You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Utilities in the Southeast, especially, may have to rethink.

Utilities all over the country have proposed to build a slew of new natural gas-fired power plants in recent months, citing an anticipated surge in electricity demand from data centers, manufacturing, and electric vehicles. But on Thursday, the Environmental Protection Agency finalized new emissions limits on power plants that throw many of those plans into question.
The rules require that newly built natural gas plants that are designed to help meet the grid’s daily, minimum needs, will have to slash their carbon emissions by 90% by 2032, an amount that can only be achieved with the use of carbon capture equipment. But carbon capture will be cost-prohibitive in many cases — especially in the Southeast, where much of that expected demand growth is concentrated, but which lacks the geology necessary to store captured carbon underground.
“With this rule, it’s kind of back to square one,” Tyler Norris, an electric power systems researcher, told me. “I think most likely, you're gonna see the regulators really push back and call upon them to redo all their modeling.”
This is the first federal mandate to curb carbon from the electricity sector since President Obama’s 2015 Clean Power Plan, which never went into effect. Despite growing investment in renewable energy, power generation is responsible for about a quarter of the country’s greenhouse gas emissions.
The Biden administration is guaranteed to face legal challenges from Republican attorneys general and electric utilities. The Edison Electric Institute, the largest trade group for electric utilities, asserted that carbon capture “is not yet ready for full-scale, economy-wide deployment” and expressed worry over the timelines for permitting and financing. Duke Energy, one of the Southeast’s largest utilities, issued a statement after the rule came out saying that it “presents significant challenges to customer reliability and affordability – as well as limits the potential of our ability to be a global leader in chips, artificial intelligence and advanced manufacturing,” echoing concerns from the National Rural Electric Cooperative Association. The EPA, however, maintains that recent federal investments in carbon capture — including an $85 tax credit for every ton of CO2 captured and stored — render it both “technically feasible and cost-reasonable.”
As part of the same announcement on Thursday, the Environmental Protection Agency finalized several additional regulations to rein in air and water pollution from coal-fired power plants, including mercury and toxic metals, wastewater, and coal ash, in addition to carbon emissions. During a call with reporters on Wednesday, EPA administrator Michael Regan argued that by finalizing all of these rules at once, the agency was providing the highest degree of regulatory certainty for the power industry. “This approach is both strategic and innovative,” he said. “We are ensuring that the power sector has the information needed to prepare for the future with confidence, enabling strong investment and planning decisions.”
Initially the EPA was going to require emissions cuts at existing natural gas plants, too, but the agency announced in February that it was delaying that rule in order to develop a “stronger, more durable approach.” EPA officials offered no new details on the timeline on Wednesday.
The two other biggest changes the agency made between the proposed and final rules were to push forward and shorten the timeline for coal plant compliance, and to lower the threshold determining how many natural gas plants have to meet the toughest standard — which means more plants will have to control their emissions.
The agency projects the new standards will prevent a total of nearly 1.4 billion metric tons of carbon emissions through 2047, which is about equal to the amount the power sector emits in a year. That’s significant, but it’s far less than the clean car rules the EPA finalized in March, which are expected to avoid 7.2 billion metric tons of carbon between 2027 and 2055. The EPA also estimates that the power plant rules will produce $370 billion in climate and health benefits over the next two decades, in terms of avoided deaths, hospital visits, and asthma cases.
The new emissions limits for coal plants are tied to how much longer a given coal plant is slated to operate. Those that plan to shut down before 2032 are exempt altogether. Those that plan to retire by 2039 have to reduce the amount of CO2 they emit per megawatt hour by replacing some of the coal they burn with natural gas beginning in 2030. Coal plants with no plans to retire before 2039 are subject to the highest standard, requiring a 90% drop in emissions by 2032 — which would require capturing the emissions and storing them underground.
These standards are certain to lead to more plant closures, but coal plants are already shutting down at a rapid pace purely based on economics and the fact that so many of them are so old. Getting the rules in place is less about tackling coal emissions, per se, and more about “getting utilities thinking more proactive about how they are going to replace these coal plants,” Michelle Solomon, a senior policy advisor at the nonprofit think tank Energy Innovation, told me.
Gas, however, is another story. Utilities have been sounding the alarm about a coming surge in electricity demand. Electric companies throughout the Southeast, as well as Texas, Wisconsin, and elsewhere, have proposed building dozens of new natural gas plants, arguing that renewables and batteries aren’t up to the task of providing a reliable, dispatchable source of power.
Whether that coming demand is real or inflated is a matter of debate. But regardless, clean energy researchers and advocates dispute the idea that gas plants are needed for reliability.
“Utilities are seeing an additional need for peak capacity, not an additional need for capacity throughout the day,” Solomon told me, asserting it was possible to meet those peaks with solar and storage, or even by improving efficiency so that the peaks aren’t as high. The trick is making sure we can bring those resources online fast enough. To that end, the Department of Energy also announced a number of initiatives to boost transmission infrastructure on Thursday.
The EPA’s regulations for new gas plants are tied to how frequently they are intended to operate. Plants that are designed to switch on during times of peak demand — a variety called a “simple cycle” combustion turbine plant — won’t have to do anything differently. Plants that run a bit more often — so-called “intermediate” resources that might run daily from mid-morning till the evening, at 20% to 40% of their annual capacity — will be required to install the most efficient equipment available on the market. Any that operate more frequently than that will be subject to the 90% emissions reduction standard by 2032. This primarily affects “combined cycle” plants, which are more efficient than simple cycle but can’t ramp up and down as quickly or easily.
Utilities with recently hatched plans to build simple cycle plants, including Georgia Power, are unlikely to be affected by the rule at all. “I do think that makes sense, given the focus of these rules, which are on carbon emissions,” Amanda Levin, a director of policy analysis at the Natural Resources Defense Council, told me. “Given the frequency and type of operation for [simple cycle], they’re not as significant as sources of CO2.”
But those utilities that are planning to build combined cycle projects — and many of them are — could be forced to go back to the drawing board. Norris noted that Duke Energy, which serves customers in North and South Carolina and has proposed building more than 6 gigawatts of combined cycle capacity, will be especially exposed.
For combined cycle plants, there are essentially two options to comply: Install carbon capture, or plan to run your plant a lot less frequently. In either case, it “dramatically increases the levelized cost of those units,” Norris told me. “So I think any reasonable regulator would say we've got to go back and do a much more rigorous comparative analysis to other least-cost solutions.”
Solomon has a more cynical view of the recent panic over electricity demand and rush to build new gas plants. “We’ve known that demand is growing, is going to grow, for a long time,” she told me. “The fact that there’s quite a lot of news about this just as the rules are coming out is unlikely to be a total coincidence.”
Editor’s note: This story has been updated to reflect statements from Duke Energy and trade groups.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The storm currently battering Jamaica is the third Category 5 to form in the Atlantic Ocean this year, matching the previous record.
As Hurricane Melissa cuts its slow, deadly path across Jamaica on its way to Cuba, meteorologists have been left to marvel and puzzle over its “rapid intensification” — from around 70 miles per hour winds on Sunday to 185 on Tuesday, from tropical storm to Category 5 hurricane in just a few days, from Category 2 occurring in less than 24 hours.
The storm is “one of the most powerful hurricane landfalls on record in the Atlantic basin,” the National Weather Service said Tuesday afternoon. Though the NWS expected “continued weakening” as the storm crossed Jamaica, “Melissa is expected to reach southeastern Cuba as an extremely dangerous major hurricane, and it will still be a strong hurricane when it moves across the southeastern Bahamas.”
So how did the storm get so strong, so fast? One reason may be the exceptionally warm Caribbean and Atlantic.
“The part of the Atlantic where Hurricane Melissa is churning is like a boiler that has been left on for too long. The ocean waters are around 30 degrees Celsius, 2 to 3 degrees above normal, and the warmth runs deep,” University of Redding research scientist Akshay Deoras said in a public statement. (Those exceedingly warm temperatures are “up to 700 times more likely due to human-caused climate change,” the climate communication group Climate Central said in a press release.)
Based on Intergovernmental Panel on Climate Change reports, the National Oceanic and Atmospheric Administration concluded in 2024 that “tropical cyclone intensities globally are projected to increase” due to anthropogenic climate change, and that “rapid intensification is also projected to increase.”
NOAA also noted that research suggested “an observed increase in the probability of rapid intensification” for tropical cyclones from 1982 to 2017 The review was still circumspect, however, labeling “increased intensities” and “rapid intensification” as “examples of possible emerging human influences.”
What is well known is that hurricanes require warm water to form — at least 80 degrees Fahrenheit, according to NOAA. “As long as the base of this weather system remains over warm water and its top is not sheared apart by high-altitude winds, it will strengthen and grow.”
A 2023 paper by hurricane researcher Andra Garner argued that between 1971 and 2020, rates of intensification of Atlantic tropical storms “have already changed as anthropogenic greenhouse gas emissions have warmed the planet and oceans,” and specifically that the number of these storms that intensify from Category 1 or weaker “into a major hurricane” — as Melissa did so quickly — “has more than doubled in the modern era relative to the historical era.”
“Hurricane Melissa has been astonishing to watch — even as someone who studies how these storms are impacted by a warming climate, and as someone who knows that this kind of dangerous storm is likely to become more common as we warm the planet,” Garner told me by email. She likened the warm ocean waters to “an extra shot of caffeine in your morning coffee — it’s not only enough to get the storm going, it’s an extra boost that can really super-charge the storm.”
This year has been an outlier for the Atlantic with three Category 5 storms, University of Miami senior research associate Brian McNoldy wrote on his blog. “For only the second time in recorded history, an Atlantic season has produced three Category 5 hurricanes,” with wind speeds reaching and exceeding 157 miles per hour, he wrote. “The previous year was 2005. This puts 2025 in an elite class of hurricane seasons. It also means that nearly 7% of all known Category 5 hurricanes have occurred just in this year.” One of those Category 5 storms in 2005 was Hurricane Katrina.
Jamaican emergency response officials said that thousands of people were already in shelters amidst storm surge, flooding, power outages, and landslides. Even as the center of the storm passed over Jamaica Tuesday evening, the National Weather Service warned that “damaging winds, catastrophic flash flooding and life-threatening storm surge continues in Jamaica.”
With Trump turning the might of the federal government against the decarbonization economy, these investors are getting ready to consolidate — and, hopefully, profit.
Since Trump’s inauguration, investors have been quick to remind me that some of the world’s strongest, most resilient companies have emerged from periods of uncertainty, taking shape and cementing their market position amid profound economic upheaval.
On the one hand, this can sound like folks grasping at optimism during a time when Washington is taking a hammer to both clean energy policies and valuable sources of government funding. But on the other hand — well, it’s true. Google emerged from the dot-com crash with its market lead solidified, Airbnb launched amid the global financial crisis, and Sunrun rose to dominance after the first clean tech bubble burst.
The circumstances may change, but behind all of these against-the-odds successes are investors who saw opportunity where others saw risk. In the climate tech landscape of 2025, well-capitalized investors are eyeing some of the more mature sectors being battered by federal policy or market uncertainty — think solar, wind, biogas, and electric transportation — rather than the fresh-faced startups pursuing more cutting edge tech.
“History does not repeat, but it certainly rhymes,” Andrew Beebe, managing director at Obvious Ventures, told me. He was working as the chief commercial officer at the solar company Suntech Power when the first climate tech bubble collapsed in the wake of the 2008 financial crisis. Back then, venture capital and project financing dried up instantly, as banks and investors faced heavy losses from their exposure to risky assets. This time around, “there’s plenty of capital at all stages of venture,” as well as infrastructure investing, he said. That means firms can afford to swoop in to finance or acquire undervalued startups and established companies alike.
“I think you’re gonna see a lot of projects in development change hands,” Beebe told me.
Investors don’t generally publicize when the companies or projects that they’re backing become “distressed assets,” i.e. are in financial trouble, nor do they broadcast when their explicit goal is to turn said projects around. But that’s often what opportunistic investing entails.
“As investors in the energy and infrastructure space — which is inherently in transition — we take it as a very important point of our strategy to be opportunistic,” Giulia Siccardo, a managing director at Quinbrook, told me. (Prior to joining the investment firm, Siccardo was director of the Department of Energy’s Office of Manufacturing & Energy Supply Chains under President Biden.)
Quinbrook sees opportunities in biogas and renewable natural gas, a sector that once enjoyed “very cushioned margins” thanks to investor interest in corporate sustainability, Siccardo told me, but which has lately gone into a “rapid decline.” But she’s also looking at solar and storage, where developers are rushing to build projects before tax credits expire, as well as grid and transmission infrastructure, given the dire need for upgrades and buildout as load growth increases.
As of now, the only investment Quinbrook has explicitly described as opportunistic is its acquisition of a biomethane facility in Junction City, Oregon. When it opened in 2013, the facility used food waste — which otherwise would have emitted methane in a landfill — to produce renewable biogas for clean electricity generation. But after Shell acquired the plant, it switched to converting cow manure and agricultural residue into renewable natural gas for heavy-duty transportation fuels, a process that it’s operated commercially since 2021. Siccardo declined to provide information about the plant’s performance at the time of Quinbrook’s acquisition, though presumably, it has yet to reach its total production capacity of 730,000 million British thermal units per year — enough to supply about 12,000 U.S. households.
The extension of the clean fuel production tax credit, plus the potential for hyperscalers to purchase RNG credits, are still driving demand, however. And that’s increased Siccardo’s confidence in pursuing investments and acquisitions in the space. “That’s a market that, from a policy standpoint, has actually been pretty stable — and you might even say favored — by the One Big Beautiful Bill relative to other technologies,” she explained.
Solar, meanwhile, is still cheap and quick to deploy, with or without the tax credits, Siccardo told me. “If you strip away all subsidies, and are just looking at, what is the technology that’s delivering the lowest cost electron, and which technology has the least supply chain bottlenecks right now in North America —- that drives you to solar and storage,” she said.
Another leading infrastructure investment firm, Generate Capital, is also looking to cash in on the moment. After replacing its CEO and enacting company-wide layoffs, Generate’s head of external affairs, Jonah Goldman, told me that “managers who understand the [climate] space and who can take advantage of the opportunities that are underpriced in this tougher market environment are set up to succeed.”
The firm also sees major opportunities when it comes to good old solar and storage projects. In an open letter, Generate’s new CEO, David Crane, wrote that “for the first time in nearly four decades, the U.S. has an insatiable need for more power: as much as we can produce, as soon as we can, wherever and however we can produce it.”
Crane sees it as the duty of Generate and other investors to use mergers and acquisitions as a tool to help clean tech scale and mature. “If companies across our subsectors were publicly traded, the market itself would act as a centripetal force towards industry consolidation,” he wrote. But because many clean energy companies are privately funded, Crane said “it is up to us, the providers of that private capital, to force industry improvement, through consolidation and otherwise.”
Helping solar companies accelerate their construction timelines to lock in tax credit eligibility has actually become an opportunistic market of its own, Chris Creed, a managing partner at Galvanize Climate Solutions and co-head of its credit division, told me. “Helping those companies that need to start or complete their projects within a predetermined time frame because of changes in the tax credit framework became an investable opportunity for us,” Creed told me. “We have a number of deals in our near term pipeline that basically came about as a result of that.”
Given that some solar companies are bound to fare better than others, he agreed that mergers and acquisitions were likely — among competitors as well as involving companies working in different stages of a supply chain. “It wouldn’t shock me if you saw some horizontal consolidation or some vertical integration,” Creed told me.
Consolidation can only go so far, though. So while investors seem to agree that solar, storage, and even the administration’s nemesis — wind — are positioned for a long and fruitful future, when it comes to more emergent technologies, not all will survive the headwinds. Beebe thinks there’s been “irrational exuberance” around both green hydrogen and direct air capture, for example, and that seasoned investors will give those spaces a pass.
Electric mobility — e.g. EVs, electric planes, and even electrified shipping — and grid scalability — which includes upgrades to make the grid more efficient, flexible, and optimized — are two sectors that Beebe is betting will survive the turmoil.
But for all investors that have the capability to do so, for now, “the easy bet is just to move your money outside the U.S.” Beebe told me.
We might be starting to see just that. Quinbrook also invests in the U.K. and Australia, and just announced its first Canadian investment last week. It acquired an ownership stake in Elemental Clean Fuels, an energy developer making renewable fuels such as RNG, low-carbon methanol, and — yes — clean hydrogen.
Last week, Generate announced that it had closed $43 million in funding from the Canadian company Fiera Infrastructure Private Debt for its North American portfolio of anaerobic digestion projects, which produce renewable natural gas — Generate’s first cross-currency, cross-border deal.
Creed still has confidence in the U.S. market, however, telling me he’s “very bullish on American innovation.” He certainly acknowledges that it’s a tough time out there for any investor deciding where to park their money, but thinks that ultimately, “that volatility should manifest itself as excess returns to investors who are able to figure out their investment strategy and deploy in this environment.”
Exactly what firms will manage this remains an open question, and the opportunities may be short-lived — but it’s a race that plenty of investors are getting in on.
“I mean, God bless the Europeans for caring about climate.”
Bill Gates, the billionaire co-founder of Microsoft and one of the world’s most important funders of climate-related causes, has a new message: Lighten up on the “doomsday.”
In a new memo, called “Three tough truths about climate,” Gates calls for a “strategic pivot.” Climate-concerned philanthropy should focus on global health and poverty, he says, which will still cause more human suffering than global warming.
“I’m not saying we should ignore temperature-related deaths because diseases are a bigger problem,” he writes. “What I am saying is that we should deal with disease and extreme weather in proportion to the suffering they cause, and that we should go after the underlying conditions that leave people vulnerable to them. While we need to limit the number of extremely hot and cold days, we also need to make sure that fewer people live in poverty and poor health so that extreme weather isn’t such a threat to them.”
This new focus didn’t come with a change in funding priorities — but that’s partly because some big shake-ups have already happened. In February, Heatmap reported that Breakthrough Energy, Gates’ climate-focused funding group, had slashed its grant-making budget. Gates later closed Breakthrough’s policy and advocacy office altogether.
Despite eliminating those financial commitments, he still dwells on two of his longtime obsessions in the new memo: cutting the “green premium” for energy technologies, meaning the delta between the cost of carbon-emitting and clean energy technologies, and improving the measurement of how spending can do the most for human welfare. The same topics dominated his thinking when I last spoke to the billionaire at the 2023 United Nations climate conference in Dubai.
What seems to have shifted, instead, is the global political environment. The Trump administration and Elon Musk gutted the federal government’s spending on global public health causes, such as vaccines and malaria prevention. European countries have also cut back their global aid spending, although not as dramatically as the U.S.
Gates seemingly now feels called to their defense: “Vaccines are the undisputed champion of lives saved per dollar spent,” he writes, praising the vaccine alliance Gavi in particular. “Energy innovation is a good buy not because it saves lives now, but because it will provide cheap clean energy and eventually lower emissions, which will have large benefits for human welfare in the future.”
Last week, Gates shared his thinking about climate change at a roundtable with a handful of reporters. He was, as always, engaging. I’ve shared some of his new takes on climate policy below. His quotes have been edited for clarity.
The environment we’re in today, the policies for climate change are less accommodating. It’s hard to name a country where you’d say, Oh, the climate policies are more accommodating today than they have been in the past.
The thesis I had was that middle income countries — who were already, at that time, the majority of all emissions — would never pay a premium for greenness. And so you could say, well, maybe the rich countries should subsidize that. But you know, the amounts involved would get you up to, like, 4% of rich country budgets would have to be transferred to do that. And we’re at 1% and going down. And there are some other worthy things that that money goes for, other than subsidizing positive green premium type approaches. So the thesis in the book [How to Avoid a Climate Disaster, published in 2021] is we had to innovate our way to negative green premiums for the middle income countries.
Climate [change] is an evil thing in that it’s caused by rich countries and high middle-income countries and the primary burden [falls on poor countries]. When I looked into climate activists, I said, Well, this is incredible. They care about poor countries so much. That’s wonderful, that they feel guilty about it. But in fact, a lot of climate activists, they have such an extreme view of what’s going to happen in rich countries — their climate activism is not because they care about poor farmers and Africa, it’s because they have some purported view that, like, New York City, can’t deal with the flooding or the heat.
The other challenge we have in the climate movement is in order to have some degree of accountability, it was very focused on short-term goals and per-country reports. And the per-country reporting thing is, in a way, a good thing, because a country — certainly when it comes to deforestation or what it’s doing on its electric grid, there is sovereign accountability for what’s being done. But I mean, the way everybody makes steel is the same. The way everybody makes the cement, it’s the same. The way we make fertilizer, it’s all the same. And so there can’t be some wonderful surprise, where some country comes in and, you know, gives you this little number [for its Paris Agreement goals], and you go, Wow, good! You’re so tough, you’re so good, you’re so amazing. Because other than deforestation and your particular electric grid, these are all global things.
If you’re a rich country, the costs of adaptation are just one of many, many things that are not gigantic, huge percentages of GDP — you know, rebuilding L.A. so that it’s like the Getty Museum, in terms of there’s no brush that can catch on fire, there’s no roof that can catch on fire, adds about 10% cost to the rebuild. It’s not like, Oh my god, we can’t live in LA. There’s no apocalyptic story for rich countries. [Climate adaptation] is one of many things that you should pay attention to, like, Does your health system work? Does your education system work? Does your political system work? There are a variety of things that are also quite important.
The place where it gets really tough is in these poor countries. But you know, what is the greatest tool for climate adaptation? Getting rich — growing your economy is the biggest single thing, living in conditions where you don’t face big climate problems. So when you say to an African country, Hey, you have a natural gas deposit, and we’re going to try to block you from getting financing for using that natural gas deposit … It probably won’t work, because there’s a lot of money in the world. It’s not clear how you’d achieve that. And it’s also in terms of the warming effect of that natural gas, versus the improvement of the conditions of the people in that country — it’s not even a close thing.
People in the [climate] movement, we do have to say to ourselves, For the Europeans, how much were they willing to pay in order to support climate? — and did we overestimate in terms of forcing them to switch to electric cars, to buy electric heat pumps, to have their price of electricity be higher? Did we overestimate their willingness to pay with some of those policies? And you do have to be careful because if your climate policies are too aggressive, you will be unelected, and you’ll have a right-wing government that cares not a bit about climate. I mean, God bless the Europeans for caring about climate. You worry they care so much about it that the people you talk to, you won’t be able to meet with them again, because they won’t be in power.