You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Utilities in the Southeast, especially, may have to rethink.

Utilities all over the country have proposed to build a slew of new natural gas-fired power plants in recent months, citing an anticipated surge in electricity demand from data centers, manufacturing, and electric vehicles. But on Thursday, the Environmental Protection Agency finalized new emissions limits on power plants that throw many of those plans into question.
The rules require that newly built natural gas plants that are designed to help meet the grid’s daily, minimum needs, will have to slash their carbon emissions by 90% by 2032, an amount that can only be achieved with the use of carbon capture equipment. But carbon capture will be cost-prohibitive in many cases — especially in the Southeast, where much of that expected demand growth is concentrated, but which lacks the geology necessary to store captured carbon underground.
“With this rule, it’s kind of back to square one,” Tyler Norris, an electric power systems researcher, told me. “I think most likely, you're gonna see the regulators really push back and call upon them to redo all their modeling.”
This is the first federal mandate to curb carbon from the electricity sector since President Obama’s 2015 Clean Power Plan, which never went into effect. Despite growing investment in renewable energy, power generation is responsible for about a quarter of the country’s greenhouse gas emissions.
The Biden administration is guaranteed to face legal challenges from Republican attorneys general and electric utilities. The Edison Electric Institute, the largest trade group for electric utilities, asserted that carbon capture “is not yet ready for full-scale, economy-wide deployment” and expressed worry over the timelines for permitting and financing. Duke Energy, one of the Southeast’s largest utilities, issued a statement after the rule came out saying that it “presents significant challenges to customer reliability and affordability – as well as limits the potential of our ability to be a global leader in chips, artificial intelligence and advanced manufacturing,” echoing concerns from the National Rural Electric Cooperative Association. The EPA, however, maintains that recent federal investments in carbon capture — including an $85 tax credit for every ton of CO2 captured and stored — render it both “technically feasible and cost-reasonable.”
As part of the same announcement on Thursday, the Environmental Protection Agency finalized several additional regulations to rein in air and water pollution from coal-fired power plants, including mercury and toxic metals, wastewater, and coal ash, in addition to carbon emissions. During a call with reporters on Wednesday, EPA administrator Michael Regan argued that by finalizing all of these rules at once, the agency was providing the highest degree of regulatory certainty for the power industry. “This approach is both strategic and innovative,” he said. “We are ensuring that the power sector has the information needed to prepare for the future with confidence, enabling strong investment and planning decisions.”
Initially the EPA was going to require emissions cuts at existing natural gas plants, too, but the agency announced in February that it was delaying that rule in order to develop a “stronger, more durable approach.” EPA officials offered no new details on the timeline on Wednesday.
The two other biggest changes the agency made between the proposed and final rules were to push forward and shorten the timeline for coal plant compliance, and to lower the threshold determining how many natural gas plants have to meet the toughest standard — which means more plants will have to control their emissions.
The agency projects the new standards will prevent a total of nearly 1.4 billion metric tons of carbon emissions through 2047, which is about equal to the amount the power sector emits in a year. That’s significant, but it’s far less than the clean car rules the EPA finalized in March, which are expected to avoid 7.2 billion metric tons of carbon between 2027 and 2055. The EPA also estimates that the power plant rules will produce $370 billion in climate and health benefits over the next two decades, in terms of avoided deaths, hospital visits, and asthma cases.
The new emissions limits for coal plants are tied to how much longer a given coal plant is slated to operate. Those that plan to shut down before 2032 are exempt altogether. Those that plan to retire by 2039 have to reduce the amount of CO2 they emit per megawatt hour by replacing some of the coal they burn with natural gas beginning in 2030. Coal plants with no plans to retire before 2039 are subject to the highest standard, requiring a 90% drop in emissions by 2032 — which would require capturing the emissions and storing them underground.
These standards are certain to lead to more plant closures, but coal plants are already shutting down at a rapid pace purely based on economics and the fact that so many of them are so old. Getting the rules in place is less about tackling coal emissions, per se, and more about “getting utilities thinking more proactive about how they are going to replace these coal plants,” Michelle Solomon, a senior policy advisor at the nonprofit think tank Energy Innovation, told me.
Gas, however, is another story. Utilities have been sounding the alarm about a coming surge in electricity demand. Electric companies throughout the Southeast, as well as Texas, Wisconsin, and elsewhere, have proposed building dozens of new natural gas plants, arguing that renewables and batteries aren’t up to the task of providing a reliable, dispatchable source of power.
Whether that coming demand is real or inflated is a matter of debate. But regardless, clean energy researchers and advocates dispute the idea that gas plants are needed for reliability.
“Utilities are seeing an additional need for peak capacity, not an additional need for capacity throughout the day,” Solomon told me, asserting it was possible to meet those peaks with solar and storage, or even by improving efficiency so that the peaks aren’t as high. The trick is making sure we can bring those resources online fast enough. To that end, the Department of Energy also announced a number of initiatives to boost transmission infrastructure on Thursday.
The EPA’s regulations for new gas plants are tied to how frequently they are intended to operate. Plants that are designed to switch on during times of peak demand — a variety called a “simple cycle” combustion turbine plant — won’t have to do anything differently. Plants that run a bit more often — so-called “intermediate” resources that might run daily from mid-morning till the evening, at 20% to 40% of their annual capacity — will be required to install the most efficient equipment available on the market. Any that operate more frequently than that will be subject to the 90% emissions reduction standard by 2032. This primarily affects “combined cycle” plants, which are more efficient than simple cycle but can’t ramp up and down as quickly or easily.
Utilities with recently hatched plans to build simple cycle plants, including Georgia Power, are unlikely to be affected by the rule at all. “I do think that makes sense, given the focus of these rules, which are on carbon emissions,” Amanda Levin, a director of policy analysis at the Natural Resources Defense Council, told me. “Given the frequency and type of operation for [simple cycle], they’re not as significant as sources of CO2.”
But those utilities that are planning to build combined cycle projects — and many of them are — could be forced to go back to the drawing board. Norris noted that Duke Energy, which serves customers in North and South Carolina and has proposed building more than 6 gigawatts of combined cycle capacity, will be especially exposed.
For combined cycle plants, there are essentially two options to comply: Install carbon capture, or plan to run your plant a lot less frequently. In either case, it “dramatically increases the levelized cost of those units,” Norris told me. “So I think any reasonable regulator would say we've got to go back and do a much more rigorous comparative analysis to other least-cost solutions.”
Solomon has a more cynical view of the recent panic over electricity demand and rush to build new gas plants. “We’ve known that demand is growing, is going to grow, for a long time,” she told me. “The fact that there’s quite a lot of news about this just as the rules are coming out is unlikely to be a total coincidence.”
Editor’s note: This story has been updated to reflect statements from Duke Energy and trade groups.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
According to a new analysis shared exclusively with Heatmap, coal’s equipment-related outage rate is about twice as high as wind’s.
The Trump administration wants “beautiful clean coal” to return to its place of pride on the electric grid because, it says, wind and solar are just too unreliable. “If we want to keep the lights on and prevent blackouts from happening, then we need to keep our coal plants running. Affordable, reliable and secure energy sources are common sense,” Chris Wright said on X in July, in what has become a steady drumbeat from the administration that has sought to subsidize coal and put a regulatory straitjacket around solar and (especially) wind.
This has meant real money spent in support of existing coal plants. The administration’s emergency order to keep Michigan’s J.H. Campbell coal plant open (“to secure grid reliability”), for example, has cost ratepayers served by Michigan utility Consumers Energy some $80 million all on its own.
But … how reliable is coal, actually? According to an analysis by the Environmental Defense Fund of data from the North American Electric Reliability Corporation, a nonprofit that oversees reliability standards for the grid, coal has the highest “equipment-related outage rate” — essentially, the percentage of time a generator isn’t working because of some kind of mechanical or other issue related to its physical structure — among coal, hydropower, natural gas, nuclear, and wind. Coal’s outage rate was over 12%. Wind’s was about 6.6%.
“When EDF’s team isolated just equipment-related outages, wind energy proved far more reliable than coal, which had the highest outage rate of any source NERC tracks,” EDF told me in an emailed statement.
Coal’s reliability has, in fact, been decreasing, Oliver Chapman, a research analyst at EDF, told me.
NERC has attributed this falling reliability to the changing role of coal in the energy system. Reliability “negatively correlates most strongly to capacity factor,” or how often the plant is running compared to its peak capacity. The data also “aligns with industry statements indicating that reduced investment in maintenance and abnormal cycling that are being adopted primarily in response to rapid changes in the resource mix are negatively impacting baseload coal unit performance.” In other words, coal is struggling to keep up with its changing role in the energy system. That’s due not just to the growth of solar and wind energy, which are inherently (but predictably) variable, but also to natural gas’s increasing prominence on the grid.
“When coal plants are having to be a bit more varied in their generation, we're seeing that wear and tear of those plants is increasing,” Chapman said. “The assumption is that that's only going to go up in future years.”
The issue for any plan to revitalize the coal industry, Chapman told me, is that the forces driving coal into this secondary role — namely the economics of running aging plants compared to natural gas and renewables — do not seem likely to reverse themselves any time soon.
Coal has been “sort of continuously pushed a bit more to the sidelines by renewables and natural gas being cheaper sources for utilities to generate their power. This increased marginalization is going to continue to lead to greater wear and tear on these plants,” Chapman said.
But with electricity demand increasing across the country, coal is being forced into a role that it might not be able to easily — or affordably — play, all while leading to more emissions of sulfur dioxide, nitrogen oxide, particulate matter, mercury, and, of course, carbon dioxide.
The coal system has been beset by a number of high-profile outages recently, including at the largest new coal plant in the country, Sandy Creek in Texas, which could be offline until early 2027, according to the Texas energy market ERCOT and the Institute for Energy Economics and Financial Analysis.
In at least one case, coal’s reliability issues were cited as a reason to keep another coal generating unit open past its planned retirement date.
Last month, Colorado Representative Will Hurd wrote a letter to the Department of Energy asking for emergency action to keep Unit 2 of the Comanche coal plant in Pueblo, Colorado open past its scheduled retirement at the end of his year. Hurd cited “mechanical and regulatory constraints” for the larger Unit 3 as a justification for keeping Unit 2 open, to fill in the generation gap left by the larger unit. In a filing by Xcel and several Colorado state energy officials also requesting delaying the retirement of Unit 2, they disclosed that the larger Unit 3 “experienced an unplanned outage and is offline through at least June 2026.”
Reliability issues aside, high electricity demand may turn into short-term profits at all levels of the coal industry, from the miners to the power plants.
At the same time the Trump administration is pushing coal plants to stay open past their scheduled retirement, the Energy Information Administration is forecasting that natural gas prices will continue to rise, which could lead to increased use of coal for electricity generation. The EIA forecasts that the 2025 average price of natural gas for power plants will rise 37% from 2024 levels.
Analysts at S&P Global Commodity Insights project “a continued rebound in thermal coal consumption throughout 2026 as thermal coal prices remain competitive with short-term natural gas prices encouraging gas-to-coal switching,” S&P coal analyst Wendy Schallom told me in an email.
“Stronger power demand, rising natural gas prices, delayed coal retirements, stockpiles trending lower, and strong thermal coal exports are vital to U.S. coal revival in 2025 and 2026.”
And we’re all going to be paying the price.
Rural Marylanders have asked for the president’s help to oppose the data center-related development — but so far they haven’t gotten it.
A transmission line in Maryland is pitting rural conservatives against Big Tech in a way that highlights the growing political sensitivities of the data center backlash. Opponents of the project want President Trump to intervene, but they’re worried he’ll ignore them — or even side with the data center developers.
The Piedmont Reliability Project would connect the Peach Bottom nuclear plant in southern Pennsylvania to electricity customers in northern Virginia, i.e.data centers, most likely. To get from A to B, the power line would have to criss-cross agricultural lands between Baltimore, Maryland and the Washington D.C. area.
As we chronicle time and time again in The Fight, residents in farming communities are fighting back aggressively – protesting, petitioning, suing and yelling loudly. Things have gotten so tense that some are refusing to let representatives for Piedmont’s developer, PSEG, onto their properties, and a court battle is currently underway over giving the company federal marshal protection amid threats from landowners.
Exacerbating the situation is a quirk we don’t often deal with in The Fight. Unlike energy generation projects, which are usually subject to local review, transmission sits entirely under the purview of Maryland’s Public Service Commission, a five-member board consisting entirely of Democrats appointed by current Governor Wes Moore – a rumored candidate for the 2028 Democratic presidential nomination. It’s going to be months before the PSC formally considers the Piedmont project, and it likely won’t issue a decision until 2027 – a date convenient for Moore, as it’s right after he’s up for re-election. Moore last month expressed “concerns” about the project’s development process, but has brushed aside calls to take a personal position on whether it should ultimately be built.
Enter a potential Trump card that could force Moore’s hand. In early October, commissioners and state legislators representing Carroll County – one of the farm-heavy counties in Piedmont’s path – sent Trump a letter requesting that he intervene in the case before the commission. The letter followed previous examples of Trump coming in to kill planned projects, including the Grain Belt Express transmission line and a Tennessee Valley Authority gas plant in Tennessee that was relocated after lobbying from a country rock musician.
One of the letter’s lead signatories was Kenneth Kiler, president of the Carroll County Board of Commissioners, who told me this lobbying effort will soon expand beyond Trump to the Agriculture and Energy Departments. He’s hoping regulators weigh in before PJM, the regional grid operator overseeing Mid-Atlantic states. “We’re hoping they go to PJM and say, ‘You’re supposed to be managing the grid, and if you were properly managing the grid you wouldn’t need to build a transmission line through a state you’re not giving power to.’”
Part of the reason why these efforts are expanding, though, is that it’s been more than a month since they sent their letter, and they’ve heard nothing but radio silence from the White House.
“My worry is that I think President Trump likes and sees the need for data centers. They take a lot of water and a lot of electric [power],” Kiler, a Republican, told me in an interview. “He’s conservative, he values property rights, but I’m not sure that he’s not wanting data centers so badly that he feels this request is justified.”
Kiler told me the plan to kill the transmission line centers hinges on delaying development long enough that interest rates, inflation and rising demand for electricity make it too painful and inconvenient to build it through his resentful community. It’s easy to believe the federal government flexing its muscle here would help with that, either by drawing out the decision-making or employing some other as yet unforeseen stall tactic. “That’s why we’re doing this second letter to the Secretary of Agriculture and Secretary of Energy asking them for help. I think they may be more sympathetic than the president,” Kiler said.
At the moment, Kiler thinks the odds of Piedmont’s construction come down to a coin flip – 50-50. “They’re running straight through us for data centers. We want this project stopped, and we’ll fight as well as we can, but it just seems like ultimately they’re going to do it,” he confessed to me.
Thus is the predicament of the rural Marylander. On the one hand, Kiler’s situation represents a great opportunity for a GOP president to come in and stand with his base against a would-be presidential candidate. On the other, data center development and artificial intelligence represent one of the president’s few economic bright spots, and he has dedicated copious policy attention to expanding growth in this precise avenue of the tech sector. It’s hard to imagine something less “energy dominance” than killing a transmission line.
The White House did not respond to a request for comment.
Plus more of the week’s most important fights around renewable energy.
1. Wayne County, Nebraska – The Trump administration fined Orsted during the government shutdown for allegedly killing bald eagles at two of its wind projects, the first indications of financial penalties for energy companies under Trump’s wind industry crackdown.
2. Ocean County, New Jersey – Speaking of wind, I broke news earlier this week that one of the nation’s largest renewable energy projects is now deceased: the Leading Light offshore wind project.
3. Dane County, Wisconsin – The fight over a ginormous data center development out here is turning into perhaps one of the nation’s most important local conflicts over AI and land use.
4. Hardeman County, Texas – It’s not all bad news today for renewable energy – because it never really is.