You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
When we talk about carbon removal, we often focus on “direct air capture” facilities — big factories that suck carbon dioxide out of the ambient air.
But a simpler and easier way to remove carbon from the atmosphere may exist. It’s called “enhanced rock weathering” — grinding up rocks, spreading them out, and exposing them to the ambient air — and it works, essentially, by speeding up the Earth’s carbon cycle. Enhanced rock weathering recently got a major vote of confidence from Frontier, a consortium of tech and finance companies who have teamed up to support new and experimental carbon removal technologies.
Frontier’s members include Stripe, Meta, Alphabet, Shopify, and McKinsey & Company. It aims to buy nearly $1 billion of various forms of carbon removal in the next few years — an intervention meant to spur commercial and investor interest in the sector.
In this episode, Jesse Jenkins, an energy systems expert and professor at Princeton University, and I talk with Jane Flegal, a former Biden White House climate adviser and now the market development and policy lead at Frontier, about the promise of enhanced rock weathering and why Frontier just spent $57 million to do it.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Jane Flegal: So enhanced weathering is a carbon removal process that speeds up a natural process which is weathering of alkaline materials. And so weathering happens naturally, it actually drives what makes the earth habitable in the first place. It just happens over very, very long periods. So essentially what happens is that rocks slowly erode when they come into contact with acid rain essentially and —
Robinson Meyer: Naturally acidic rain?
Flegal: Yeah, not like acid rain the way we think of it, rain that is acidic because it has some dissolved CO2. And so that acidic rainwater interacts with rocks and erodes them, and it results in CO2 being stored either as a solid carbonate or as a bicarbonate. So that happens naturally, again, on very long time periods.
Meyer: And I just want to interrupt before we go any further. What then happens, right, is that the CO2 winds up being dissolved as a bicarbonate. It goes into the ocean.
Flegal: Into the ocean.
Meyer: And then what happens? It’s turned into ...
Flegal: It sinks and becomes part of the Earth’s crust.
Meyer: Right. Or it gets turned into a shell, a creature’s shell, and then it sinks again.
Flegal: It is functionally stable. It is thermodynamically pretty much impossible to reverse.
Meyer: And you kind of said this, but I do want to draw it out: This is the carbon cycle. This is a central Earth science process. There’s nothing fancy about this.
Jesse Jenkins: The problem is it takes centuries to play out. It’s just moving on geologic time. But this idea of enhanced weathering means we can potentially speed that up, right?
Meyer: Sorry, I just want to — this is, like, the whole problem of climate change, right? The problem of climate change is that we take fossil fuels and carbon that’s stored in geological storage out of the ground on historic time scales, on decadal ... you know, every year we take millions of tons of it out of the ground, and then it would only be restored back to the ground by this extremely slow process.
Flegal: One way to think about carbon removal is, like, taking stuff out of the fast cycle and putting it into the slow cycle, basically. And essentially, you either inject CO2 underground, where it’s where it’s stable, or you turn it into salt. These are kind of the options.
And so enhanced weathering, to exactly this point, it’s enhanced for a reason, right? There’s regular old weathering, and then there’s the enhanced kind, which aims to speed up this process that typically takes millennia to years or days by either using more reactive materials than the normal rocks that would just weather naturally or increasing the surface area of the material that is exposed to CO2. So grinding up rocks into very, very fine fine powder and exposing that material to more favorable environments.
This episode of Shift Key is sponsored by Advanced Energy United, KORE Power, and Yale …
Advanced Energy United educates, engages, and advocates for policies that allow our member companies to compete to power our economy with 100% clean energy, working with decision makers and energy market regulators to achieve this goal. Together, we are united in our mission to accelerate the transition to 100% clean energy in America. Learn more at advancedenergyunited.org/heatmap
KORE Power provides the commercial, industrial, and utility markets with functional solutions that advance the clean energy transition worldwide. KORE Power's technology and manufacturing capabilities provide direct access to next generation battery cells, energy storage systems that scale to grid+, EV power & infrastructure, and intuitive asset management to unlock energy strategies across a myriad of applications. Explore more at korepower.com — the future of clean energy is here.
Build your skills in policy, finance, and clean technology at Yale. Yale’s Financing and Deploying Clean Energy certificate program is a 10-month online certificate program that trains and connects clean energy professionals to catalyze an equitable transition to a clean economy. Connect with Yale’s expertise, grow your professional network, and deepen your impact. Learn more at cbey.yale.edu/certificate.
Music for Shift Key is by Adam Kromelow.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Empire Wind has been spared — but it may be one of the last of its kind in the U.S.
It’s been a week of whiplash for offshore wind.
On Monday, President Trump lifted his stop work order on Empire Wind, an 810-megawatt wind farm under construction south of Long Island that will deliver renewable power into New York’s grid. But by Thursday morning, Republicans in the House of Representatives had passed a budget bill that would scrap the subsidies that make projects like this possible.
The economics of building offshore wind in the U.S., at least during this nascent stage, are “entirely dependent” on tax credits, Marguerite Wells, the executive director of Alliance for Clean Energy New York, told me.
That being said, if the bill gets through the Senate and becomes law, Empire Wind may still be safe. The legislation would significantly narrow the window for projects to qualify for tax credits, requiring them to start construction by the end of this year and be operational by the end of 2028. Equinor, the company behind Empire Wind, maintains that it aims to reach commercial operations as soon as 2027. The four other offshore wind projects that are under construction in the U.S. — Sunrise Wind, also serving New York; Vineyard Wind, serving Massachusetts; Revolution Wind, serving Rhode Island and Connecticut; and Dominion Energy’s project in Virginia — are also expected to be completed before the cutoff.
Together, the five wind farms are expected to generate enough power for roughly 2.5 million homes and avoid more than 9 million tons of carbon emissions each year — similar to shutting down 23 natural gas-fired power plants.
Still, this would represent just a small fraction of the carbon-free energy eastern states are counting on offshore wind to provide. New York, for example, has a statutory goal of getting at least 9 gigawatts of power from the industry. Once Empire and Sunrise are completed, it will have just 1.7 gigawatts.
If the proposed changes to the tax credits are enacted, these five projects may be the last built in the U.S.
That’s not the case for solar farms or onshore wind, Oliver Metcalfe, head of wind research at BloombergNEF told me. They can still compete with fossil fuel generation — especially in the windiest and sunniest areas — without tax credits. That’s especially true in today’s environment of rising demand for power, since these projects have the additional benefit of being quick to build. The downside of losing the tax credits is, of course, that the power will cost marginally more than it otherwise would have.
For offshore wind farms to pencil out, however, states would have to pay a much higher price for the energy they produce. The tax credits knock off about a quarter of the price, Metcalfe said; without them, buyers will be back on the hook. “It’s likely that some either wouldn’t be willing to do that, or would dramatically decrease their ambition around the technology given the potential impacts it could have on ratepayers.”
Part of the reason offshore wind is so expensive is that the industry is still new in the U.S. We lack the supply chains, infrastructure, and experienced workforce built up over time in countries like China and the U.K. that have been able to bring costs down. That’s likely not going to change by the time these five projects are built, as they are all relying on European supply chains.
The Inflation Reduction Act spurred domestic manufacturers to begin developing supply chains to serve the next wave of projects, Wells told me. It gave renewable energy projects a 10-year runway to start construction to be eligible for the tax credits. “It was a long enough time window for companies to really invest, not just in the individual generation projects, but also manufacturing, supply chain, and labor chain,” she said.
Due to Trump’s attacks on the industry, the next wave of projects may not materialize, and those budding supply chains could go bust.
Trump put a freeze on offshore wind permitting and leasing on his first day in office, a move that 17 states are now challenging in court. A handful of projects are already fully permitted, but due to uncertainty around Trump’s tariffs — and now, around whether they’ll have access to the tax credits — they’re at a standstill.
“No one’s willing to back a new offshore wind project in today’s environment because there’s so much uncertainty around the future business case, the future subsidies, the future cost of equipment,” Metcalfe said.
The House budget bill may have kept the 45Q tax credit, but nixing transferability makes it decidedly less useful.
Very few of the Inflation Reduction Act’s tax credits made it through the House’s recently passed budget bill unscathed. One of the apparently lucky ones, however, was the 45Q credit for carbon capture projects. This provides up to $180 per metric ton for direct air capture and $85 for carbon captured from industrial or power facilities, depending on how the CO2 is subsequently sequestered or put to use in products such as low-carbon aviation fuels or building materials. The latest version of the bill doesn’t change that at all.
But while the preservation of 45Q is undoubtedly good news for the increasing number of projects in this space, carbon capture didn’t escape fully intact. One of the main ways the IRA supercharged tax credits was by making them transferable, turning them into an important financing tool for small or early-stage projects that might not make enough money to owe much — or even anything — in taxes. Being able to sell tax credits on the open market has often been the only way for smaller developers to take advantage of the credits. Now, the House bill will eliminate transferability for all projects that begin construction two years after the bill becomes law.
That’s going to make the economics of an already financially unsteady industry even more difficult. “Especially given the early stage of the direct air capture industry, transferability is really key,” Giana Amador, the executive director of an industry group called the Carbon Removal Alliance, told me. “Without transferability, most DAC companies won’t be able to fully capitalize upon 45Q — which, of course, threatens the viability of these projects.”
We’re not talking about just a few projects, either. We’re talking about the vast majority, Jessie Stolark, the executive director of another industry group, the Carbon Capture Coalition, told me. “The initial reaction is that this is really bad, and would actually cut off at the knees the utility of the 45Q tax credit,” Stolark said. Out of over 270 carbon capture projects announced as of today, Stolark estimates that fewer than 10 will be able to begin construction in the two years before transferability ends.
The alternative to easily transferable tax credits is a type of partnership between a project developer and a tax equity investor such as a bank. In this arrangement, investors give project developers cash in exchange for an equity stake in their project and their tax credit benefits. Deals like this are common in the renewable energy industry, but because they’re legally complicated and expensive, they’re not really viable for companies that aren’t bringing in a lot of revenue.
Because carbon capture is a much younger, and thus riskier technology than renewables, “tax equity markets typically require returns of 30% or greater from carbon capture and direct air capture project developers,” Stolark told me. That’s a much higher rate than tax equity partners typically require for wind or solar projects. “That out of the gate significantly diminishes the tax credit's value.” Taken together with inflation and high interest rates, all this means that “far fewer projects will proceed to construction,” Stolark said.
One DAC company I spoke with, Bay Area-based Noya, said that now that transferability is out, it has been exploring the possibility of forming tax equity partnerships. “We’ve definitely talked to banks that might be interested in getting involved in these kinds of things sooner than they would have otherwise gotten involved, due to the strategic nature of being partnered with companies that are growing fast,” Josh Santos, Noya’s CEO, told me.
It would certainly be a surprise to see banks — which are generally quite risk averse — lining up behind these kinds of new and unproven technologies, especially given that carbon capture doesn’t have much of a natural market. While CO2 can be used for some limited industrial purposes — beverage carbonation, sustainable fuels, low-carbon concrete — the only market for true carbon dioxide removal is the voluntary market, in which companies, governments, or individuals offset their own emissions by paying companies to remove carbon from the atmosphere. So if carbon capture is going to become a thriving, lucrative industry, it’s likely going to be heavily dependent on future government incentives, mandates, or purchasing commitments. And that doesn’t seem likely to happen in the U.S. anytime soon.
Noya, which is attempting to deploy its electrically-powered, modular direct air capture units beginning in 2027, is still planning on building domestically, though. As Santos told me, he’s eyeing California and Texas as promising sites for the company’s first projects. And while he said that the repeal of transferability will certainly “make things more complicated,” it is not enough of a setback for the company to look abroad.
“45Q is a big part of why we are focused on the U.S. mainly as our deployment site,” Santos explained. “We’ve looked at places like Iceland and the Middle East and Africa for potential deployment locations, and the tradeoff of losing 45Q in exchange for a cheaper something has to be significant enough for that to make sense,” he told me — something like more cost efficient electricity, permitting or installation costs. Preserving 45Q, he told me, means Noya’s long-term project economics are still “great for what we’re trying to build.”
But if companies can’t weather the short-term headwinds, they’ll never be able to reach the level of scale and profitability that would allow them to leverage the benefits of the 45Q credits directly. For many DAC companies such as Climeworks, which built the industry’s largest facility in Iceland, Amador and Stolark said that the domestic policy environment is causing hesitation around expanding in the U.S.
“We are very much at risk of losing our US leadership position in the industry,” Stolark told me. Meanwhile, she said that Canada, China, and the EU are developing policies that are making them increasingly attractive places to build.
As Amador put it, “I think no matter what these projects will be built, it’s just a question of whether the United States is the most favorable place for them to be deployed.”
House Republicans have bet that nothing bad will happen to America’s economic position or energy supply. The evidence suggests that’s a big risk.
When President Barack Obama signed the Budget Control Act in August of 2011, he did not do so happily. The bill averted the debt ceiling crisis that had threatened to derail his presidency, but it did so at a high cost: It forced Congress either to agree to big near-term deficit cuts, or to accept strict spending limits over the years to come.
It was, as Bloomberg commentator Conor Sen put it this week, the wrong bill for the wrong moment. It suppressed federal spending as America climbed out of the Great Recession, making the early 2010s economic recovery longer than it would have been otherwise. When Trump came into office, he ended the automatic spending limits — and helped to usher in the best labor market that America has seen since the 1990s.
On Thursday, the Republican majority in the House of Representatives passed their megabill — which is dubbed, for now, the “One Big, Beautiful Bill Act” — through the reconciliation process. They did so happily. But much like Obama’s sequestration, this bill is the wrong one for the wrong moment. It would add $3.3 trillion to the federal deficit over the next 10 years. The bill’s next stop is the Senate, where it could change significantly. But if this bill is enacted, it will jack up America’s energy and environmental risks — for relatively little benefit.
It has become somewhat passé for advocates to talk about climate change, as The New York Times observed this week. “We’re no longer talking about the environment,” Chad Farrell, the founder of Encore Renewable Energy, told the paper. “We’re talking dollars and cents.”
Maybe that’s because saying that something “is bad for the climate” only makes it a more appealing target for national Republicans at the moment, who are still reveling in the frisson of their post-Trump victory. But one day the environment will matter again to Americans — and this bill would, in fact, hurt the environment. It will mark a new chapter in American politics: Once, this country had a comprehensive climate law on the books. Then Trump and Republicans junked it.
The Republican megabill will make climate change worse. Within a year or two, the U.S. will be pumping out half a gigaton more carbon pollution per year than it would in a world where the IRA remains on the books, according to energy modelers at Princeton University. Within a decade, it will raise American carbon pollution by a gigaton each year. That is a significant increase. For comparison, the United States is responsible for about 5.2 gigatons of greenhouse gas pollution each year. No matter what happens, American emissions are likely to fall somewhat between now and 2035 — but, still, we are talking about adding at least an extra year’s worth of emissions over the next decade. (Full disclosure: I co-host a podcast, Shift Key, with Jesse Jenkins, the lead author of that Princeton study.)
What does America get for this increase in air pollution? After all, it’s possible to imagine situations where such a surge could bring economic benefits. In this case, though, we don’t get very much at all. Repealing the tax credits will slash $1 trillion from GDP over the next decade, according to the nonpartisan group Energy Innovation. Texas will be particularly hard hit — it could lose up to $100 billion in energy investment. Across the country, household energy costs will rise 2% to 7% by 2035, on top of any normal market-driven volatility, according to the energy research firm the Rhodium Group. The country will become more reliant on foreign oil imports, yet domestic oil production will budge up by less than 1%.
In other words, in exchange for more pollution, Americans will get less economic growth but higher energy costs. The country’s capital stock will be smaller than it would be otherwise, and Americans will work longer hours, according to the Tax Foundation.
But this numbers-driven approach actually understates the risk of repealing the IRA’s tax credits. The House megabill raises two big risks to the economy, as I see it — risks that are moresignificant than the result of any one energy or economic model.
The first is that this bill — its policy changes and its fiscal impact — will represent a double hit to the capacity of America’s energy system. The Inflation Reduction Act’s energy tax credits were designed to lower pollution and reduce energy costs by bringing more zero-carbon electricity supply onto the U.S. power grid. The law didn’t discriminate about what kind of energy it encouraged — it could be solar, geothermal, or nuclear — as long as it met certain emissions thresholds.
This turned out to be an accidentally well-timed intervention in the U.S. energy supply. The advent of artificial intelligence and a spurt of factory building has meant that, in the past few years, U.S. electricity demand has begun to rise for the first time since the 1990s. At the same time, the country’s ability to build new natural gas plants has come under increasing strain. The IRA’s energy tax credits have helped make this situation slightly less harrowing by providing more incentives to boost electricity supply.
Republicans are now trying to remove these tax bonuses in order to finance tax cuts for high-earning households. But removing the IRA alone won’t pay for the tax credits, so they will also have to borrow trillions of dollars. This is already straining bond markets, driving up interest rates for Americans. Indeed, a U.S. Treasury auction earlier this week saw weak demand for $16 billion in bonds, driving stocks and the dollar down while spiking treasury yields.
Higher interest rates will make it more expensive to build any kind of new power plant. At a moment of maximum stress on the grid, the U.S. is going to pull away tax bonuses for new electricity supply and make it more expensive to do any kind of investment in the power system. This will hit wind, solar, and batteries hard; because renewables don’t have to pay for fuel, their cost variability is largely driven by financing. But higher interest rates will also make it harder to build new natural gas plants. Trump’s trade barriers and tariff chaos will further drive up the cost of new energy investment.
Republicans aren’t totally oblivious to this hazard. The House Natural Resource Committee’s permitting reform proposal could reduce some costs of new energy development and encourage greater power capacity — assuming, that is, that the proposal survives the Senate’s byzantine reconciliation rules. But even then, significant risk exists for runaway energy cost chaos. Over the next three years, America’s liquified natural gas export capacity is set to more than double. Trump officials have assumed that America will simply be able to drill for more natural gas to offset a rise in exports, but what if higher interest rates and tariff charges forbid a rise in capacity? A power price shock is not off the table.
So that’s risk No. 1. The second risk is arguably of greater strategic import. As part of their megabill, House Republicans have stripped virtually every demand-side subsidy for electric vehicles from the bill, including a $7,500 tax credit for personal EV purchases. At the same time, Senate Republicans and the Trump administration have gutted state and federal rules meant to encourage electric vehicle sales.
Republicans have kept, for now, some of the supply-side subsidies for manufacturing EVs and batteries. But without the paired demand-side incentives, American EV sales will fall. (The Princeton energy team projects an up to 40% decline in EV sales nationwide.) This will reduce the economic rationale for much of the current buildout in electric vehicle manufacturing and capacity happening across the country — it could potentially put every new EV and battery factory meant to come online after this year out of the money.
This will weaken the country’s economic competitiveness. Batteries are a strategic energy technology, and they will undergird many of the most important general and military technologies of the next several decades. (If you can make an EV, you can make an autonomous drone.) The Trump administration has realized that the United States and its allies need a durable mineral supply chain that can at least parallel China’s. But they seem unwilling to help any of the industries that will actually usethose minerals.
Does this mean that Republicans will kill America’s electric vehicle industry? Not necessarily. But they will dent its growth, strength, and expansion. They will make it weaker and more vulnerable to external interference. And they will increase the risks that the United States simply gives up on ever understanding battery technology and doubles down on internal combustion vehicles — a technology that, like coal-powered naval ships, is destined to lose.
It is, in other words, risky. But that is par for the course for this bill. It is risky to make the power grid so exposed to natural gas price volatility. It is risky to jack up the federal deficit during peacetime for so little gain. It is risky to cede so much demand for U.S.-sourced critical minerals. It is risky to raise interest rates in an era of higher trade barriers, uncertain supply shocks, and geopolitical instability.
This is what worries me most about the Republican megabill: It takes America’s flawed but fixable energy policy and replaces it with, well, a longshot parlay bet that nothing particularly bad will happen anytime soon. Will the Senate take such a bet? Now we find out.
Editor’s note: This story has been updated to correct the units in the sixth paragraph from megatons to gigatons.