Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate

Wildfire Smoke Deaths Are Spiking as the Planet Warms

New research out today shows a 10-fold increase in smoke mortality related to climate change from the 1960s to the 2010.

A skull in fire.
Heatmap Illustration/Getty Images

If you are one of the more than 2 billion people on Earth who have inhaled wildfire smoke, then you know firsthand that it is nasty stuff. It makes your eyes sting and your throat sore and raw; breathe in smoke for long enough, and you might get a headache or start to wheeze. Maybe you’ll have an asthma attack and end up in the emergency room. Or maybe, in the days or weeks afterward, you’ll suffer from a stroke or heart attack that you wouldn’t have had otherwise.

Researchers are increasingly convinced that the tiny, inhalable particulate matter in wildfire smoke, known as PM2.5, contributes to thousands of excess deaths annually in the United States alone. But is it fair to link those deaths directly to climate change?

A new study published Monday in Nature Climate Change suggests that for a growing number of cases, the answer should be yes. Chae Yeon Park, a climate risk modeling researcher at Japan’s National Institute for Environmental Studies, looked with her colleagues at three fire-vegetation models to understand how hazardous emissions changed from 1960 to 2019, compared to a hypothetical control model that excluded historical climate change data. They found that while fewer than 669 deaths in the 1960s could be attributed to climate change globally, that number ballooned to 12,566 in the 2010s — roughly a 20-fold increase. The proportion of all global PM2.5 deaths attributable to climate change jumped 10-fold over the same period, from 1.2% in the 1960s to 12.8% in the 2010s.

“It’s a timely and meaningful study that informs the public and the government about the dangers of wildfire smoke and how climate change is contributing to that,” Yiqun Ma, who researches the intersection of climate change, air pollution, and human health at the Yale School of Medicine, and who was not involved in the Nature study, told me.

The study found the highest climate change-attributable fire mortality values in South America, Australia, and Europe, where increases in heat and decreases in humidity were also the greatest. In the southern hemisphere of South America, for example, the authors wrote that fire mortalities attributable to climate change increased from a model average of 35% to 71% between the 1960s and 2010s, “coinciding with decreased relative humidity,” which dries out fire fuels. For the same reason, an increase in relative humidity lowered fire mortality in other regions, such as South Asia. North America exhibited a less dramatic leap in climate-related smoke mortalities, with climate change’s contribution around 3.6% in the 1960s, “with a notable rise in the 2010s” to 18.8%, Park told me in an email.

While that’s alarming all on its own, Ma told me there was a possibility that Park’s findings might actually be too conservative. “They assume PM2.5 from wildfire sources and from other sources” — like from cars or power plants — “have the same toxicity,” she explained. “But in fact, in recent studies, people have found PM2.5 from fire sources can be more toxic than those from an urban background.” Another reason Ma suspected the study’s numbers might be an underestimate was because the researchers focused on only six diseases that have known links to PM2.5 exposure: chronic obstructive pulmonary disease, lung cancer, coronary heart disease, type 2 diabetes, stroke, and lower respiratory infection. “According to our previous findings [at the Yale School of Medicine], other diseases can also be influenced by wildfire smoke, such as mental disorders, depression, and anxiety, and they did not consider that part,” she told me.

Minghao Qiu, an assistant professor at Stony Brook University and one of the country’s leading researchers on wildfire smoke exposure and climate change, generally agreed with Park’s findings, but cautioned that there is “a lot of uncertainty in the underlying numbers” in part because, intrinsically, wildfire smoke exposure is such a complicated thing to try to put firm numbers to. “It’s so difficult to model how climate influences wildfire because wildfire is such an idiosyncratic process and it’s so random, ” he told me, adding, “In general, models are not great in terms of capturing wildfire.”

Despite their few reservations, both Qiu and Ma emphasized the importance of studies like Park’s. “There are no really good solutions” to reduce wildfire PM2.5 exposure. You can’t just “put a filter on a stack” as you (sort of) can with power plant emissions, Qiu pointed out.

Even prescribed fires, often touted as an important wildfire mitigation technique, still produce smoke. Park’s team acknowledged that a whole suite of options would be needed to minimize future wildfire deaths, ranging from fire-resilient forest and urban planning to PM2.5 treatment advances in hospitals. And, of course, there is addressing the root cause of the increased mortality to begin with: our warming climate.

“To respond to these long-term changes,” Park told me, “it is crucial to gradually modify our system.”

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
AM Briefing

Exxon Counterattacks

On China’s rare earths, Bill Gates’ nuclear dream, and Texas renewables

An Exxon sign.
Heatmap Illustration/Getty Images

Current conditions: Hurricane Melissa exploded in intensity over the warm Caribbean waters and has now strengthened into a major storm, potentially slamming into Cuba, the Dominican Republic, Haiti, and Jamaica as a Category 5 in the coming days • The Northeast is bracing for a potential nor’easter, which will be followed by a plunge in temperatures of as much as 15 degrees Fahrenheit lower than average • The northern Australian town of Julia Creek saw temperatures soar as high as 106 degrees.

THE TOP FIVE

1. Exxon sued California

Exxon Mobil filed a lawsuit against California late Friday on the grounds that two landmark new climate laws violate the oil giant’s free speech rights, The New York Times reported. The two laws would require thousands of large companies doing business in the state to calculate and report the greenhouse gas pollution created by the use of their products, so-called Scope 3 emissions. “The statutes compel Exxon Mobil to trumpet California’s preferred message even though Exxon Mobil believes the speech is misleading and misguided,” Exxon complained through its lawyers. California Governor Gavin Newsom’s office said the statutes “have already been upheld in court and we continue to have confidence in them.” He condemned the lawsuit, calling it “truly shocking that one of the biggest polluters on the planet would be opposed to transparency.”

Keep reading...Show less
Red
The Aftermath

How to Live in a Fire-Scarred World

The question isn’t whether the flames will come — it’s when, and what it will take to recover.

Wildfire aftermath.
Heatmap Illustration/Getty Images

In the two decades following the turn of the millennium, wildfires came within three miles of an estimated 21.8 million Americans’ homes. That number — which has no doubt grown substantially in the five years since — represents about 6% of the nation’s population, including the survivors of some of the deadliest and most destructive fires in the country’s history. But it also includes millions of stories that never made headlines.

For every Paradise, California, and Lahaina, Hawaii, there were also dozens of uneventful evacuations, in which regular people attempted to navigate the confusing jargon of government notices and warnings. Others lost their homes in fires that were too insignificant to meet the thresholds for federal aid. And there are countless others who have decided, after too many close calls, to move somewhere else.

By any metric, costly, catastrophic, and increasingly urban wildfires are on the rise. Nearly a third of the U.S. population, however, lives in a county with a high or very high risk of wildfire, including over 60% of the counties in the West. But the shape of the recovery from those disasters in the weeks and months that follow is often that of a maze, featuring heart-rending decisions and forced hands. Understanding wildfire recovery is critical, though, for when the next disaster follows — which is why we’ve set out to explore the topic in depth.

Keep reading...Show less
The Aftermath

The Surprisingly Tricky Problem of Ordering People to Leave

Wildfire evacuation notices are notoriously confusing, and the stakes are life or death. But how to make them better is far from obvious.

Wildfire evacuation.
Heatmap Illustration/Getty Images

How many different ways are there to say “go”? In the emergency management world, it can seem at times like there are dozens.

Does a “level 2” alert during a wildfire, for example, mean it’s time to get out? How about a “level II” alert? Most people understand that an “evacuation order” means “you better leave now,” but how is an “evacuation warning” any different? And does a text warning that “these zones should EVACUATE NOW: SIS-5111, SIS-5108, SIS-5117…” even apply to you?

Keep reading...Show less