Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Economy

Is Geothermal About to Become the Solar of the 2020s?

The startup Fervo Energy is learning how to bring down costs — fast.

A Fervo plant.
Heatmap Illustration/Fervo, Getty Images

Fervo Energy is getting a lot better at drilling holes. According to data presented this week at Stanford University, it took the company 71 days to drill a geothermal well back in 2022. But last year in Utah, Fervo was able to get drilling down to 21 days, despite those wells being over 2,000 feet deeper. That has reduced drilling time by 70%.

Fervo is a buzzy, well-funded, and well-connected startup out of Houston that drills wells to produce enhanced geothermal energy, a clean source of power derived from heat beneath the Earth’s surface. But whereas traditional geothermal means tapping into hot water or steam underground, Fervo drills as deep as 9,000 feet down to access hot rocks, which are far more ubiquitous, and then pumps water into them, potentially unlocking many more areas for this kind of power generation.

This week’s announcement follows a pilot project last year where the company was actually able to produce electricity. Now the challenge is producing that electricity at scale — and that requires drilling faster.

Already its new timeline is translating in dramatic cost reductions, the company says, from $9.4 million to $4.8 million per well. For its Utah site, where it might need to drill 29 wells, back-of-the-envelope math suggests that could translate into up to $130 million in savings.

“The biggest expense in drilling is time it takes to drill. The easiest way to reduce drilling costs is to drill faster,” Fervo’s co-founder and chief executive Tim Latimer told me.

Latimer’s big idea behind Fervo is not just a conceptual one about how to generate geothermal power in areas that don’t produce steam or very hot water on their own, but also about how to apply the steady improvement and cost reductions seen in the oil and gas industry to non-carbon emitting power generation that can be available 24 hours a day.

“Oil and gas drilling has become incredibly much more efficient. That’s what drove the shale revolution. We were excited about 45-day wells and now you’ll see fields where people drill wells in 10 days or less,” Latimer told me.

Some of the improvement Fervo has achieved is due to porting over specific pieces of technology from the shale industry, like polycrystalline diamond compact drillbits and using them on the harder granite that Fervo drills. “Taking something that unlocked the shale revolution and making it work for hard rock was our whole thesis,” Latimer said. And there’s just been the steady improvements that come through experience and automation. Latimer described how they figured out a standardized, automated way to pick up and set down the drill bit so that the bit isn’t damaged when drilling starts up again.

“When we think about Fervo, a lot of the things we think about is not [how to] narrowly cut costs for one well, but ‘how do we create a system where you simplify well design and make its more standardized.’”

The idea is that there can be a “learning curve” with drilling geothermal wells, dropping costs over time. “We think geothermal will be on the end of that spectrum like solar or LEDs or battery that benefits from a learning curve because we figured out a way to standardize,” Latimer said. “Fervo is a learning curve company.”

These learning curves haven’t just been seen in fracking, but famously in green energy as well, especially standardized technology like solar panels, whose costs reductions consistently outpace expert forecasts. On the flip side, other forms of emission-free power, namely nuclear power, seem to be getting more expensive over time.

Fervo has also been capturing attention — and dollars — across the green energy community because of a specific type of power that enhanced geothermal could provide: 24 hour generation.

Other forms of non-carbon-emitting energy, particularly solar and wind, only generate power either at specific times or day (when it’s sunny) or when the weather is a certain way (windy). With enough transmission and batteries, these types of intermittent generation could power substantially more of the grid than they do today, but they can’t do it all — at least while keeping costs under control.

The need for 24/7 clean power has only been amplified by the Treasury Department’s proposed rules on green hydrogen, which would make hydrogen producers prove they’re using non-carbon-emitting energy for their operations in order to qualify for subsidies.

Latimer said Fervo’s inbox “blew up” after the proposed rules went out. “We’re every hydrogen tech’s favorite supplier now,” he said. But he noted that Fervo’s appeal was by no means limited to green hydrogen.

“Round-the-clock reliable electricity that doesn’t come with carbon emissions is not a hard sell, it just has to be a cost structure that makes sense.”

Fervo’s work is especially attractive to technology companies, who have long been pioneers in procuring green energy and are now interested in being able to get it 24/7. Fervo’s Nevada projects are contracted to provide power to Google’s data centers and other infrastructure throughout the state.

While Latimer would not say what Fervo’s current costs are, he did say that for it to be competitive, it would have to get down to around $100 per megawatt-hour, about where traditional geothermal — where steam or very hot water that’s already present underground is brought to the surface — is now. The Department of Energy’s goal is to reduce enhanced geothermal costs by around 90 percent to $45 per megawatt hour by 2025. “The results show we’re on the path to already being able to provide economic projects even at that market rate,” Latimer said.

And Fervo is continuing to get attention — and dollars — from the federal government. The Department of Energy announced Tuesday that Fervo was one of three companies — the other two being Chevron and Mazama — that would receive grants for their geothermal work.

Blue
Matthew Zeitlin profile image

Matthew Zeitlin

Matthew is a correspondent at Heatmap. Previously he was an economics reporter at Grid, where he covered macroeconomics and energy, and a business reporter at BuzzFeed News, where he covered finance. He has written for The New York Times, the Guardian, Barron's, and New York Magazine. Read More

Read More
Politics

Clean Energy Is on the Ballot in Alaska

Facing a fossil energy crisis, voters in this oil-producing state have some decisions to make.

Voting in Alaska.
Heatmap Illustration/Getty Images

When you think of climate change, you think of Alaska whether you realize it or not.

With its pipelines, polar bears, and dramatic, calving glaciers, the state has contributed an outsized amount of stock footage to global warming montages over the years. Combined with a nearly unbroken record of backing Republican presidential candidates and an increasingly young and diverse voting-age population, there’s a popular impression — among outsiders, anyway — of the state as a front line in the battle between continued fossil fuel dependence and a clean-energy future.

Keep reading...Show less
Blue
Climeworks' Mammoth station.
Heatmap Illustration/Climeworks

If one company has set the pace for direct air capture, it’s Climeworks. The Switzerland-based business opened its — and the world’s — first commercial DAC plant in 2017, capable of capturing “several hundred tons” of carbon dioxide each year. Today, the company unveiled its newest plant, the aptly named Mammoth. Located in Iceland, Mammoth is designed to take advantage of the country’s unique geology to capture and store up to 36,000 metric tons of carbon per year — eventually. Here’s what you need to know about the new project.

1. Mammoth is, well, huge

Mammoth is not yet operating at full capacity, with only 12 of its planned 72 capturing and filtering units installed. When the plant is fully operational — which Climeworks says should be sometime next year — it will pull up to 36,000 metric tons of CO2 out of the atmosphere annually. For scale, that’s about 1/28,000th of a gigaton. To get to net zero emissions, we’ll have to remove multiple gigatons of carbon from the atmosphere every year.

Keep reading...Show less
Yellow
Climate

AM Briefing: The Inevitable Decline of Power Sector Emissions

On exciting electricity trends, Mercedes's EV goals, and cool new solar panels

Global Power Emissions Probably Already Peaked
Heatmap Illustration/Getty Images

Current conditions: Wildfires in India have killed at least five people • A heat wave in Mexico caused rolling blackouts • Central states will get some relief from severe storms as the system weakens and begins moving east today.

THE TOP FIVE

1. Global power sector emissions likely peaked last year as renewables surge

I am delighted to start today with some uplifting news. A new Global Electricity Review from climate think tank Ember is positively brimming with encouraging data about the growth of renewables. The topline takeaway? Rapid expansion of wind and solar projects in 2023 likely brought the peak in global power sector emissions, and a “new era of falling fossil fuel generation is imminent.” Key findings and projections:

Keep reading...Show less
Yellow