You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Of all the imaginative ways to die in New York City — getting pushed in front of a subway car, flattened by a falling a/c unit, clocked by an exploding manhole cover, etc. — perhaps the unlikeliest is Death By Toxic Black Mold.
That hasn’t stopped me from thinking about it ... all the time. Every New Yorker seems to know someone who’s discovered the inky starbursts in their building and had months of migraines, runny noses, and sore throats snap into horrible clarity. Toxic black mold. With a name like that, how could you not be terrified?
Fungi have been a little more top-of-mind lately, though, because they’re everywhere.
I mean that beyond the literal sense that “fungi are everywhere,” which they also are: We’ve found them in Antarctica, gnawing through Shackleton and Scott’s century-old huts; at the bottom of the ocean, in multi-million-year-old mud; on antiseptically clean hospital walls; and at the site of the Chernobyl nuclear disaster. Naturally, they survive “surprisingly well” in space.
Over the past decade or so, fungi have begun to infest our stories as well. This is particularly true of horror and sci-fi, including HBO’s recent The Last of Us adaptation, which expands on the 2013 game’s fungal zombie backstory. In 2017, Star Trek: Discovery introduced the idea that the whole universe is connected by mycelia, a concept explained to viewers by the fictional astromycologist Paul Stamets — not to be confused with Eldon Stammets, the mushroom-obsessed serial killer from season one of Hannibal (2013), nor the real mycologist Paul Stamets, after whom both characters were named (Bryan Fuller, a Stamets superfan, worked on both shows). Other memorable fungal sightings in fiction include Mike Carey’s The Girl With All the Gifts (2014); multiple Jeff VanderMeers but perhaps most obviously Annihilation (2014, with a film adaptation in 2018); Silvia Moreno-Garcia’s Mexican Gothic (2020); and N. K. Jemisin’s The City We Became (2020) — though there are many more. Taking a full inventory, it can almost seem as if, over the course of about a decade, writers collectively realized fungi are the perfect monsters: efficient, unknowable, hungry.
On the one hand, of course. We’re repelled by mold and mushrooms for the same reason we’re disgusted by rats or insects: They are symbols of death, disease, and decay, a reminder that in the end, we’re nothing more than fleshy neighborhoods for “postmortem fungal communities.”
But if there is something primordial about our fungus revulsion, there is something obtuse about it, too. Our lives have been entangled with fungi’s for as long as we’ve been human. The oldest dental records ever studied, belonging to cannibalized 50,000-year-old Neanderthals, indicate ancient hominids ate “primitive penicillin,” possibly for the same medical purposes that we use the mold-derived antibiotic today. Otzi the Iceman was wearing Birch polypores on a leather thong around his neck when he died. Some (admittedly fringe) scientists even believe mushrooms were the spark that set our Homo erectus ancestors on their journey to the higher consciousness of Homo sapiens.
What, then, soured in our multi-millennia-long human-fungus relationship to make us — as mycologist David Arora puts it — the “fungophobic society” we are today? The medical community’s acceptance of germ theory, and our modern obsession with cleanliness, are components, surely.
There is another possibility, too: The closer we’ve looked at fungi, the stranger they reveal themselves to be, and the richer and more possible our wildest fictions become.
Mushrooms might seem to sprout abruptly and at random. But in truth, they’re just the visible fruiting body of a much larger subterranean organism. Great speculative fiction works much the same way: While a story can appear to have sprouted from nothing, it’s been fed, just below the surface, by a tangle of science, headlines, and current events.
In the aftermath of the Hiroshima bombing in 1945, for example, fiction warped the horrors of nuclear science for films like Godzilla (1954), Them! (1954), and Tarantula (1955). And after the moon landing in 1969, Star Wars (1977), Close Encounters of the Third Kind (1977), and Alien (1979) all wondered who else might be up there?
When it comes to mycology, though, science is still getting started. Fungi didn’t even become their own taxonomic kingdom until 1969; before then, scientists just thought they were really weird plants.
Westerners have long approached fungi with suspicion. “The fields were spotted with monstrous fungi of a size and colour never matched before … Death sprang also from the water-soaked earth,” Arthur Conan Doyle wrote in Sir Nigel (1905-06), using fungi as an ominous mood-setter. Edgar Allen Poe wasn’t a fan either: “Minute fungi overspread the whole exterior” of the House of Usher, he wrote in 1839, “hanging in a fine tangled web-work from the eaves.” Folk explanations posited that mushrooms shot from the ground where lightning struck, and “a vast body of Victorian fairy lore connected mushrooms and toadstools with elves, pixies, hollow hills, and the unwitting transport of subjects to fairyland,” explains Mike Jay in The Public Domain Review.
Brits were especially revolted by the “pariahs of the plant world,” to the great disappointment of R.T. Rolfe, who penned a rousing 1925 defense titled Romance of the Fungal World. In Shakespeare’s day, it was questionable if mushrooms were even safely edible; “a hogg wont touch um,” warned Edmund Gayton in his 1695 Art of Longevity. Americans inherited this wariness — “the general opinion [in the U.S. is] all forms of fungus growth are either poisonous or unwholesome,” observed one cookbook writer in 1899 — though many were beginning to come around by the late 19th century, taking cues from the more adventurous eaters of France. Not every culture has been quite so squeamish: mushrooms have long been cultivated in Asia; are a staple of Eastern European, African, and Slavic cuisines; and Indigenous groups throughout the Americas have likewise long enjoyed all that fungi have to offer.
The reevaluation of fungi in refined English society came about almost entirely by accident, via the fortuitous contamination of Alexander Fleming’s staphylococci cultures by the genus Penicillium in 1928. Still, it wouldn’t be until the second half of the 20th century when fungus science really started to get weird — even weirder, you might say, than fiction.
Because the fungi, it appeared, were talking to each other.
When ecologist Suzanne Simard captured the public imagination by describing in a 1997 issue of Nature how trees use webs of underground fungi to communicate with each other, networks — conceptually — were already having a moment. The internet, and the “network of cables and routers” that comprised it, had been around since the 1970s, mycologist Merlin Sheldrake explains in Entangled Life, but when the World Wide Web became available to users in 1991, network science started informing everything from epidemiology to neuroscience. Nature tapped into this buzz by coining the “Wood Wide Web” on its cover to describe Simard’s research, and in doing so, mesmerizingly blurred science-fiction, tech, and biology.
The oft-quoted theory of the Wood Wide Web suggests that fungal threads called mycelium colonize root systems of forest trees, and in doing so, facilitate the exchange of defense signals and other “wisdom” by moving nutrients between plants. “Mother” trees, for example, can supposedly nurture samplings in their communities by shipping excess carbon via fungi. Reviewer Philip Ball went as far as to marvel in Prospect, after reading an account of these and other systems in Sheldrake’s Entangled Life, that “fungi force us to reconsider what intelligence even means.” (Sheldrake’s enthusiasm for the Wood Wide Web is more restrained; he uses it disparagingly to illustrate “plant-centrism in action”).
Ball wasn’t the only one awed, though. References to the “alien language” of fungi began popping up everywhere in popular science writing, as McMaster University’s Derek Woods has observed. Paul Stamets’ Mycelium Running helped bring Simard’s research to a more general audience in 2005, while Peter Wohlleben’s The Hidden Life of Trees (2015), and Simard’s own Finding the Mother Tree (2021) followed — not to mention “dozens of imitative articles,” TED talks, documentaries, and offshoot studies. As recently as last year, The Guardian was trumpeting that “Mushrooms communicate with each other using up to 50 ‘words’.”
Some scientists have since raised doubts about the Wood Wide Web, characterizing the research as potentially “overblown” and “unproven" — but it’s a good story, isn’t it? Not to mention a rich jumping-off point for writers who were paying attention to the headlines. One can trace a line directly from Simard’s research, through Stamets’ amplification, straight to Bryan Fuller’s mycelium plane in Star Trek: Discovery.
Yet the phenomenon, as described, sounds far more Edenic than the terrifying, often sentient, man-eating, mind-controlling, city-conquering fungi that have overwhelmingly appeared in modern sci-fi and horror. Is today’s fungal antagonist just a product of those centuries of folk superstitions? Or is something else in the zeitgeist making our skin crawl?
Let’s return, for a moment, to the ways I’ve imagined dying in New York City.
Though the chances of being taken out by a subway or an unsecured a/c unit are slim, they have, tragically, actually happened. But when you start to look into Deaths by Toxic Black Mold, the picture gets a lot murkier.
Few people, verging on none, have definitively died of black mold exposure. You wouldn’t know that, though, from the headlines of the early aughts, which are peppered with celebrity lawsuits over mold, culminating in TMZ tying the mysterious 2009 and 2010 deaths of Clueless actress Brittany Murphy and her husband to mold inhalation (ultimately disproven by their autopsies).
But mold hysteria didn’t originate in Beverly Hills. It comes from Ohio. In the mid ’90s, 12 babies in Cleveland died of lung hemorrhaging and the main suspect was an outbreak of black mold allegedly brought on by unusually heavy rains. CDC investigators found all of the afflicted infants lived in homes with bad water damage, and, in many cases, those homes also had Stachybotrys, a moisture-loving black mold. Soon, stories linking the fungus to the deaths were making national news.
Reevaluations of the outbreak later cast doubt on the correlation. In 1999, the CDC walked back its initial assessment, citing “serious shortcomings in the collection, analysis, and reporting of data.” More skepticism followed: If Stachybotrys is common wherever there is water-damaged wood, why were only babies in the Cleveland area being affected? And how do you explain that some of the babies lived in homes where no Stachybotrys was ever found?
Still, the story stuck, and the link between black mold and a whole host of health problems, including many that remain completely unproven, took root in the public consciousness. Soon, everyone was suing over black mold. “A single insurance company handled 12 cases in 1999,” mycologist Nicholas Money writes in Carpet Monsters and Killer Spores; by 2001, “the company fielded more than 10,000 claims.” The Washington Post likewise observed in 2013 that “experts say mold is not more prevalent these days; instead, we are more aware of it.”
Hypochondriacs eyeing mildew spots on their bathroom ceilings weren’t the only ones reading about deadly mold, of course. Writers were, too. And now fungi had two strikes against them: They possessed a weird alien intelligence and they were dangerous.
Then came the possibility they could control our minds.
The parasitic fungal genus Ophiocordyceps is at least 48 million years old. It has likely survived as long as it has because of its stranger-than-fiction method of propagating: Ophiocordyceps spores infect an ant and “hijack” its brain, forcing it to abandon its colony, climb a high leaf, and affix itself there with a bite. The ant then dies, still clinging to the leaf with its jaws, and the fungus sprouts out of its body, raining spores down onto other unlucky ants.
Humans turning into, or being consumed alive by, fungi had long fascinated writers (see: “The Voice in the Night” by William Hope Hodgson from 1907, or Stephen King’s 1973 “Gray Matter”). But with our increased cultural awareness of Ophiocordyceps in the 21st century, fungal mind control went from being a revolting body horror trope to a plausible sci-fi starting point. Neil Druckmann, the creative director of The Last of Us, has said he learned about the fungus from a 2008 episode of BBC’s Planet Earth, and he went on to use it as the basis for the zombies in his 2013 video game.
Though Druckmann was an early adopter of Ophiocordyceps, the fungus didn’t exactly remain obscure. “Zombie fungi are not known to use humans as hosts. At least yet,” The Columbus Dispatch wrote in 2014 (and filed, cryptically, in its “how to” section). The X-Men comics introduced “Cordyceps Jones,” a “talking parasitic fungal spore, intergalactic casino proprietor, and notorious crime boss,” as a new villain in 2021. The New York Times even saw fit to inform its readers, “After This Fungus Turns Ants Into Zombies, Their Bodies Explode.” Try scrolling past that.
Through this process of scientific discoveries, eye-catching headlines, and a little exaggeration, it took only a handful of decades for fungi to make the leap from “pariahs of the plant world” to the perfect horror villain. The climate crisis will likely be a further creative accelerant. Thanks to intensified hurricanes and flooding, mold will be an ongoing issue in homes nationwide. Plus, fungi are nothing if not survivors, and some are already pushing past the climatological boundaries — and antifungals — that used to contain them.
Even The Last of Us added an explanation in the HBO adaption that the warming planet is what allowed Ophiocordyceps to evolve and make the leap from cooler-bodied insects to comparatively hot humans. The good news is, mycologists say this is all but impossible in real life due to the vast biological differences between humans and ants; the bad news is, a deadly fungal pandemic is absolutely possible and, shocker, experts say we’re not at all prepared for it.
At least, not institutionally. Fiction has already hashed out how Fauna vs. Funga could go in a hundred different ways. Sometimes, the fungus comes to us from outer space. Sometimes, it possesses alien sentience; other times, it just represents the indifferent efficiency of nature. Sometimes, it takes over our minds and turns us against each other. Sometimes, it brings us together to fight back.
Fiction is also beginning to wonder if those villainous fungi might just be our friends. Think of those universe-binding spores that connect us in Star Trek, or the fungal-facilitated hivemind in a popular Hugo Award-winning series, which likewise eludes a straightforward antagonist narrative. It only makes sense: If spores are intelligent colonizers, well, so are we. Maybe the next step will be to put our heads — or at least, our hyphae and neurons — together.
Because while science reveals fungi to be weirder by the day, it also further reinforces that we can’t live without them. They nourish us, heal us, relieve us, protect us, and one day, maybe, will save us.
And oh, how they entertain us.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Why killing a government climate database could essentially gut a tax credit
The Trump administration’s bid to end an Environmental Protection Agency program may essentially block any company — even an oil firm — from accessing federal subsidies for capturing carbon or producing hydrogen fuel.
On Friday, the Environmental Protection Agency proposed that it would stop collecting and publishing greenhouse gas emissions data from thousands of refineries, power plants, and factories across the country.
The Trump administration argues that the scheme, known as the Greenhouse Gas Reporting Program, costs more than $2 billion and isn’t legally required under the Clean Air Act. Lee Zeldin, the EPA administrator, described the program as “nothing more than bureaucratic red tape that does nothing to improve air quality.”
But the program is more important than the Trump administration lets on. It’s true that the policy, which required more than 8,000 different facilities around the country to report their emissions, helped the EPA and outside analysts estimate the country’s annual greenhouse gas emissions.
But it did more than that. Over the past decade, the program had essentially become the master database of carbon pollution and emissions policy across the American economy. “Essentially everything the federal government does related to emissions reductions is dependent on the [Greenhouse Gas Reporting Program],” Jack Andreasen Cavanaugh, a fellow at the Center on Global Energy Policy at Columbia University, told me.
That means other federal programs — including those that Republicans in Congress have championed — have come to rely on the EPA database.
Among those programs: the federal tax credit for capturing and using carbon dioxide. Republicans recently increased the size of that subsidy, nicknamed 45Q after a section of the tax code, for companies that turn captured carbon into another product or use it to make oil wells more productive. Those changes were passed in President Trump’s big tax and spending law over the summer.
But Zeldin’s scheme to end the Greenhouse Gas Reporting Program would place that subsidy off limits for the foreseeable future. Under federal law, companies can only claim the 45Q tax credit if they file technical details to the EPA’s emissions reporting program.
Another federal tax credit, for companies that use carbon capture to produce hydrogen fuel, also depends on the Greenhouse Gas Reporting Program. That subsidy hasn’t received the same friendly treatment from Republicans, and it will now phase out in 2028.
The EPA program is “the primary mechanism by which companies investing in and deploying carbon capture and hydrogen projects quantify the CO2 that they’re sequestering, such that they qualify for tax incentives,” Jane Flegal, a former Biden administration appointee who worked on industrial emissions policy, told me. She is now the executive director of the Blue Horizons Foundation.
“The only way for private capital to be put to work to deploy American carbon capture and hydrogen projects is to quantify the carbon dioxide that they’re sequestering, in some way,” she added. That’s what the EPA program does: It confirms that companies are storing or using as much carbon as they claim they are to the IRS.
The Greenhouse Gas Reporting Program is “how the IRS communicates with the EPA” when companies claim the 45Q credit, Cavanaugh said. “The IRS obviously has taxpayer-sensitive information, so they’re not able to give information to the EPA about who or what is claiming the credit.” The existence of the database lets the EPA then automatically provide information to the IRS, so that no confidential tax information is disclosed.
Zeldin’s announcement that the EPA would phase out the program has alarmed companies planning on using the tax credit. In a statement, the Carbon Capture Coalition — an alliance of oil companies, manufacturers, startups, and NGOs — called the reporting program the “regulatory backbone” of the carbon capture tax credit.
“It is not an understatement that the long-term success of the carbon management industry rests on the robust reporting mechanisms” in the EPA’s program, the group said.
Killing the EPA program could hurt American companies in other ways. Right now, companies that trade with European firms depend on the EPA data to pass muster with the EU’s carbon border adjustment tax. It’s unclear how they would fare in a world with no EPA data.
It could also sideline GOP proposals. Senator Bill Cassidy, a Republican from Louisiana, has suggested that imports to the United States should pay a foreign pollution fee — essentially, a way of accounting for the implicit subsidy of China’s dirty energy system. But the data to comply with that law would likely come from the EPA’s greenhouse gas database, too.
Ending the EPA database wouldn’t necessarily spell permanent doom for the carbon capture tax credit, but it would make it much harder to use in the years to come. In order to re-open the tax credit for applications, the Treasury Department, the Energy Department, the Interior Department, and the EPA would have to write new rules for companies that claim the 45Q credit. These rules would go to the end of the long list of regulations that the Treasury Department must write after Trump’s spending law transformed the tax code.
That could take years — and it could sideline projects now under construction. “There are now billions of dollars being invested by the private sector and the government in these technologies, where the U.S. is positioned to lead globally,” Flegal said. Changing the rules would “undermine any way for the companies to succeed.”
Ditching the EPA database, however, very well could doom carbon capture-based hydrogen projects. Under the terms of Trump’s tax law, companies that want to claim the hydrogen credit must begin construction on their projects by 2028.
The Trump administration seems to believe, too, that gutting the EPA database may require new rules for the carbon capture tax credit. When asked for comment, an EPA spokesperson pointed me to a line in the agency’s proposal: “We anticipate that the Treasury Department and the IRS may need to revise the regulation,” the legal proposal says. “The EPA expects that such amendments could allow for different options for stakeholders to potentially qualify for tax credits.”
The EPA spokesperson then encouraged me to ask the Treasury Department for anything more about “specific implications.”
Paradise, California, is snatching up high-risk properties to create a defensive perimeter and prevent the town from burning again.
The 2018 Camp Fire was the deadliest wildfire in California’s history, wiping out 90% of the structures in the mountain town of Paradise and killing at least 85 people in a matter of hours. Investigations afterward found that Paradise’s town planners had ignored warnings of the fire risk to its residents and forgone common-sense preparations that would have saved lives. In the years since, the Camp Fire has consequently become a cautionary tale for similar communities in high-risk wildfire areas — places like Chinese Camp, a small historic landmark in the Sierra Nevada foothills that dramatically burned to the ground last week as part of the nearly 14,000-acre TCU September Lightning Complex.
More recently, Paradise has also become a model for how a town can rebuild wisely after a wildfire. At least some of that is due to the work of Dan Efseaff, the director of the Paradise Recreation and Park District, who has launched a program to identify and acquire some of the highest-risk, hardest-to-access properties in the Camp Fire burn scar. Though he has a limited total operating budget of around $5.5 million and relies heavily on the charity of local property owners (he’s currently in the process of applying for a $15 million grant with a $5 million match for the program) Efseaff has nevertheless managed to build the beginning of a defensible buffer of managed parkland around Paradise that could potentially buy the town time in the case of a future wildfire.
In order to better understand how communities can build back smarter after — or, ideally, before — a catastrophic fire, I spoke with Efseaff about his work in Paradise and how other communities might be able to replicate it. Our conversation has been lightly edited and condensed for clarity.
Do you live in Paradise? Were you there during the Camp Fire?
I actually live in Chico. We’ve lived here since the mid-‘90s, but I have a long connection to Paradise; I’ve worked for the district since 2017. I’m also a sea kayak instructor and during the Camp Fire, I was in South Carolina for a training. I was away from the phone until I got back at the end of the day and saw it blowing up with everything.
I have triplet daughters who were attending Butte College at the time, and they needed to be evacuated. There was a lot of uncertainty that day. But it gave me some perspective, because I couldn’t get back for two days. It gave me a chance to think, “Okay, what’s our response going to be?” Looking two days out, it was like: That would have been payroll, let’s get people together, and then let’s figure out what we’re going to do two weeks and two months from now.
It also got my mind thinking about what we would have done going backwards. If you’d had two weeks to prepare, you would have gotten your go-bag together, you’d have come up with your evacuation route — that type of thing. But when you run the movie backwards on what you would have done differently if you had two years or two decades, it would include prepping the landscape, making some safer community defensible space. That’s what got me started.
Was it your idea to buy up the high-risk properties in the burn scar?
I would say I adapted it. Everyone wants to say it was their idea, but I’ll tell you where it came from: Pre-fire, the thinking was that it would make sense for the town to have a perimeter trail from a recreation standpoint. But I was also trying to pitch it as a good idea from a fuel standpoint, so that if there was a wildfire, you could respond to it. Certainly, the idea took on a whole other dimension after the Camp Fire.
I’m a restoration ecologist, so I’ve done a lot of river floodplain work. There are a lot of analogies there. The trend has been to give nature a little bit more room: You’re not going to stop a flood, but you can minimize damage to human infrastructure. Putting levees too close to the river makes them more prone to failing and puts people at risk — but if you can set the levee back a little bit, it gives the flood waters room to go through. That’s why I thought we need a little bit of a buffer in Paradise and some protection around the community. We need a transition between an area that is going to burn, and that we can let burn, but not in a way that is catastrophic.
How hard has it been to find willing sellers? Do most people in the area want to rebuild — or need to because of their mortgages?
Ironically, the biggest challenge for us is finding adequate funding. A lot of the property we have so far has been donated to us. It’s probably upwards of — oh, let’s see, at least half a dozen properties have been donated, probably close to 200 acres at this point.
We are applying for some federal grants right now, and we’ll see how that goes. What’s evolved quite a bit on this in recent years, though, is that — because we’ve done some modeling — instead of thinking of the buffer as areas that are managed uniformly around the community, we’re much more strategic. These fire events are wind-driven, and there are only a couple of directions where the wind blows sufficiently long enough and powerful enough for the other conditions to fall into play. That’s not to say other events couldn’t happen, but we’re going after the most likely events that would cause catastrophic fires, and that would be from the Diablo winds, or north winds, that come through our area. That was what happened in the Camp Fire scenario, and another one our models caught what sure looked a lot like the [2024] Park Fire.
One thing that I want to make clear is that some people think, “Oh, this is a fire break. It’s devoid of vegetation.” No, what we’re talking about is a well-managed habitat. These are shaded fuel breaks. You maintain the big trees, you get rid of the ladder fuels, and you get rid of the dead wood that’s on the ground. We have good examples with our partners, like the Butte Fire Safe Council, on how this works, and it looks like it helped protect the community of Cohasset during the Park Fire. They did some work on some strips there, and the fire essentially dropped to the ground before it came to Paradise Lake. You didn’t have an aerial tanker dropping retardant, you didn’t have a $2-million-per-day fire crew out there doing work. It was modest work done early and in the right place that actually changed the behavior of the fire.
Tell me a little more about the modeling you’ve been doing.
We looked at fire pathways with a group called XyloPlan out of the Bay Area. The concept is that you simulate a series of ignitions with certain wind conditions, terrain, and vegetation. The model looked very much like a Camp Fire scenario; it followed the same pathway, going towards the community in a little gulch that channeled high winds. You need to interrupt that pathway — and that doesn’t necessarily mean creating an area devoid of vegetation, but if you have these areas where the fire behavior changes and drops down to the ground, then it slows the travel. I found this hard to believe, but in the modeling results, in a scenario like the Camp Fire, it could buy you up to eight hours. With modern California firefighting, you could empty out the community in a systematic way in that time. You could have a vigorous fire response. You could have aircraft potentially ready. It’s a game-changing situation, rather than the 30 minutes Paradise had when the Camp Fire started.
How does this work when you’re dealing with private property owners, though? How do you convince them to move or donate their land?
We’re a Park and Recreation District so we don’t have regulatory authority. We are just trying to run with a good idea with the properties that we have so far — those from willing donors mostly, but there have been a couple of sales. If we’re unable to get federal funding or state support, though, I ultimately think this idea will still have to be here — whether it’s five, 10, 15, or 50 years from now. We have to manage this area in a comprehensive way.
Private property rights are very important, and we don’t want to impinge on that. And yet, what a person does on their property has a huge impact on the 30,000 people who may be downwind of them. It’s an unusual situation: In a hurricane, if you have a hurricane-rated roof and your neighbor doesn’t, and theirs blows off, you feel sorry for your neighbor but it’s probably not going to harm your property much. In a wildfire, what your neighbor has done with the wood, or how they treat vegetation, has a significant impact on your home and whether your family is going to survive. It’s a fundamentally different kind of event than some of the other disasters we look at.
Do you have any advice for community leaders who might want to consider creating buffer zones or something similar to what you’re doing in Paradise?
Start today. You have to think about these things with some urgency, but they’re not something people think about until it happens. Paradise, for many decades, did not have a single escaped wildfire make it into the community. Then, overnight, the community is essentially wiped out. But in so many places, these events are foreseeable; we’re just not wired to think about them or prepare for them.
Buffers around communities make a lot of sense, even from a road network standpoint. Even from a trash pickup standpoint. You don’t think about this, but if your community is really strung out, making it a little more thoughtfully laid out also makes it more economically viable to provide services to people. Some things we look for now are long roads that don’t have any connections — that were one-way in and no way out. I don’t think [the traffic jams and deaths in] Paradise would have happened with what we know now, but I kind of think [authorities] did know better beforehand. It just wasn’t economically viable at the time; they didn’t think it was a big deal, but they built the roads anyway. We can be doing a lot of things smarter.
A war of attrition is now turning in opponents’ favor.
A solar developer’s defeat in Massachusetts last week reveals just how much stronger project opponents are on the battlefield after the de facto repeal of the Inflation Reduction Act.
Last week, solar developer PureSky pulled five projects under development around the western Massachusetts town of Shutesbury. PureSky’s facilities had been in the works for years and would together represent what the developer has claimed would be one of the state’s largest solar projects thus far. In a statement, the company laid blame on “broader policy and regulatory headwinds,” including the state’s existing renewables incentives not keeping pace with rising costs and “federal policy updates,” which PureSky said were “making it harder to finance projects like those proposed near Shutesbury.”
But tucked in its press release was an admission from the company’s vice president of development Derek Moretz: this was also about the town, which had enacted a bylaw significantly restricting solar development that the company was until recently fighting vigorously in court.
“There are very few areas in the Commonwealth that are feasible to reach its clean energy goals,” Moretz stated. “We respect the Town’s conservation go als, but it is clear that systemic reforms are needed for Massachusetts to source its own energy.”
This stems from a story that probably sounds familiar: after proposing the projects, PureSky began reckoning with a burgeoning opposition campaign centered around nature conservation. Led by a fresh opposition group, Smart Solar Shutesbury, activists successfully pushed the town to drastically curtail development in 2023, pointing to the amount of forest acreage that would potentially be cleared in order to construct the projects. The town had previously not permitted facilities larger than 15 acres, but the fresh change went further, essentially banning battery storage and solar projects in most areas.
When this first happened, the state Attorney General’s office actually had PureSky’s back, challenging the legality of the bylaw that would block construction. And PureSky filed a lawsuit that was, until recently, ongoing with no signs of stopping. But last week, shortly after the Treasury Department unveiled its rules for implementing Trump’s new tax and spending law, which basically repealed the Inflation Reduction Act, PureSky settled with the town and dropped the lawsuit – and the projects went away along with the court fight.
What does this tell us? Well, things out in the country must be getting quite bleak for solar developers in areas with strident and locked-in opposition that could be costly to fight. Where before project developers might have been able to stomach the struggle, money talks – and the dollars are starting to tell executives to lay down their arms.
The picture gets worse on the macro level: On Monday, the Solar Energy Industries Association released a report declaring that federal policy changes brought about by phasing out federal tax incentives would put the U.S. at risk of losing upwards of 55 gigawatts of solar project development by 2030, representing a loss of more than 20 percent of the project pipeline.
But the trade group said most of that total – 44 gigawatts – was linked specifically to the Trump administration’s decision to halt federal permitting for renewable energy facilities, a decision that may impact generation out west but has little-to-know bearing on most large solar projects because those are almost always on private land.
Heatmap Pro can tell us how much is at stake here. To give you a sense of perspective, across the U.S., over 81 gigawatts worth of renewable energy projects are being contested right now, with non-Western states – the Northeast, South and Midwest – making up almost 60% of that potential capacity.
If historical trends hold, you’d expect a staggering 49% of those projects to be canceled. That would be on top of the totals SEIA suggests could be at risk from new Trump permitting policies.
I suspect the rate of cancellations in the face of project opposition will increase. And if this policy landscape is helping activists kill projects in blue states in desperate need of power, like Massachusetts, then the future may be more difficult to swallow than we can imagine at the moment.