You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Mixed media artist Typoe Gran talks about creating sculptures to excite the imagination on Miami’s Underline.
The Underline in Miami is a 10-mile trail that will, over the next few years, repurpose 120 acres of unused land into an urban mobility corridor for pedestrians, dogs, bikers, and skateboarders. The route runs under the Metrorail rapid transit tracks from the financial district at the northernmost end all the way south to Dadeland. It’s New York’s Highline at ground level.
For now, only the half-mile-long Phase 1 is complete; the 2-plus-mile Phase 2 will be finished by this spring, and the remaining leg by 2026. Phase 1 begins at a green space called Brickell Backyard near the Miami River in the Brickell District and includes a sculpture garden designed by Miami-based mixed-media artist Typoe Gran.
I caught up with Gran last month at the Art Basel fair in Miami, where he was celebrating the launch of a permanent chandelier-inspired installation at the Rimowa store in Miami’s Design District. I am inspired by the joy and playfulness in his work, which is rare in climate design.
We talked about his inspiration for the Sculpture Garden and the unique challenges of designing a permanent, durable play park that can also withstand extreme weather conditions in Miami. Our conversation has been edited for length and clarity.
What is your approach to design at Primary, your gallery in Miami?
My partners, Cristina Gonzalez and Books Bischof, and I started Primary in 2007, and it began as a public art project in Miami’s Wynwood neighborhood. I have always been fascinated by Friedrich Fröbel who created kindergarten and children’s building blocks. My work often involves creating larger-than-life sculptures and murals that remind us of the importance of play and experimentation.
How did you get connected to the Underline Sculpture Garden project?
The Underline project was really cool because I knew the curator and there was a great team with such an accumulation of knowledge working on how to build it and create beautiful areas for people to come together.
Our pitch was to build a space where people can play, connect, grow, and be inspired to use their imagination. The most important thing was igniting their imagination. I arrived to the Underline team with an already-funded idea and got it greenlit from the beginning.
What was your approach to designing the Sculpture Garden?
I looked at multiple sites along the beginning of the path, and the area I chose was the densest in terms of people walking around, which was exciting to me. I wanted a spot where there would be people. It was also located at a position where the train line split a gentrified area with luxury brands and a super mall on one side, with a rougher area on the other side. I liked being the connector of these areas.
It was also the saddest-looking area! Dead plants, nothing there, with just a pathway through it. It was underneath the Metrorail, so it would offer protection from sun — you could still play and it wouldn’t be blistering hot, and you’d be shielded from rain. This was a beautiful start because the area was underutilized and I had to figure out how to make it a destination.
Tell me about your design approach to the location.
What we designed is not officially a playground but a sculpture garden, with benches and big sculptures you can look at that are playful and reference adolescent activity.
The material we used is important because of the environment. The sun is hot. There is a small amount of salt water in the air, and that affects metals and paints on metals — we didn’t want to deal with rust, plus metal gets hot. So, we thought it would be cool to make fiberglass sculptures — what we make boats out of. Fiberglass offers a lighter load and is simple to install. Also, it looks clean and shiny and doesn’t get too hot, so kids can touch and play on it and it’s safe — there are no sharp edges and no one gets hurt. We sloped the concrete so when it rains, the water runs into the plants. It’s just a slight tilt and not noticeable to the naked eye.
Your Habitable score for the Sculpture Park shows extreme flood and heat risk. Were you aware of this when you built the park? What decisions did you have to make?
I have never seen it underwater. That zone is still slightly higher than the street, and again, we tilted the path so that the water slides off into the planter areas.
[It was] tricky because there is not a full-time irrigation system throughout the Underline and we had to be specific about choosing plants that could last without watering. We used temporary sprinklers to get the plants established and then rely on native plants that would thrive without a lot of watering.
How does the park perform? Has it had to withstand a hurricane yet?
This sculpture garden has been alive only for a year, so it hasn’t lived through a hurricane yet. But I’ve gone there a lot and it’s cool to see people eating lunch, taking work breaks and taking pictures.
Early on, I would’ve thought it would be a place for kids to play. But I’ll see an elderly man taking selfies with the sculptures. It makes me happy that their imagination is going and my sculptures and park are in conversation with people.
Is there anything you would’ve done differently?
It all turned out, luckily, exactly how I had hoped. And of course, now I have ideas for more parks. Next, I want to do a really big one! I’m in talks with multiple cities and countries to figure out where the next park will be.
What are your three top takeaways for park designers?
1. Before I even thought about what I was going to do, I had to think about the landscape. It was partial shade, heat, salt water, flooding. I had to take all of that into consideration.The fiberglass sculptures had to be engineered and rated for hurricanes and engineered with metal plates so that we can unbolt from a side hatch and easily move [them], but [also] will never move during a storm — the last thing we want is a sculpture flying into someone’s house. We had to have an engineer design for all possible weather conditions.
2. Design for the world we are living in, not the one we wish we were living in. You have to consider the human element: Are people going to try to sleep in my park? Or is it a place where everyone tries to skate on it?
3. Graffiti! We had to put a special clear coat on all the surfaces so the graffiti could be taken off. You have to expand your mind to consider every type of human being who is going to be in the park and accept it — whatever can happen might. You have to prepare for the worst. People are going to write, sleep and skate all over it, so design for it!
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
It’s not perfect, but pretty soon, it’ll be available for under $30,000.
Here’s what you need to know about the rejuvenated Chevrolet Bolt: It’s back, it’s better, and it starts at under $30,000.
Although the revived 2027 Bolt doesn’t officially hit the market until January 2026, GM revealed the new version of the iconic affordable EV at a Wednesday evening event at the Universal Studios backlot in Los Angeles. The assembled Bolt owners and media members drove the new cars past Amity Island from Jaws and around the Old West and New York sets that have served as the backdrops of so many television shows and movies. It was star treatment for a car that, like its predecessor, isn’t the fanciest EV around. But given the giveaway patches that read “Chevy Bolt: Back by popular demand,” it’s clear that GM heard the cries of people who missed having the plucky electric hatchback on the market.
The Bolt died at the height of its powers. The original Bolt EV and Bolt EUV sold in big numbers in the late 2010s and early 2020s, powered by a surprisingly affordable price compared to competitor EVs and an interior that didn’t feel cramped despite its size as a smallish hatchback. In 2023, the year Chevy stopped selling it, the Bolt was the third-best-selling EV in America after Tesla’s top two models.
Yet the original had a few major deficiencies that reflected the previous era of EVs. The most egregious of which was its charging speed that topped out at around 50 kilowatts. Given that today’s high-speed chargers can reach 250 to 350 kilowatts — and an even faster future could be on the way — the Bolt’s pit stops on a road trip were a slog that didn’t live up to its peppy name.
Thankfully, Chevy fixed it. Charging speed now reaches 150 kilowatts. While that figure isn’t anywhere near the 350 kilowatts that’s possible in something like the Hyundai Ioniq 9, it’s a threefold improvement for the Bolt that lets it go from 10% to 80% charged in a respectable 26 minutes. The engineers said they drove a quartet of the new cars down old Route 66 from the Kansas City area, where the Bolt is made, to Los Angeles to demonstrate that the EV was finally ready for such an adventure.
From the outside, the 2027 Bolt is virtually indistinguishable from the old car, but what’s inside is a welcome leap forward. New Bolt has a lithium-ion-phosphate, or LFP battery that holds 65 kilowatt-hours of energy, but still delivers 255 miles of max range because of the EV’s relatively light weight. Whereas older EVs encourage drivers to stop refueling at around 80%, the LFP battery can be charged to 100% regularly without the worry of long-term damage to the battery.
The Bolt is GM’s first EV with the NACS charging standard, the former Tesla proprietary plug, which would allow the little Chevy to visit Tesla Superchargers without an adapter (though its port placement on the front of the driver’s side is backwards from the way older Supercharger stations are built). Now built on GM’s Ultium platform, the Bolt shares its 210-horsepower electric motor with the Chevy Equinox EV and gets vehicle-to-load capability, meaning you’ll be able to tap into its battery energy for other uses such as powering your home.
But it’s the price that’s the real wow factor. Bolt will launch with an RS version that gets the fancier visual accents and starts at $32,000. The Bolt LT that will be available a little later will eventually start as low as $28,995, a figure that includes the destination charge that’s typically slapped on top of a car’s price, to the tune of an extra $1,000 to $2,000 on delivery. Perhaps it’s no surprise that GM revealed this car just a week after the end of the $7,500 federal tax credit for EV purchases (and just a day after Tesla announced its budget versions of the Model Y and Model 3). Bringing in a pretty decent EV at under $30,000 without the help of a big tax break is a pretty big deal.
The car is not without compromises. Plenty of Bolt fans are aghast that Chevy abandoned the Apple CarPlay and Android Auto integrations that worked with the first Bolt in favor of GM’s own built-in infotainment system as the only option. Although the new Bolt was based on the longer, “EUV” version of the original, this is still a pretty compact car without a ton of storage space behind the back seats. Still, for those who truly need a bigger vehicle, there’s the Chevy Equinox EV.
For as much time as I’ve spent clamoring for truly affordable EVs that could compete with entry-level gas cars on prices, the Bolt’s faults are minor. At $29,000 for an electric vehicle in the U.S., there is practically zero competition until the new Nissan Leaf arrives. The biggest threats to the Bolt are America’s aversion to small cars and the rapid rates of depreciation that could allow someone to buy a much larger, gently used EV for the price of the new Chevy. But the original Bolt found a steady footing among drivers who wanted that somewhat counter-cultural car — and this one is a lot better.
“Old economy” companies like Caterpillar and Williams are cashing in by selling smaller, less-efficient turbines to impatient developers.
From the perspective of the stock market, you’re either in the AI business or you’re not. If you build the large language models pushing out the frontiers of artificial intelligence, investors love it. If you rent out the chips the large language models train on, investors love it. If you supply the servers that go in the data centers that power the large language models, investors love it. And, of course, if you design the chips themselves, investors love it.
But companies far from the software and semiconductor industry are profiting from this boom as well. One example that’s caught the market’s fancy is Caterpillar, better known for its scale-defying mining and construction equipment, which has become a “secular winner” in the AI boom, writes Bloomberg’s Joe Weisenthal.
Typically construction businesses do well when the overall economy is doing well — that is, they don’t typically take off with a major technological shift like AI. Now, however, Caterpillar has joined the ranks of the “picks and shovels” businesses capitalizing on the AI boom thanks to its gas turbine business, which is helping power OpenAI’s Stargate data center project in Abilene, Texas.
Just one link up the chain is another classic “old economy” business: Williams Companies, the natural gas infrastructure company that controls or has an interest in over 33,000 miles of pipeline and has been around in some form or another since the early 20th century.
Gas pipeline companies are not supposed to be particularly exciting, either. They build large-scale infrastructure. Their ratemaking is overseen by federal regulators. They pay dividends. The last gas pipeline company that got really into digital technology, well, uh, it was Enron.
But Williams’ shares are up around 28% in the past year — more than Caterpillar. That’s in part, due to its investing billions in powering data centers with behind the meter natural gas.
Last week, Williams announced that it would funnel over $3 billion into two data center projects, bringing its total investments in powering AI to $5 billion. This latest bet, the company said, is “to continue to deliver speed-to-market solutions in grid-constrained markets.”
If we stipulate that the turbines made by Caterpillar are powering the AI boom in a way analogous to the chips designed by Nvidia or AMD and fabricated by TSMC, then Williams, by developing behind the meter gas-fired power plants, is something more like a cloud computing provider or data center developer like CoreWeave, except that its facilities house gas turbines, not semiconductors.
The company has “seen the rapid emergence of the need for speed with respect to energy,” Williams Chief Executive Chad Zamarin said on an August earnings call.
And while Williams is not a traditional power plant developer or utility, it knows its way around natural gas. “We understand pipeline capacity,” Zamarin said on a May earnings call. “We obviously build a lot of pipeline and turbine facilities. And so, bringing all the different pieces together into a solution that is ready-made for a customer, I think, has been truly a differentiator.”
Williams is already behind the Socrates project for Meta in Ohio, described in a securities filing as a $1.6 billion project that will provide 400 megawatts of gas-fired power. That project has been “upsized” to $2 billion and 750 megawatts, according to Morgan Stanley analysts.
Meta CEO Mark Zuckerberg has said that “energy constraints” are a more pressing issue for artificial intelligence development than whether the marginal dollar invested is worth it. In other words, Zuckerberg expects to run out of energy before he runs out of projects that are worth pursuing.
That’s great news for anyone in the business of providing power to data centers quickly. The fact that developers seem to have found their answer in the Williamses and Caterpillars of the world, however, calls into question a key pillar of the renewable industry’s case for itself in a time of energy scarcity — that the fastest and cheapest way to get power for data centers is a mix of solar and batteries.
Just about every renewable developer or clean energy expert I’ve spoken to in the past year has pointed to renewables’ fast timeline and low cost to deploy compared to building new gas-fired, grid-scale generation as a reason why utilities and data centers should prefer them, even absent any concerns around greenhouse gas emissions.
“Renewables and battery storage are the lowest-cost form of power generation and capacity,” Next Era chief executive John Ketchum said on an April earnings call. “We can build these projects and get new electrons on the grid in 12 to 18 months.” Ketchum also said that the price of a gas-fired power plant had tripled, meanwhile lead times for turbines are stretching to the early 2030s.
The gas turbine shortage, however, is most severe for large turbines that are built into combined cycle systems for new power plants that serve the grid.
GE Vernova is discussing delivering turbines in 2029 and 2030. While one manufacturer of gas turbines, Mitsubishi Heavy Industries, has announced that it plans to expand its capacity, the industry overall remains capacity constrained.
But according to Morgan Stanley, Williams can set up behind the meter power plants in 18 months. xAI’s Colossus data center in Memphis, which was initially powered by on-site gas turbines, went from signing a lease to training a large language model in about six months.
These behind the meter plants often rely on cheaper, smaller, simple cycle turbines, which generate electricity just from the burning of natural gas, compared to combined cycle systems, which use the waste heat from the gas turbines to run steam turbines and generate more energy. The GE Vernova 7HA combined cycle turbines that utility Duke Energy buys, for instance, range in output from 290 to 430 megawatts. The simple cycle turbines being placed in Ohio for the Meta data center range in output from about 14 megawatts to 23 megawatts.
Simple cycle turbines also tend to be less efficient than the large combined cycle system used for grid-scale natural gas, according to energy analysts at BloombergNEF. The BNEF analysts put the emissions difference at almost 1,400 pounds of carbon per megawatt-hour for the single turbines, compared to just over 800 pounds for combined cycle.
Overall, Williams is under contract to install 6 gigawatts of behind-the-meter power, to be completed by the first half of 2027, Morgan Stanley analysts write. By comparison, a joint venture between GE Vernova, the independent power producer NRG, and the construction company Kiewit to develop combined cycle gas-fired power plants has a timeline that could stretch into 2032.
The Williams projects will pencil out on their own, the company says, but they have an obvious auxiliary benefit: more demand for natural gas.
Williams’ former chief executive, Alan Armstrong, told investors in a May earnings call that he was “encouraged” by the “indirect business we are seeing on our gas transmission systems,” i.e. how increased natural gas consumption benefits the company’s traditional pipeline business.
Wall Street has duly rewarded Williams for its aggressive moves.
Morgan Stanley analysts boosted their price target for the stock from $70 to $83 after last week’s $3 billion announcement, saying in a note to clients that the company has “shifted from an underappreciated value (impaired terminal value of existing assets) to underappreciated growth (accelerating project pipeline) story.” Mizuho Securities also boosted its price target from $67 to $72, with analyst Gabriel Moreen telling clients that Williams “continues to raise the bar on the scope and potential benefits.”
But at the same time, Moreen notes, “the announcement also likely enhances some investor skepticism around WMB pushing further into direct power generation and, to a lesser extent, prioritizing growth (and growth capex) at the expense of near-term free cash flow and balance sheet.”
In other words, the pipeline business is just like everyone else — torn between prudence in a time of vertiginous economic shifts and wanting to go all-in on the AI boom.
Williams seems to have decided on the latter. “We will be a big beneficiary of the fast rising data center power load,” Armstrong said.
On billions for clean energy, Orsted layoffs, and public housing heat pumps
Current conditions: A tropical rainstorm is forming in the Atlantic that’s forecast to barrel along the East Coast through early next week, threatening major coastal flooding and power outages • Hurricane Priscilla is weakening as it tracks northward toward California • The Caucasus region is sweltering in summer-like heat, with the nation of Georgia enduring temperatures of up to 93 degrees Fahrenheit in October.
Base Power, the Texas power company that leases batteries to homeowners and taps the energy for the grid, on Tuesday announced a $1 billion financing round. The Series C funding is set to supercharge the Austin-based company’s meteoric growth. Since starting just two years ago, Base has deployed more than 100 megawatts of residential battery capacity, making it one of the fastest growing distributed energy companies in the nation. The company now plans to build a factory in the old headquarters of the Austin American-Statesman, the leading daily newspaper in the Texan capital. The funding round included major investors who are increasing their stakes, including Valor Equity Partners, Thrive Capital, and Andreessen Horowitz, and at least nine new venture capital investors, including Lowercarbon, Avenir, and Positive Sum. “The chance to reinvent our power system comes once in a generation,” Zach Dell, chief executive and co-founder of Base Power, said in a statement. “The challenge ahead requires the best engineers and operators to solve it and we’re scaling the team to make our abundant energy future a reality.”
The deal came a day after Brookfield Asset Management, the Canadian-American private equity giant, raised a record $23.5 billion for its clean energy fund. At least $5 billion has already been spent on investments such as the renewable power operator Neoen, the energy developer Geronimo Power, and the Indian wind and solar giant Evren. “Energy demand is growing fast, driven by the growth of artificial intelligence as well as electrification in industry and transportation,” Connor Teskey, Brookfield’s president and renewable power chief, said in a press release. “Against this backdrop we need an ‘any and all’ approach to energy investment that will continue to favor low carbon resources.”
Orsted has been facing down headwinds for months. The Danish offshore wind giant has absorbed the Trump administration’s wrath as the White House deployed multiple federal agencies to thwart progress on building seaward turbines in the Northeastern U.S. Then lower-than-forecast winds this year dinged Orsted’s projected earnings for 2025. When the company issued new stock to fund its efforts to fight back against Trump, the energy giant was forced to sell the shares at a steep discount, as I wrote in this newsletter last month. Despite all that, the company has managed to raise the money it needed. On Wednesday, The Wall Street Journal reported that Orsted had raised $9.4 billion. Existing shareholders subscribed for 99.3% of the new shares on offer, but demand for the remaining shares was “extraordinarily high,” the company said.
That wasn’t enough to stave off job cuts. Early Thursday morning, the company announced plans to lay off 2,000 employees between now and 2027. The cuts represented roughly one-quarter of the company’s 8,000-person global workforce. “This is a necessary consequence of our decision to focus our business and the fact that we'll be finalizing our large construction portfolio in the coming years — which is why we'll need fewer employees,” Rasmus Errboe, Orsted’s chief executive, said in a statement published on CNBC. "At the same time, we want to create a more efficient and flexible organization and a more competitive Orsted, ready to bid on new value-accretive offshore wind projects.”
California Governor Gavin Newsom. Mario Tama/Getty Images
California operates the world’s largest geothermal power station, The Geysers, and generates up to 5% of its power from the Earth’s heat. But the state is far behind its neighbors on developing new plants based on next-generation technology. Most of the startups racing to commercialize novel methods are headquartered or building pilot plants in states such as Utah, Nevada, and Texas. A pair of bills to make doing business in California easier for geothermal companies was supposed to change that. Yet while Governor Gavin Newsom signed one statute into law that makes it easier for state regulators to certify geothermal plants, he vetoed a permitting reform bill to which the industry had pegged its hopes. “Every geothermal developer and energy org I talked to was excited about this bill,” Thomas Hochman, who heads the energy program at the right-leaning Foundation for American Innovation, wrote in a post on X. “The legislature did everything right, passing it unanimously. They even reworked it to accommodate certain classic California concerns, such as prevailing wage requirements.”
In a letter announcing his veto, the governor claimed that the law would have added new fees for geothermal projects. But an executive at Zanskar — the startup that, as Heatmap’s Katie Brigham reported last month, is using new technology to locate and tap into conventional geothermal resources — called the governor’s argument “weak sauce.” Far from burdening the industry, Zanskar co-founder Joel Edwards said on X, “this was a clean shot to accelerate geothermal today, and he whiffed it.”
Last month, Generate Capital trumpeted the appointment of its first new chief executive in its 11-year history as the leading infrastructure investment firm sought to realign its approach to survive a tumultuous time in clean-energy financing. Less publicly, as Katie wrote in a scoop last night, it also kicked off company-wide job cuts. In an interview with Katie, Jonah Goldman, the firm’s head of external affairs, said the company “grew quickly and made some mistakes,” and now planned to lay off 50 people.
Generate once invested in “leading-edge technologies,” according to co-founder Jigar Shah, who left the firm to serve as the head of the Biden-era DOE Loan Programs Office. That included investments in projects involving fuel cells, anaerobic digesters, and battery storage. But from the outside, he said on the Open Circuits podcast he now co-hosts, the firm appears to have moved away from taking these riskier but potentially more lucrative bets. “They ended up with 38 people in their capital markets team, and their capital markets team went out to the marketplace and said, Hey, we have all this stuff to sell. And the people that they went to said, Well, that’s interesting, but what we really would love is boring community solar.”
Three of New England’s largest public housing agencies signed deals with the heat pump manufacturer Gradient to replace aging electric heaters and air conditioners with the company’s 120-volt, two-way units that provide both heating and cooling. The Boston Housing Authority, New England’s largest public housing agency, will kick off the deal by installing 100 all-weather, two-way units that both heat and cool at the Hassan Apartments, a complex for seniors and adults with disabilities in Boston’s Mattapan neighborhood. The housing authorities in neighboring Chelsea and Lynn — two formerly industrial, working-class cities just outside Boston — will follow the same approach.
Public housing agencies have long served a vital role in helping to popularize new, more efficient appliances. The New York City Housing Authority, for example, is credited with creating the market for efficient mini fridges in the 1990s. Last year, NYCHA — the nation’s largest public housing system — signed a similar deal with Gradient for heat pumps. Months later, as Heatmap’s Emily Pontecorvo exclusively reported at the time, NYCHA picked a winner in its $32 million contest for an efficient new induction stove for its apartments.
Three chemists — Susumu Kitagawa, Richard Robson, and Omar Yaghi — won the Nobel Prize for “groundbreaking discoveries” that "may contribute to solving some of humankind’s greatest challenges, from pollution to water scarcity.” Just a few grams of the so-called molecular organic frameworks the scientists pioneered could have as much surface area as a soccer field, which can be used to lock gas molecules in place in carbon capture or harvest freshwater from the atmosphere.