% or more in tariffs.”
It’s difficult to overstate how existential the tariffs are for the bicycle industry. Imports account for 97% of the bikes purchased in the United States, of which 87% come from China, making it “one of the most import-dependent and China-dependent industries in the U.S.,” according to a 2021 analysis by the Coalition for a Prosperous America, which advocates for trade-protectionist policies.
Many U.S. cycling brands have grumbled for years about America’s relatively generous de minimis exemption, a policy of waiving duties on items valued at less than $800. The loophole — which is what enables shoppers to buy dirt-cheap clothes from brands like Temu, Shein, and Alibaba — has also allowed for uncertified helmets and non-compliant e-bikes and e-bike batteries to flood the U.S. market. These batteries, which are often falsely marketed as meeting international safety standards, have been responsible for deadly e-bike fires in places like New York City. “A going retail for a good lithium-ion replacement battery for an e-bike is $800 to $1,000,” Townley said. “You look online, and you’ll see batteries at $350, $400, that come direct to you from China under the de minimis exemption.”
Cyclingnews reported recently that Robert Margevicius, the executive vice president of the American bicycle giant Specialized, had filed a complaint with the Trump administration over losing “billions in collectable tariffs” through the loophole. A spokesperson for Specialized defended Margevicius’ comment by calling it an “industry-wide position that is aligned with PeopleForBikes.” (Specialized did not respond to a request for clarification from Heatmap, though a spokesperson told Cyclingnews that de minimis imports permit “unsafe products and intellectual property violation.” PeopleForBikes’ general and policy counsel Matt Moore told me in an email that “we have supported reforming the way the U.S. treats low-value de minimis imports for several years.”)
Trump indeed axed China’s de minimis exemption as part of his April 2 tariffs — a small win for the U.S. bicycle brands. But any protection afforded by duties on cheap imported bikes and e-bikes will be erased by the damage from high tariffs imposed on China and other Asian countries. Fewer than 500,000 bicycles in a 10 million-unit market are even assembled in the United States, and essentially none is entirely manufactured here. “We do not know how to make a bike,” Townley told me flatly. Though a number of major U.S. brands employ engineers to design their bikes, when it comes to home-shoring manufacturing, “all of that knowledge resides in Taiwan, China, Vietnam. It isn’t here.”
In recent years, Chinese factories had become “very proficient at shipping goods from third-party countries” in order to avoid European anti-dumping duties, as well as leftover tariffs from Trump’s first term, Rick Vosper, an industry veteran and columnist at Bicycle Retailer and Industry News, told me. “Many Chinese companies built bicycle assembly plants in Vietnam specifically so the sourcing sticker would not say ‘made in China,’” he added. Of course, those bikes and component parts are now also subject to Trump’s tariffs, which are as high as 57% for Vietnam, 60% for Cambodia, and 43% for Taiwan for most bikes. (A potential added tariff on countries that import oil from Venezuela could bump them even higher.)
The tariffs could not come at a worse time for the industry. 2019 marked one of the slowest years for the U.S. specialty retail bike business in two decades, so when COVID hit — and suddenly everyone wanted a bicycle as a way of exercising and getting around — there was “no inventory to be had, but a huge influx of customers,” Vosper told me. In response, “major players put in huge increases in their orders.”
But by 2023, the COVID-induced demand had evaporated, leaving suppliers with hundreds of millions of dollars in inventory that they couldn’t move. Even by discounting wholesale prices below their own cost to make the product and offering buy-one-get-one deals, dealers couldn’t get the bikes off their hands. “All the people who wanted to buy a bike during COVID have bought a bike and are not ready to buy another one anytime soon,” Vosper said.
Going into 2025, many retailers were still dealing with the COVID-induced bicycle glut; Mike Blok, the founder of Brooklyn Carbon Bike Company in New York City, told me he could think of three or four tristate-area shops off the top of his head that have closed in recent months because they were sitting on inventory.
Blok, however, was cautiously optimistic about his own position. While he stressed that he isn’t a fan of the tariffs, he also largely sells pre-owned bikes. On the low end of the market, the tariffs will likely raise prices no more than about $15 or $20, which might not make much of a difference to consumer behavior. But for something like a higher-end carbon fiber bike, which can run $2,700 or higher and is almost entirely produced in Taiwan, the tariffs could mean an increase of hundreds of dollars for customers. “I think what that will mean for me is that more folks will be open to the pre-owned option,” Blok said, although he also anticipates his input costs for repairs and tuning will go up.
But there’s a bigger, and perhaps even more obvious, problem for bike retailers beyond their products becoming more expensive. “What I sell is not a staple good; people don’t need a bike,” Blok reminded me. “So as folks’ discretionary income diminishes because other things become more expensive, they’ll have less to spend on discretionary items.”
Townley, the industry consultant, confirmed that many major cycling brands had already seen the writing on the wall before Trump announced his tariffs and begun to pivot to re-sale. Bicycling Magazine, a hobbyist publication, is even promoting “buying used” as one of its “tips to help you save” under Trump’s tariffs. Savvy retailers might be able to pivot and rely on their service, customer loyalty, and re-sale businesses to stay afloat during the hard days ahead; Moore of PeopleForBikes also noted that “repair services may increase” as people look to fix what they already have.
And if you don’t have a bike or e-bike but were thinking about getting one as a way to lighten your car dependency, decarbonize your life, or just because they’re cool, “there are still good values to be found,” Moore went on. “Now is a great time to avoid a likely increase in prices.” Townley anticipated that depending on inventory, we’re likely 30 to 40 days away from seeing prices go up.
In the meantime, cycling organizations are scrambling to keep their members abreast of the coming changes. “PeopleForBikes is encouraging our members to contact their elected representatives about the very real impacts these tariffs will have on their companies and our industry,” Moore told me. The National Bicycle Dealers Association, a nonprofit supporting specialty bicycle retailers, has teamed up with the D.C.-based League of American Bicyclists, a ridership organization, to explore lobbying lawmakers for the first time in decades in the hopes that some might oppose the tariffs or explore carve-outs for the industry.
But Townley, whose firm Human Powered Solutions is assisting in NBDA’s effort, shared a grim conversation he had at a recent trade show in Las Vegas, where a new board member at a cycling organization had asked him “what can we do” about Trump’s tariffs.
“I said, ‘You’re out of time,” Townley recalled. “There isn’t much that can be done. All we can do is react.”
Any household savings will barely make a dent in the added costs from Trump’s many tariffs.
Donald Trump’s tariffs — the “fentanyl” levies on Canada, China, and Mexico, the “reciprocal” tariffs on nearly every country (and some uninhabited islands), and the global 10% tariff — will almost certainly cause consumer goods on average to get more expensive. The Yale Budget Lab estimates that in combination, the tariffs Trump has announced so far in his second term will cause prices to rise 2.3%, reducing purchasing power by $3,800 per year per household.
But there’s one very important consumer good that seems due to decline in price.
Trump administration officials — including the president himself — have touted cheaper oil to suggest that the economic response to the tariffs hasn’t been all bad. On Sunday, Secretary of the Treasury Scott Bessent told NBC, “Oil prices went down almost 15% in two days, which impacts working Americans much more than the stock market does.”
Trump picked up this line on Truth Social Monday morning. “Oil prices are down, interest rates are down (the slow moving Fed should cut rates!), food prices are down, there is NO INFLATION,” he wrote. He then spent the day posting quotes from Fox Business commentators echoing that idea, first Maria Bartiromo (“Rates are plummeting, oil prices are plummeting, deregulation is happening. President Trump is not going to bend”) then Charles Payne (“What we’re not talking about is, oil was $76, now it’s $65. Gasoline prices are going to plummet”).
But according to Neil Dutta, head of economic research at Renaissance Macro Research, pointing to falling oil prices as a stimulus is just another example of the “4D chess” theory, under which some market participants attribute motives to Trump’s trade policy beyond his stated goal of reducing trade deficits to as near zero (or surplus!) as possible.
Instead, oil markets are primarily “responding to the recession risk that comes from the tariff and the trade war,” Dutta told me. “That is the main story.” In short, oil markets see less global trade and less global production, and therefore falling demand for oil. The effect on household consumption, he said, was a “second order effect.”
It is true that falling oil prices will help “stabilize consumption,” Dutta told me (although they could also devastate America’s own oil industry). “It helps. It’ll provide some lift to real income growth for consumers, because they’re not spending as much on gasoline.” But “to fully offset the trade war effects, you basically need to get oil down to zero.”
That’s confirmed by some simple and extremely back of the envelope math. In 2023, households on average consumed about 700 gallons of gasoline per year, based on Energy Information Administration calculations that the average gasoline price in 2023 was $3.52, while the Bureau of Labor Statistics put average household gasoline expenditures at about $2,450.
Let’s generously assume that due to the tariffs and Trump’s regulatory and diplomatic efforts, gas prices drop from the $3.26 they were at on Monday, according to AAA, to $2.60, the average price in 2019. (GasBuddy petroleum analyst Patrick De Haanwrote Monday that the tariffs combined with OPEC+ production hikes could lead gas prices “to fall below $3 per gallon.”)
Let’s also assume that this drop in gas prices does not cause people to drive more or buy less fuel-efficient vehicles. In that case, those same 700 gallons cost the average American $1,820, which would generate annual savings of $630 on average per household. If we went to the lowest price since the Russian invasion of Ukraine, about $3 per gallon, total consumption of 700 gallons would cost a household about $2,100, saving $350 per household per year.
That being said, $1,820 is a pretty low level for annual gasoline consumption. In 2021, as the economy was recovering from the Covid recession and before gas prices popped, annual gasoline expenditures only got as low as $1,948; in 2020 — when oil prices dropped to literally negative dollars per barrel and gas prices got down to $1.85 a gallon — annual expenditures were just over $1,500.
In any case, if you remember the opening paragraphs of this story, even the most generous estimated savings would go nowhere near surmounting the overall rise in prices forecast by the Yale Budget Lab. $630 is less than $3,800! (JPMorgan has forecast a more mild increase in prices of 1% to 1.5%, but agrees that prices will likely rise and purchasing power will decline.)
But maybe look at it this way: You might be able to drive a little more than you expected to, even as your costs elsewhere are going up. Just please be careful! You don’t want to get into a bad accident and have to replace your car: New car prices are expected to rise by several thousand dollars due to Trump’s tariffs.
With cars about to get more expensive, it might be time to start tinkering.
More than a decade ago, when I was a young editor at Popular Mechanics, we got a Nissan Leaf. It was a big deal. The magazine had always kept long-term test cars to give readers a full report of how they drove over weeks and months. A true test of the first true production electric vehicle from a major car company felt like a watershed moment: The future was finally beginning. They even installed a destination charger in the basement of the Hearst Corporation’s Manhattan skyscraper.
That Leaf was a bit of a lump, aesthetically and mechanically. It looked like a potato, got about 100 miles of range, and delivered only 110 horsepower or so via its electric motors. This made the O.G. Leaf a scapegoat for Top Gear-style car enthusiasts eager to slander EVs as low-testosterone automobiles of the meek, forced upon an unwilling population of drivers. Once the rise of Tesla in the 2010s had smashed that paradigm and led lots of people to see electric vehicles as sexy and powerful, the original Leaf faded from the public imagination, a relic of the earliest days of the new EV revolution.
Yet lots of those cars are still around. I see a few prowling my workplace parking garage or roaming the streets of Los Angeles. With the faded performance of their old batteries, these long-running EVs aren’t good for much but short-distance city driving. Ignore the outdated battery pack for a second, though, and what surrounds that unit is a perfectly serviceable EV.
That’s exactly what a new brand of EV restorers see. Last week, car site The Autopiancovered DIYers who are scooping up cheap old Leafs, some costing as little as $3,000, and swapping in affordable Chinese-made 62 kilowatt-hour battery units in place of the original 24 kilowatt-hour units to instantly boost the car’s range to about 250 miles. One restorer bought a new battery on the Chinese site Alibaba for $6,000 ($4,500, plus $1,500 to ship that beast across the sea).
The possibility of the (relatively) simple battery swap is a longtime EV owner’s daydream. In the earlier days of the electrification race, many manufacturers and drivers saw simple and quick battery exchange as the solution for EV road-tripping. Instead of waiting half an hour for a battery to recharge, you’d swap your depleted unit for a fully charged one and be on your way. Even Tesla tested this approach last decade before settling for good on the Supercharger network of fast-charging stations.
There are still companies experimenting with battery swaps, but this technology lost. Other EV startups and legacy car companies that followed Nissan and Tesla into making production EVs embraced the rechargeable lithium-ion battery that is meant to be refilled at a fast-charging station and is not designed to be easily removed from the vehicle. Buy an electric vehicle and you’re buying a big battery with a long warranty but no clear plan for replacement. The companies imagine their EVs as something like a smartphone: It’s far from impossible to replace the battery and give the car a new life, but most people won’t bother and will simply move on to a new car when they can’t take the limitations of their old one anymore.
I think about this impasse a lot. My 2019 Tesla Model 3 began its life with a nominal 240 miles of range. Now that the vehicle has nearly six years and 70,000 miles on it, its maximum range is down to just 200, while its functional range at highway speed is much less than that. I don’t want to sink money into another vehicle, which means living with an EV’s range that diminishes as the years go by.
But what if, one day, I replaced its battery? Even if it costs thousands of dollars to achieve, a big range boost via a new battery would make an older EV feel new again, and at a cost that’s still far less than financing a whole new car. The thought is even more compelling in the age of Trump-imposed tariffs that will raise already-expensive new vehicles to a place that’s simply out of reach for many people (though new battery units will be heavily tariffed, too).
This is no simple weekend task. Car enthusiasts have been swapping parts and modifying gas-burning vehicles since the dawn of the automotive age, but modern EVs aren’t exactly made with the garage mechanic in mind. Because so few EVs are on the road, there is a dearth of qualified mechanics and not a huge population of people with the savvy to conduct major surgery on an electric car without electrocuting themselves. A battery-replacing owner would need to acquire not only the correct pack but also potentially adapters and other equipment necessary to make the new battery play nice with the older car. Some Nissan Leaf modifiers are finding their replacement packs aren’t exactly the same size, shape or weight, The Autopian says, meaning they need things like spacers to make the battery sit in just the right place.
A new battery isn’t a fix-all either. The motors and other electrical components wear down and will need to be replaced eventually, too. A man in Norway who drove his Tesla more than a million miles has replaced at least four battery packs and 14 motors, turning his EV into a sort of car of Theseus.
Crucially, though, EVs are much simpler, mechanically, than combustion-powered cars, what with the latter’s belts and spark plugs and thousands of moving parts. The car that surrounds a depleted battery pack might be in perfectly good shape to keep on running for thousands of miles to come if the owner were to install a new unit, one that could potentially give the EV more driving range than it had when it was new.
The battery swap is still the domain of serious top-tier DIYers, and not for the mildly interested or faint of heart. But it is a sign of things to come. A market for very affordable used Teslas is booming as owners ditch their cars at any cost to distance themselves from Elon Musk. Old Leafs, Chevy Bolts and other EVs from the 2010s can be had for cheap. The generation of early vehicles that came with an unacceptably low 100 to 150 miles of range would look a lot more enticing if you imagine today’s battery packs swapped into them. The possibility of a like-new old EV will look more and more promising, especially as millions of Americans realize they can no longer afford a new car.