You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:

When we talk about carbon removal, we often focus on “direct air capture” facilities — big factories that suck carbon dioxide out of the ambient air.
But a simpler and easier way to remove carbon from the atmosphere may exist. It’s called “enhanced rock weathering” — grinding up rocks, spreading them out, and exposing them to the ambient air — and it works, essentially, by speeding up the Earth’s carbon cycle. Enhanced rock weathering recently got a major vote of confidence from Frontier, a consortium of tech and finance companies who have teamed up to support new and experimental carbon removal technologies.
Frontier’s members include Stripe, Meta, Alphabet, Shopify, and McKinsey & Company. It aims to buy nearly $1 billion of various forms of carbon removal in the next few years — an intervention meant to spur commercial and investor interest in the sector.
In this episode, Jesse Jenkins, an energy systems expert and professor at Princeton University, and I talk with Jane Flegal, a former Biden White House climate adviser and now the market development and policy lead at Frontier, about the promise of enhanced rock weathering and why Frontier just spent $57 million to do it.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Jane Flegal: So enhanced weathering is a carbon removal process that speeds up a natural process which is weathering of alkaline materials. And so weathering happens naturally, it actually drives what makes the earth habitable in the first place. It just happens over very, very long periods. So essentially what happens is that rocks slowly erode when they come into contact with acid rain essentially and —
Robinson Meyer: Naturally acidic rain?
Flegal: Yeah, not like acid rain the way we think of it, rain that is acidic because it has some dissolved CO2. And so that acidic rainwater interacts with rocks and erodes them, and it results in CO2 being stored either as a solid carbonate or as a bicarbonate. So that happens naturally, again, on very long time periods.
Meyer: And I just want to interrupt before we go any further. What then happens, right, is that the CO2 winds up being dissolved as a bicarbonate. It goes into the ocean.
Flegal: Into the ocean.
Meyer: And then what happens? It’s turned into ...
Flegal: It sinks and becomes part of the Earth’s crust.
Meyer: Right. Or it gets turned into a shell, a creature’s shell, and then it sinks again.
Flegal: It is functionally stable. It is thermodynamically pretty much impossible to reverse.
Meyer: And you kind of said this, but I do want to draw it out: This is the carbon cycle. This is a central Earth science process. There’s nothing fancy about this.
Jesse Jenkins: The problem is it takes centuries to play out. It’s just moving on geologic time. But this idea of enhanced weathering means we can potentially speed that up, right?
Meyer: Sorry, I just want to — this is, like, the whole problem of climate change, right? The problem of climate change is that we take fossil fuels and carbon that’s stored in geological storage out of the ground on historic time scales, on decadal ... you know, every year we take millions of tons of it out of the ground, and then it would only be restored back to the ground by this extremely slow process.
Flegal: One way to think about carbon removal is, like, taking stuff out of the fast cycle and putting it into the slow cycle, basically. And essentially, you either inject CO2 underground, where it’s where it’s stable, or you turn it into salt. These are kind of the options.
And so enhanced weathering, to exactly this point, it’s enhanced for a reason, right? There’s regular old weathering, and then there’s the enhanced kind, which aims to speed up this process that typically takes millennia to years or days by either using more reactive materials than the normal rocks that would just weather naturally or increasing the surface area of the material that is exposed to CO2. So grinding up rocks into very, very fine fine powder and exposing that material to more favorable environments.
This episode of Shift Key is sponsored by Advanced Energy United, KORE Power, and Yale …
Advanced Energy United educates, engages, and advocates for policies that allow our member companies to compete to power our economy with 100% clean energy, working with decision makers and energy market regulators to achieve this goal. Together, we are united in our mission to accelerate the transition to 100% clean energy in America. Learn more at advancedenergyunited.org/heatmap
KORE Power provides the commercial, industrial, and utility markets with functional solutions that advance the clean energy transition worldwide. KORE Power's technology and manufacturing capabilities provide direct access to next generation battery cells, energy storage systems that scale to grid+, EV power & infrastructure, and intuitive asset management to unlock energy strategies across a myriad of applications. Explore more at korepower.com — the future of clean energy is here.
Build your skills in policy, finance, and clean technology at Yale. Yale’s Financing and Deploying Clean Energy certificate program is a 10-month online certificate program that trains and connects clean energy professionals to catalyze an equitable transition to a clean economy. Connect with Yale’s expertise, grow your professional network, and deepen your impact. Learn more at cbey.yale.edu/certificate.
Music for Shift Key is by Adam Kromelow.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
New Jersey Governor-elect Mikie Sherrill made a rate freeze one of her signature campaign promises, but that’s easier said than done.
So how do you freeze electricity rates, exactly? That’s the question soon to be facing New Jersey Governor-elect Mikie Sherrill, who achieved a resounding victory in this November’s gubernatorial election in part due to her promise to declare a state of emergency and stop New Jersey’s high and rising electricity rates from going up any further.
The answer is that it can be done the easy way, or it can be done the hard way.
What will most likely happen, Abraham Silverman, a Johns Hopkins University scholar who previously served as the New Jersey Board of Public Utilities’ general counsel, told me, is that New Jersey’s four major electric utilities will work with the governor to deliver on her promise, finding ways to shave off spending and show some forbearance.
Indeed, “We stand ready to work with the incoming administration to do our part to keep rates as low as possible in the short term work on longer-term solutions to add supply,” Ralph LaRossa, the chief executive of PSE&G, one of the major utilities in New Jersey, told analysts on an earnings call held the day before the election.
PSE&G’s retail bills rose 36% this past summer, according to the investment bank Jefferies. As for what working with the administration might look like, “We expect management to offer rate concessions,” Jefferies analyst Paul Zimbrado wrote in a note to clients in the days following the election, meaning essentially that the utility would choose to eat some higher costs. PSE&G might also get “creative,” which could mean things like “extensions of asset recoverable lives, regulatory item amortization acceleration, and other approaches to deliver customer bill savings in the near-term,” i.e. deferring or spreading out costs to minimize their immediate impact. “These would be cash flow negative but [PSE&G] has the cushion to absorb it,” Zimbrado wrote.
In return, Silverman told me that the New Jersey utilities “have a wish list of things they want from the administration and from the legislature,” including new nuclear plants, owning generation, and investing in energy storage. “I think that they are probably incented to work with the new administration to come up with that list of items that they think they can accomplish again without sacrificing reliability.”
Well before the election, in a statement issued in August responding to Sherrill’s energy platform, PSE&G hinted toward a path forward in its dealings with the state, noting that it isn’t allowed to build or own power generation and arguing that this deregulatory step “precluded all New Jersey electric companies from developing or offering new sources of power supply to meet rising demand and reduce prices.” Of course, the failure to get new supply online has bedeviled regulators and policymakers throughout the PJM Interconnection, of which New Jersey is a part. If Mikie Sherrill can figure out how to get generation online quickly in New Jersey, she’ll have accomplished something more impressive than a rate freeze.
As for ways to accomplish the governor-elect’s explicit goal of keeping price increases at zero, Silverman suggested that large-scale investments could be paid off on a longer timeline, which would reduce returns for utilities. Other investments could be deferred for at least a few years in order to push out beyond the current “bubble” of high costs due to inflation. That wouldn’t solve the problem forever, though, Silverman told me. It could simply mean “seeing lower costs today, but higher costs in the future,” he said.
New Jersey will also likely have to play a role in deliberations happening in front of the Federal Energy Regulatory Commission about interconnecting large loads — i.e. data centers — a major driver of costs throughout PJM and within New Jersey specifically. Rules that force data centers to “pay their own way” for transmission costs associated with getting on the grid could relieve some of the New Jersey price crunch, Silverman told me. “I think that will be a really significant piece.”
Then there’s the hard way — slashing utilities’ regulated rates of return.
In a report prepared for the Natural Resources Defence Council and Evergreen Collective and released after the election, Synapse Economics considered reducing utilities’ regulated return on equity, the income they’re allowed to generate on their investments in the grid, from its current level of 9.6% as one of four major levers to bring down prices. A two percentage point reduction in the return on equity, the group found, would reduce annual bills by $40 in 2026.
Going after the return on equity would be a more difficult, more contentious path than working cooperatively on deferring costs and increasing generation, Silverman told me. If voluntary and cooperative solutions aren’t enough to stop rate increases, however, Sherrill might choose to take it anyway. “You could come in and immediately cut that rate of return, and that would absolutely put downward pressure on rates in the short run. But you establish a very contentious relationship with the utilities,” Silverman told me.
Silverman pointed to Connecticut, where regulators and utilities developed a hostile relationship in recent years, resulting in the state’s Public Utilities Regulatory Authority chair, Marissa Gillett, stepping down last month. Gillett had served on PURA since 2019, and had tried to adopt “performance-based ratemaking,” where utility payouts wouldn’t be solely determined by their investment level, but also by trying to meet public policy goals like energy efficiency and reducing greenhouse gas emissions.
Connecticut utilities said these rules would make attracting capital to invest in the grid more difficult. Gillett’s tenure was also marred by lawsuits from the state’s utilities over accusations of “bias” against them in the ratemaking process. At the same time, environmental and consumer groups hailed her approach.
While Sherrill and her energy officials may not want to completely overhaul how they approach ratemaking, some conflict with the state’s utilities may be necessary to deliver on her signature campaign promise.
Going directly after the utilities’ regulated return “is kind of like making your kid eat their broccoli,” Silverman said. “You can probably make them eat it. You can have a very contentious evening for the rest of the night.”
Current conditions: Unseasonable warmth of up to 20 degrees Fahrenheit above average is set to spread across the Central United States, with the potential to set records • Scattered snow showers from water off the Great Lakes are expected to dump up to 18 inches on parts of northern New England • As winter dawns, Israel is facing summertime-like temperatures of nearly 90 degrees this week.
The Department of the Interior finalized a rule last week opening up roughly half of the largely untouched National Petroleum Reserve-Alaska to oil and gas drilling. The regulatory change overturns a Biden-era measure blocking oil and gas drilling on 11 million acres of the nation’s largest swath of public land, as my predecessor in anchoring this newsletter, Heatmap’s Jeva Lange, wrote in June. The Trump administration vowed to “unleash” energy production in Alaska by opening the 23 million-acre reserve, as well as nearby Arctic National Wildlife Refuge, to exploration. By rescinding the Biden-era restrictions, “we are following the direction set by President Trump to unlock Alaska’s energy potential, create jobs for North Slope communities, and strengthen American energy security,” Secretary of the Interior Doug Burgum said in a statement, according to E&E News. In a post on X, Alaska Governor Mike Dunleavy, a Republican, called the move “yet another step in the right direction for Alaska and American energy dominance.”
The new rule is expected to face challenges in court.“Today’s action is another example of how the Trump administration is trying to take us back in time with its reckless fossil fuels agenda,” Erik Grafe, a lawyer with Earthjustice, an environmental nonprofit group, said in a statement to The New York Times.

For the first time in United Nations climate negotiations, countries attending the COP30 summit in Belém, Brazil, are grappling with the effects of mining the minerals needed for batteries, solar panels, and wind turbines, Climate Home News reported. In a draft text on Friday, a working group at the summit recognized “the social and environmental risks associated with scaling up supply chains for clean energy technologies, including risks arising from the extraction and processing of critical minerals.”
The statement came amid ongoing protests from Indigenous groups, including those from Argentina who warned that the world’s increased appetite for South America’s lithium reserves came at the cost of local water resources for peoples who have lived in regions near mining operations for millennia.
Nearly one fifth of the Environmental Protection Agency’s workforce has opted into President Donald Trump’s mass resignation plan, according to new data E&E News obtained on Friday. As of the end of September, the EPA’s payroll included 15,166 employees, according to data released during the government shutdown, meaning that more than 2,620 employees accepted the “deferred resignation” offer.
Under Administrator Lee Zeldin, the EPA has advanced proposals that even the agency under Scott Pruitt, the top environmental regulator at the start of Trump’s first term, dared not attempt. Zeldin has moved to rescind the endangerment finding, which forms the legal basis for virtually all major climate regulations at the EPA. Zeldin even tried to kill off the popular Energy Star program for efficient appliances, but — as I wrote earlier this month — he backed off the plan.
Sign up to receive Heatmap AM in your inbox every morning:
The next-generation geothermal company Eavor is preparing to start up its debut closed-loop system at its pilot project in Germany, Think Geoenergy reported. The startup has stood out in the race to commercialize technology that can harness energy from the Earth’s molten core in more places than conventional approaches allow. While rivals such as Fervo Energy, Sage Geosystems, and XGS Energy, pursue projects in the American Southwest, Eavor focused its efforts on Germany, where it saw potential to tap into the lucrative district heating market. Eavor also developed special drilling tools that promised to shave “tens of millions” off the cost of digging wells. As I wrote here last month, the company just completed successful tests of its technology.
BlackRock’s Global Infrastructure Partners inked a deal with the Spanish construction company ACS to form a joint venture to develop roughly $2.3 billion worth of data centers. The 50-50 joint venture will consist of ACS’ existing data-center portfolio, including 1.7 gigawatts of assets under development in Europe, the U.S., and Australia. ACS is contributing its existing portfolio to the business, The Wall Street Journal reported, “in exchange for about 1 billion euros in cash and initial earnout payments of up to 1 billion euros” if the data centers hit certain commercial milestones. “Global demand for data centers is set to grow more than 15 times by 2035, driven by the expansion of AI, cloud migration, and the exponential rise in data volumes,” ACS CEO Juan Santamaria said.
In a first, Swedish scientists have managed to successfully isolate and sequence RNA from an Ice Age wooly mammoth. Researchers at Stockholm University extracted the genetic information from mammoth tissue preserved in Siberian permafrost for nearly 40,000 years. The findings, published in the journal Cell, show that RNA, in addition to DNA and proteins, can be preserved over long periods of time. “With RNA, we can obtain direct evidence of which genes are ‘turned on,’ offering a glimpse into the final moments of life of a mammoth that walked the Earth during the last Ice Age. This is information that cannot be obtained from DNA alone,” Emilio Mármol, lead author of the study, said in a press release.
Editor’s note: This article has been updated to clarify the staff shrinkage at the EPA.
According to a new analysis shared exclusively with Heatmap, coal’s equipment-related outage rate is about twice as high as wind’s.
The Trump administration wants “beautiful clean coal” to return to its place of pride on the electric grid because, it says, wind and solar are just too unreliable. “If we want to keep the lights on and prevent blackouts from happening, then we need to keep our coal plants running. Affordable, reliable and secure energy sources are common sense,” Energy Secretary Chris Wright said on X in July, in what has become a steady drumbeat from the administration that has sought to subsidize coal and put a regulatory straitjacket around solar and (especially) wind.
This has meant real money spent in support of existing coal plants. The administration’s emergency order to keep Michigan’s J.H. Campbell coal plant open (“to secure grid reliability”), for example, has cost ratepayers served by Michigan utility Consumers Energy some $80 million all on its own.
But … how reliable is coal, actually? According to an analysis by the Environmental Defense Fund of data from the North American Electric Reliability Corporation, a nonprofit that oversees reliability standards for the grid, coal has the highest “equipment-related outage rate” — essentially, the percentage of time a generator isn’t working because of some kind of mechanical or other issue related to its physical structure — among coal, hydropower, natural gas, nuclear, and wind. Coal’s outage rate was over 12%. Wind’s was about 6.6%.
“When EDF’s team isolated just equipment-related outages, wind energy proved far more reliable than coal, which had the highest outage rate of any source NERC tracks,” EDF told me in an emailed statement.
Coal’s reliability has, in fact, been decreasing, Oliver Chapman, a research analyst at EDF, told me.
NERC has attributed this falling reliability to the changing role of coal in the energy system. Reliability “negatively correlates most strongly to capacity factor,” or how often the plant is running compared to its peak capacity. The data also “aligns with industry statements indicating that reduced investment in maintenance and abnormal cycling that are being adopted primarily in response to rapid changes in the resource mix are negatively impacting baseload coal unit performance.” In other words, coal is struggling to keep up with its changing role in the energy system. That’s due not just to the growth of solar and wind energy, which are inherently (but predictably) variable, but also to natural gas’s increasing prominence on the grid.
“When coal plants are having to be a bit more varied in their generation, we're seeing that wear and tear of those plants is increasing,” Chapman said. “The assumption is that that's only going to go up in future years.”
The issue for any plan to revitalize the coal industry, Chapman told me, is that the forces driving coal into this secondary role — namely the economics of running aging plants compared to natural gas and renewables — do not seem likely to reverse themselves any time soon.
Coal has been “sort of continuously pushed a bit more to the sidelines by renewables and natural gas being cheaper sources for utilities to generate their power. This increased marginalization is going to continue to lead to greater wear and tear on these plants,” Chapman said.
But with electricity demand increasing across the country, coal is being forced into a role that it might not be able to easily — or affordably — play, all while leading to more emissions of sulfur dioxide, nitrogen oxide, particulate matter, mercury, and, of course, carbon dioxide.
The coal system has been beset by a number of high-profile outages recently, including at the largest new coal plant in the country, Sandy Creek in Texas, which could be offline until early 2027, according to the Texas energy market ERCOT and the Institute for Energy Economics and Financial Analysis.
In at least one case, coal’s reliability issues were cited as a reason to keep another coal generating unit open past its planned retirement date.
Last month, Colorado Representative Will Hurd, a Republican, wrote a letter to the Department of Energy asking for emergency action to keep Unit 2 of the Comanche coal plant in Pueblo, Colorado open past its scheduled retirement at the end of his year. Hurd cited “mechanical and regulatory constraints” for the larger Unit 3 as a justification for keeping Unit 2 open, to fill in the generation gap left by the larger unit. In a filing by Xcel and several Colorado state energy officials also requesting delaying the retirement of Unit 2, they disclosed that the larger Unit 3 “experienced an unplanned outage and is offline through at least June 2026.”
Reliability issues aside, high electricity demand may turn into short-term profits at all levels of the coal industry, from the miners to the power plants.
At the same time the Trump administration is pushing coal plants to stay open past their scheduled retirement, the Energy Information Administration is forecasting that natural gas prices will continue to rise, which could lead to increased use of coal for electricity generation. The EIA forecasts that the 2025 average price of natural gas for power plants will rise 37% from 2024 levels.
Analysts at S&P Global Commodity Insights project “a continued rebound in thermal coal consumption throughout 2026 as thermal coal prices remain competitive with short-term natural gas prices encouraging gas-to-coal switching,” S&P coal analyst Wendy Schallom told me in an email.
“Stronger power demand, rising natural gas prices, delayed coal retirements, stockpiles trending lower, and strong thermal coal exports are vital to U.S. coal revival in 2025 and 2026.”
And we’re all going to be paying the price.