You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:

When we talk about carbon removal, we often focus on “direct air capture” facilities — big factories that suck carbon dioxide out of the ambient air.
But a simpler and easier way to remove carbon from the atmosphere may exist. It’s called “enhanced rock weathering” — grinding up rocks, spreading them out, and exposing them to the ambient air — and it works, essentially, by speeding up the Earth’s carbon cycle. Enhanced rock weathering recently got a major vote of confidence from Frontier, a consortium of tech and finance companies who have teamed up to support new and experimental carbon removal technologies.
Frontier’s members include Stripe, Meta, Alphabet, Shopify, and McKinsey & Company. It aims to buy nearly $1 billion of various forms of carbon removal in the next few years — an intervention meant to spur commercial and investor interest in the sector.
In this episode, Jesse Jenkins, an energy systems expert and professor at Princeton University, and I talk with Jane Flegal, a former Biden White House climate adviser and now the market development and policy lead at Frontier, about the promise of enhanced rock weathering and why Frontier just spent $57 million to do it.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Jane Flegal: So enhanced weathering is a carbon removal process that speeds up a natural process which is weathering of alkaline materials. And so weathering happens naturally, it actually drives what makes the earth habitable in the first place. It just happens over very, very long periods. So essentially what happens is that rocks slowly erode when they come into contact with acid rain essentially and —
Robinson Meyer: Naturally acidic rain?
Flegal: Yeah, not like acid rain the way we think of it, rain that is acidic because it has some dissolved CO2. And so that acidic rainwater interacts with rocks and erodes them, and it results in CO2 being stored either as a solid carbonate or as a bicarbonate. So that happens naturally, again, on very long time periods.
Meyer: And I just want to interrupt before we go any further. What then happens, right, is that the CO2 winds up being dissolved as a bicarbonate. It goes into the ocean.
Flegal: Into the ocean.
Meyer: And then what happens? It’s turned into ...
Flegal: It sinks and becomes part of the Earth’s crust.
Meyer: Right. Or it gets turned into a shell, a creature’s shell, and then it sinks again.
Flegal: It is functionally stable. It is thermodynamically pretty much impossible to reverse.
Meyer: And you kind of said this, but I do want to draw it out: This is the carbon cycle. This is a central Earth science process. There’s nothing fancy about this.
Jesse Jenkins: The problem is it takes centuries to play out. It’s just moving on geologic time. But this idea of enhanced weathering means we can potentially speed that up, right?
Meyer: Sorry, I just want to — this is, like, the whole problem of climate change, right? The problem of climate change is that we take fossil fuels and carbon that’s stored in geological storage out of the ground on historic time scales, on decadal ... you know, every year we take millions of tons of it out of the ground, and then it would only be restored back to the ground by this extremely slow process.
Flegal: One way to think about carbon removal is, like, taking stuff out of the fast cycle and putting it into the slow cycle, basically. And essentially, you either inject CO2 underground, where it’s where it’s stable, or you turn it into salt. These are kind of the options.
And so enhanced weathering, to exactly this point, it’s enhanced for a reason, right? There’s regular old weathering, and then there’s the enhanced kind, which aims to speed up this process that typically takes millennia to years or days by either using more reactive materials than the normal rocks that would just weather naturally or increasing the surface area of the material that is exposed to CO2. So grinding up rocks into very, very fine fine powder and exposing that material to more favorable environments.
This episode of Shift Key is sponsored by Advanced Energy United, KORE Power, and Yale …
Advanced Energy United educates, engages, and advocates for policies that allow our member companies to compete to power our economy with 100% clean energy, working with decision makers and energy market regulators to achieve this goal. Together, we are united in our mission to accelerate the transition to 100% clean energy in America. Learn more at advancedenergyunited.org/heatmap
KORE Power provides the commercial, industrial, and utility markets with functional solutions that advance the clean energy transition worldwide. KORE Power's technology and manufacturing capabilities provide direct access to next generation battery cells, energy storage systems that scale to grid+, EV power & infrastructure, and intuitive asset management to unlock energy strategies across a myriad of applications. Explore more at korepower.com — the future of clean energy is here.
Build your skills in policy, finance, and clean technology at Yale. Yale’s Financing and Deploying Clean Energy certificate program is a 10-month online certificate program that trains and connects clean energy professionals to catalyze an equitable transition to a clean economy. Connect with Yale’s expertise, grow your professional network, and deepen your impact. Learn more at cbey.yale.edu/certificate.
Music for Shift Key is by Adam Kromelow.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The move would mark a significant escalation in Trump’s hostility toward climate diplomacy.
The United States is departing the United Nations Framework Convention on Climate Change, the overarching treaty that has organized global climate diplomacy for more than 30 years, according to the Associated Press.
The withdrawal, if confirmed, marks a significant escalation of President Trump’s war on environmental diplomacy beyond what he waged in his first term.
Trump has twice removed the U.S. from the Paris Agreement, a largely nonbinding pact that commits the world’s countries to report their carbon emissions reduction goals on a multi-year basis. He most recently did so in 2025, after President Biden rejoined the treaty.
But Trump has never previously touched the UNFCCC. That older pact was ratified by the Senate, and it has served as the institutional skeleton for all subsequent international climate diplomacy, including the Paris Agreement.
The United States was a founding member of the UN Framework Convention on Climate Change. It first joined the treaty in 1992, when President George H.W. Bush signed the pact and lawmakers unanimously ratified it.
Every other country in the world belongs to the UNFCCC. By withdrawing from the treaty, the U.S. would likely be locked out of the Conference of the Parties, the annual UN summit on climate change. It could also lose any influence over UN spending to drive climate adaptation in developing countries.
It remains unclear whether another president could rejoin the framework convention without a Senate vote.
As of 6 p.m. Eastern on Wednesday, the AP report cited a U.S. official who spoke on condition of anonymity because the news had not yet been announced.
The Trump administration has yet to confirm the departure. On Wednesday afternoon, the White House posted a notice to its website saying that the U.S. would leave dozens of UN groups, including those that “promote radical climate policies,” without providing specifics. The announcement was taken down from the White House website after a few minutes.
The White House later confirmed the departure from 31 UN entities in a post on the social network X, but did not list the groups in question.
Bloom Energy is riding the data center wave to new heights.
Fuel cells are back — or at least one company’s are.
Bloom Energy, the longtime standard-bearer of the fuel cell industry, has seen its share of ups and downs before. Following its 2018 IPO, its stock price shot up to over $34 before falling to under $3 a share in October 2019, then soared to over $42 in the COVID-era market euphoria before falling again to under $10 in 2024. Its market capitalization has bounced up and down over the years, from an all time low of less than $1 billion in 2019 and further struggles in early 2020 after it was forced to restate years of earnings thanks to an accounting error after already struggling to be profitable, up again to more than $7 billion in 2021 amidst a surge of interest in backup power.
The stock began soaring (again) in the middle of last year as anything and everything plausibly connected to artificial intelligence was going vertical. Today, Bloom Energy is trading at more than $111 a share, with a market cap north of $26 billion — and that’s after a dramatic fall from its all-time high price of over $135 per share, reached in November. By contrast, Southwest Airlines is worth around $22 billion; Edison International, the parent company of Southern California Edison, is worth about $22.5 billion.
This is all despite Bloom recording regular losses according to generally accepted accounting principles, although its quarterly revenue has risen by over 50%, and its reported non-GAAP and adjusted margins and profits have grown considerably. The company has signed deals or deployed its fuel cells with Oracle, the utility AEP, Amazon Web Services, gas providers, the network infrastructure company Equinix, the real estate developer Brookfield, and the artificial intelligence infrastructure company CoreWeave, Bloom’s chief executive and founder, KR Sridhar, said in its October earnings call.
While fuel cells have been pitched for decades as a way to safely use hydrogen for energy, fuel cells can also run on natural gas or biogas, which the company has seized on as a way to ride the data center boom. Bloom leadership has said that the company will double its manufacturing capacity by the end of this year, which it says will “support” a projected four-fold annual revenue increase. “The AI build-outs and their power demands are making on-site power generated by natural gas a necessity,” Sridhar said during the earnings call.
To get a sense of how euphoric perception of Bloom Energy has been, Morgan Stanley bumped its price target from $44 dollars a share to $85 on September 16 — then just over a month later, bumped it again to $155, calling the company “one of our favorite ‘time to power’ stocks given its available capacity and near-term expansion plans.”
Bloom has also won plaudits from semiconductor and data center industry analysts. The research firm SemiAnalysis described Bloom’s fuel cells as a “a fairly niche solution [that] is now taking an increasingly large share of the pie.”
It’s been a long journey from green tech darling to AI infrastructure for Bloom Energy — and fuel cells as a technology.
Bloom was founded in 2001, originally as Ion America, and quickly attracted high profile Silicon Valley investors. By 2010, fuel cells (and Bloom) were still being pitched as the generation source of the future, with The New York Times reporting in 2010 that Bloom had “spent nearly a decade developing a new variety of solid oxide fuel cell, considered the most efficient but most technologically challenging fuel-cell technology.” That product launch followed some $400 million in funding, and Bloom would hit an almost $3 billion valuation in 2011.
By 2016, however, when the company first filed with the Securities and Exchange Commission to sell shares to the public, it was being described by the Wall Street Journal as “a once-ballyhooed alternative energy startup,” in an article that said the fuel cell industry had been an “elusive target for decades, with a succession of companies unable to realize its business potential.” The company finally went public in 2018 at a valuation of $1.6 billion.
Then came the AI boom.
Fuel cells don’t use combustion to generate power, instead combining oxygen ions with hydrogen from natural gas and generating emissions of carbon dioxide and water, albeit without the particulate pollution of other forms of fossil-fuel-based electricity generation. This makes the process of getting permits from the Environmental Protection Agency “significantly smoother and easier than that of combustion generators,” SemiAnalysis wrote in a report.
In today’s context, Bloom’s fuel cells are yet another on-site, behind-the-meter natural gas power solution for data centers. “The rapid expansion of AI data centers in the U.S. is colliding with grid bottlenecks, driving operators to adopt BTM generation for speed-to-power and resilience to their modularity, fast deployment, and ability to handle volatile AI workloads,” Jefferies analyst Dushyant Ailani wrote in a note to clients. “Natural gas reciprocating engines, Batteries, and Bloom fuel cells are emerging as a preferred solution due to their modularity, fast deployment, and ability to handle volatile AI workloads.”
SemiAnalysis estimates that capital expenditure for Bloom fuel cells are substantially higher than those for gas turbines on a kilowatt-hour basis — $3,000 to $4,000 for fuel cells, compared to between $1,500 and $2,500 for turbines. But where the company excels is in speed. “The big turbines are sold out for four or five years,” Maheep Mandloi, an analyst at Mizuho Securities, told me. “The smaller ones for behind the meter for one to two years. These guys can deliver, if needed, within 90 days.”
Like other data center-related companies, Bloom has faced some local opposition, though not a debilitating amount. In Hilliard, Ohio, the state siting board overrode concerns about the deployment of more than 200 fuel cells at an AWS facility.
Bloom is also far from the only company that has realigned itself to ride the AI wave. Caterpillar, which makes simple turbine systems largely for the oil and gas industry, has become a data center darling, while the major turbine manufacturers Mitsubishi, Siemens Energy, and GE Vernova have all seen dramatic increases in their stock price in the last year. Korean industrial conglomerate Doosan is now developing a new large-scale turbine. Even the supersonic jet startup Boom is developing a gas turbine for data centers.
While artificial intelligence — or at least artificial intelligence companies — promises unforeseen technological and scientific advancements, so far it’s being powered by the technological and scientific advancements of the past.
On AI forecasts, California bills, and Trump’s fusion push
Current conditions: The intense rain pummeling Southern California since the start of the new year has subsided, but not before boosting Los Angeles’ total rainfall for the wet season that started in October a whopping 343% above the historical average • The polar vortex freezing the Great Lakes and Northeast is moving northward, allowing temperatures in Chicago to rise nearly 20 degrees Fahrenheit • The heat wave in southern Australia is set to send temperatures soaring above 113 degrees.

It’s not the kind of thing anyone a decade ago would have imagined: a communique signed by most of Western Europe’s preeminent powers condemning Washington’s efforts to seize territory from a fellow NATO ally. But in the days since the United States launched a surprise raid on Venezuela and arrested its long-time leader Nicolás Maduro, President Donald Trump has stepped up his public lobbying of Denmark to cede sovereignty over Greenland to the U.S. Senator Thom Tillis, the North Carolina Republican, and Senator Jeanne Shaheen, the Democrat from New Hampshire, put out a rare bipartisan statement criticizing the White House’s pressure campaign on Denmark, “one of our oldest and most reliable allies.” While Stephen Miller, Trump’s hard-line deputy chief of staff, declined to rule out an invasion of Greenland during a TV appearance this week, The Wall Street Journal reported Tuesday that Secretary of State Marco Rubio told lawmakers that the goal of the administration’s recent threats against the autonomously-governed Arctic island were to press Denmark into a sale.
The U.S. unsuccessfully tried acquiring Greenland multiple times during the 20th century, and invaded the island during World War II to prevent the Nazis from gaining a North American foothold after Denmark fell in the blitzkrieg. Indeed, Washington purchased the U.S. Virgin Islands, its second largest Caribbean territory, shortly after the 1898 Spanish-American war that brought Puerto Rico under American control. But the national-security logic of taking Greenland now, when the U.S. already maintains a military base there, is difficult to parse. “Greenland already is in the U.S. sphere of influence,” Columbia University political scientist Elizabeth N. Saunders wrote in a post on Bluesky. “It’s far cheaper for the U.S., in material, security, and reputational terms, to have Denmark continue administering Greenland and work within NATO on security.” One potential reason Trump might want the territory, as Heatmap’s Jael Holzman wrote last fall, is to access Greenland’s mineral wealth. But the logistics of getting rare earths out of both the ground and the Arctic to refineries in the U.S. are challenging. Meanwhile, in other imperialistic activities, Trump said Tuesday evening in a post on Truth Social that Venezuela would cede between 30 million and 50 million barrels of oil to the U.S., though the legal mechanism for such a transfer remains murky, according to The New York Times.
I told you last month about the in-house market monitor at the PJM Interconnection, the country’s largest power grid, urging federal regulators to prevent more data centers coming online within its territory until it can sort out how to reliably supply them with electricity. As Heatmap’s Matthew Zeitlin wrote days later, “everyone wants to know PJM’s data center plan.” On Tuesday, E&E News reported that PJM is expected to ratchet down its forecasts for how much power demand artificial intelligence will add on the East Coast. When the grid operator’s latest analysis of future needs comes out later this month, PJM Chief Operating Officer Stu Bresler said during a call last month that the projections for mid-2027 will be “appreciably lower” than the current forecast.
The merger of the parent company of Trump’s TruthSocial website and the nuclear fusion developer TAE Technologies, as I reported in this newsletter last month, is “flabbergasting” to analysts. And yet the pair’s partnership is advancing. On Tuesday, the companies announced that site selection was underway for a pilot-scale power plant set to begin construction later this year. The first facility would generate just 50 megawatts of electricity. But the companies said future plants are expected to pump out as much as 500 megawatts of power.
Meanwhile, the rival startup widely seen as the frontrunner to build America’s first fusion plant unveiled new deals of its own. Over at the CES 2026 electronics show in Las Vegas on Tuesday, Commonwealth Fusion Systems — which analysts say is taking a more simplified and straightforward pathway to commercializing fusion power than TAE — touted a new deal with microchip giant Nvidia and told the crowd at the conference that it had installed the first magnet at its pilot reactor, TechCrunch reported.
Sign up to receive Heatmap AM in your inbox every morning:
Scott Wiener, the California state senator making a bid for Representative Nancy Pelosi’s long-held House seat, introduced two new bills he said were designed to ease rising energy costs. The first bill is meant to “get rid of a bunch of that red tape” that makes installing a heat pump expensive and challenging in the state, the Democrat explained in a video posted on Bluesky. The second piece of legislation would clear the way for renters to install small, plug-in solar panels on apartment balconies. “Right now, in California, it is way, way, way too hard, if not impossible, to install these kinds of units,” Wiener said. “We have to make energy more affordable for people.”
Sunrun is forming a new joint venture with the green infrastructure investor HASI to finance deployment of at least 300 megawatts of solar across what the companies billed as “more than 40,000 home power plants across the country.” As part of the deal, which closed last month, HASI will invest $500 million over an 18-month period into the new company, allowing the nation’s largest solar installer to “retain a significant long-term ownership position” in the projects. As I reported for exclusively Heatmap in October, a recent analysis by the nonprofit Permit Power, which advocates for easing red tape on rooftop solar, found that the cost of solar panels in the U.S. was far higher than in Australia or Germany due to bureaucratic rules. The HASI investment will help bring down the costs for Sunrun directly as it installs more panels.
Total U.S. utility-scale solar installations for 2025 were on track last month to beat the previous year, as I reported in this newsletter. But the phaseout of federal tax credits next year is set to dim the industry somewhat as projects race to start construction before the expiration date.
In another session at CES 2026, the electric transportation company Donut Labs claimed it’s made an affordable, energy-dense solid state battery that’s powering a new motorcycle and charges in just five minutes. The startup hasn’t yet produced any independent verification of those promises. But the company is known for what InsideEVs called its “sci-fi wheel-in electric motor” for its bikes.