Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate

Wildfire Smoke Deaths Are Spiking as the Planet Warms

New research out today shows a 10-fold increase in smoke mortality related to climate change from the 1960s to the 2010.

A skull in fire.
Heatmap Illustration/Getty Images

If you are one of the more than 2 billion people on Earth who have inhaled wildfire smoke, then you know firsthand that it is nasty stuff. It makes your eyes sting and your throat sore and raw; breathe in smoke for long enough, and you might get a headache or start to wheeze. Maybe you’ll have an asthma attack and end up in the emergency room. Or maybe, in the days or weeks afterward, you’ll suffer from a stroke or heart attack that you wouldn’t have had otherwise.

Researchers are increasingly convinced that the tiny, inhalable particulate matter in wildfire smoke, known as PM2.5, contributes to thousands of excess deaths annually in the United States alone. But is it fair to link those deaths directly to climate change?

A new study published Monday in Nature Climate Change suggests that for a growing number of cases, the answer should be yes. Chae Yeon Park, a climate risk modeling researcher at Japan’s National Institute for Environmental Studies, looked with her colleagues at three fire-vegetation models to understand how hazardous emissions changed from 1960 to 2019, compared to a hypothetical control model that excluded historical climate change data. They found that while fewer than 669 deaths in the 1960s could be attributed to climate change globally, that number ballooned to 12,566 in the 2010s — roughly a 20-fold increase. The proportion of all global PM2.5 deaths attributable to climate change jumped 10-fold over the same period, from 1.2% in the 1960s to 12.8% in the 2010s.

“It’s a timely and meaningful study that informs the public and the government about the dangers of wildfire smoke and how climate change is contributing to that,” Yiqun Ma, who researches the intersection of climate change, air pollution, and human health at the Yale School of Medicine, and who was not involved in the Nature study, told me.

The study found the highest climate change-attributable fire mortality values in South America, Australia, and Europe, where increases in heat and decreases in humidity were also the greatest. In the southern hemisphere of South America, for example, the authors wrote that fire mortalities attributable to climate change increased from a model average of 35% to 71% between the 1960s and 2010s, “coinciding with decreased relative humidity,” which dries out fire fuels. For the same reason, an increase in relative humidity lowered fire mortality in other regions, such as South Asia. North America exhibited a less dramatic leap in climate-related smoke mortalities, with climate change’s contribution around 3.6% in the 1960s, “with a notable rise in the 2010s” to 18.8%, Park told me in an email.

While that’s alarming all on its own, Ma told me there was a possibility that Park’s findings might actually be too conservative. “They assume PM2.5 from wildfire sources and from other sources” — like from cars or power plants — “have the same toxicity,” she explained. “But in fact, in recent studies, people have found PM2.5 from fire sources can be more toxic than those from an urban background.” Another reason Ma suspected the study’s numbers might be an underestimate was because the researchers focused on only six diseases that have known links to PM2.5 exposure: chronic obstructive pulmonary disease, lung cancer, coronary heart disease, type 2 diabetes, stroke, and lower respiratory infection. “According to our previous findings [at the Yale School of Medicine], other diseases can also be influenced by wildfire smoke, such as mental disorders, depression, and anxiety, and they did not consider that part,” she told me.

Minghao Qiu, an assistant professor at Stony Brook University and one of the country’s leading researchers on wildfire smoke exposure and climate change, generally agreed with Park’s findings, but cautioned that there is “a lot of uncertainty in the underlying numbers” in part because, intrinsically, wildfire smoke exposure is such a complicated thing to try to put firm numbers to. “It’s so difficult to model how climate influences wildfire because wildfire is such an idiosyncratic process and it’s so random, ” he told me, adding, “In general, models are not great in terms of capturing wildfire.”

Despite their few reservations, both Qiu and Ma emphasized the importance of studies like Park’s. “There are no really good solutions” to reduce wildfire PM2.5 exposure. You can’t just “put a filter on a stack” as you (sort of) can with power plant emissions, Qiu pointed out.

Even prescribed fires, often touted as an important wildfire mitigation technique, still produce smoke. Park’s team acknowledged that a whole suite of options would be needed to minimize future wildfire deaths, ranging from fire-resilient forest and urban planning to PM2.5 treatment advances in hospitals. And, of course, there is addressing the root cause of the increased mortality to begin with: our warming climate.

“To respond to these long-term changes,” Park told me, “it is crucial to gradually modify our system.”

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Climate Tech

Climate Tech Pivots to Europe

With policy chaos and disappearing subsidies in the U.S., suddenly the continent is looking like a great place to build.

A suitcase full of clean energy.
Heatmap Illustration/Getty Images

Europe has long outpaced the U.S. in setting ambitious climate targets. Since the late 2000s, EU member states have enacted both a continent-wide carbon pricing scheme as well as legally binding renewable energy goals — measures that have grown increasingly ambitious over time and now extend across most sectors of the economy.

So of course domestic climate tech companies facing funding and regulatory struggles are now looking to the EU to deploy some of their first projects. “This is about money,” Po Bronson, a managing director at the deep tech venture firm SOSV told me. “This is about lifelines. It’s about where you can build.” Last year, Bronson launched a new Ireland-based fund to support advanced biomanufacturing and decarbonization startups open to co-locating in the country as they scale into the European market. Thus far, the fund has invested in companies working to make emissions-free fertilizers, sustainable aviation fuel, and biofuel for heavy industry.

Keep reading...Show less
Green
AM Briefing

Belém Begins

On New York’s gas, Southwest power lines, and a solar bankruptcy

COP30.
Heatmap Illustration/Getty Images

Current conditions: The Philippines is facing yet another deadly cyclone as Super Typhoon Fung-wong makes landfall just days after Typhoon Kalmaegi • Northern Great Lakes states are preparing for as much as six inches of snow • Heavy rainfall is triggering flash floods in Uganda.


THE TOP FIVE

1. UN climate talks officially kick off

The United Nations’ annual climate conference officially started in Belém, Brazil, just a few hours ago. The 30th Conference of the Parties to the UN Framework Convention on Climate Change comes days after the close of the Leaders Summit, which I reported on last week, and takes place against the backdrop of the United States’ withdrawal from the Paris Agreement and a general pullback of worldwide ambitions for decarbonization. It will be the first COP in years to take place without a significant American presence, although more than 100 U.S. officials — including the governor of Wisconsin and the mayor of Phoenix — are traveling to Brazil for the event. But the Trump administration opted against sending a high-level official delegation.

Keep reading...Show less
Blue
Climate Tech

Quino Raises $10 Million to Build Flow Batteries in India

The company is betting its unique vanadium-free electrolyte will make it cost-competitive with lithium-ion.

An Indian flag and a battery.
Heatmap Illustration/Getty Images

In a year marked by the rise and fall of battery companies in the U.S., one Bay Area startup thinks it can break through with a twist on a well-established technology: flow batteries. Unlike lithium-ion cells, flow batteries store liquid electrolytes in external tanks. While the system is bulkier and traditionally costlier than lithium-ion, it also offers significantly longer cycle life, the ability for long-duration energy storage, and a virtually impeccable safety profile.

Now this startup, Quino Energy, says it’s developed an electrolyte chemistry that will allow it to compete with lithium-ion on cost while retaining all the typical benefits of flow batteries. While flow batteries have already achieved relatively widespread adoption in the Chinese market, Quino is looking to India for its initial deployments. Today, the company announced that it’s raised $10 million from the Hyderabad-based sustainable energy company Atri Energy Transitions to demonstrate and scale its tech in the country.

Keep reading...Show less
Green