Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Technology

The SpaceX Alums Using Rocket Science to Make ‘Carbon-Negative’ Energy

Instead of rocket fuel, they’re burning biomass.

Arbor technology.
Heatmap Illustration/Arbor, Getty Images

Arbor Energy might have the flashiest origin story in cleantech.

After the company’s CEO, Brad Hartwig, left SpaceX in 2018, he attempted to craft the ideal resume for a future astronaut, his dream career. He joined the California Air National Guard, worked as a test pilot at the now-defunct electric aviation startup Kitty Hawk, and participated in volunteer search and rescue missions in the Bay Area, which gave him a front row seat to the devastating effects of wildfires in Northern California.

That experience changed everything. “I decided I actually really like planet Earth,” Hartwig told me, “and I wanted to focus my career instead on preserving it, rather than trying to leave it.” So he rallied a bunch of his former rocket engineer colleagues to repurpose technology they pioneered at SpaceX to build a biomass-fueled, carbon negative power source that’s supposedly about ten times smaller, twice as efficient, and eventually, one-third the cost of the industry standard for this type of plant.

Take that, all you founders humble-bragging about starting in a dingy garage.

“It’s not new science, per se,” Hartwig told me. The goal of this type of tech, called bioenergy with carbon capture and storage, is to combine biomass-based energy generation with carbon dioxide removal to achieve net negative emissions. Sounds like a dream, but actually producing power or heat from this process has so far proven too expensive to really make sense. There are only a few so-called BECCS facilities operating in the U.S. today, and they’re all just ethanol fuel refineries with carbon capture and storage technology tacked on.

But the advances in 3D printing and computer modeling that allowed the SpaceX team to build an increasingly simple and cheap rocket engine have allowed Arbor to move quickly into this new market, Hartwig explained. “A lot of the technology that we had really pioneered over the last decade — in reactor design, combustion devices, turbo machinery, all for rocket propulsion — all that technology has really quite immediate application in this space of biomass conversion and power generation.”

Arbor’s method is poised to be a whole lot sleeker and cheaper than the BECCS plants of today, enabling both more carbon sequestration and actual electricity production, all by utilizing what Hartwig fondly refers to as a “vegetarian rocket engine.” Because there’s no air in space, astronauts have to bring pure oxygen onboard, which the rocket engines use to burn fuel and propel themselves into the stratosphere and beyond. Arbor simply subs out the rocket fuel for biomass. When that biomass is combusted with pure oxygen, the resulting exhaust consists of just CO2 and water. As the exhaust cools, the water condenses out, and what’s left is a stream of pure carbon dioxide that’s ready to be injected deep underground for permanent storage. All of the energy required to operate Arbor’s system is generated by the biomass combustion itself.

“Arbor is the first to bring forward a technology that can provide clean baseload energy in a very compact form,” Clea Kolster, a partner and Head of Science at Lowercarbon Capital told me. Lowercarbon is an investor in Arbor, alongside other climate tech-focused venture capital firms including Gigascale Capital and Voyager Ventures, but the company has not yet disclosed how much it’s raised.

Last month, Arbor signed a deal with Microsoft to deliver 25,000 tons of permanent carbon dioxide removal to the tech giant starting in 2027, when the startup’s first commercial project is expected to come online. As a part of the deal, Arbor will also generate 5 megawatts of clean electricity per year, enough to power about 4,000 U.S. homes. And just a few days ago, the Department of Energy announced that Arbor is one of 11 projects to receive a combined total of $58.5 million to help develop the domestic carbon removal industry.

Arbor’s current plan is to source biomass from forestry waste, much of which is generated by forest thinning operations intended to prevent destructive wildfires. Hartwig told me that for every ton of organic waste, Arbor can produce about one megawatt hour of electricity, which is in line with current efficiency standards, plus about 1.8 tons of carbon removal. “We look at being as efficient, if not a little more efficient than a traditional bioenergy power plant that does not have carbon capture on it,” he explained.

The company’s carbon removal price targets are also extremely competitive — in the $50 to $100 per ton range, Hartwig said. Compare that to something like direct air capture, which today exceeds $600 per ton, or enhanced rock weathering, which is usually upwards of $300 per ton. “The power and carbon removal they can offer comes at prices that meet nearly unlimited demand,”Mike Schroepfer, the founder of Gigascale Capital and former CTO of Meta, told me via email. Arbor benefits from the fact that the electricity it produces and sells can help offset the cost of the carbon removal, and vice versa. So if the company succeeds in hitting its cost and efficiency targets, Hartwig said, this “quickly becomes a case for, why wouldn’t you just deploy these everywhere?”

Initial customers will likely be (no surprise here) the Microsofts, Googles and Metas of the world — hyperscalers with growing data center needs and ambitious emissions targets. “What Arbor unlocks is basically the ability for hyperscalers to stop needing to sacrifice their net zero goals for AI,” Kolster told me. And instead of languishing in the interminable grid interconnection queue, Hartwig said that providing power directly to customers could ensure rapid, early deployment. “We see it as being quicker to power behind-the-meter applications, because you don’t have to go through the process of connecting to the grid,” he told me. Long-term though, he said grid connection will be vital, since Arbor can provide baseload power whereas intermittent renewables cannot.

All of this could serve as a much cheaper alternative, to say, re-opening shuttered nuclear facilities, as Microsoft also recently committed to doing at Three Mile Island. “It’s great, we should be doing that,” Kolster said of this nuclear deal, “but there’s actually a limited pool of options to do that, and unfortunately, there is still community pushback.”

Currently, Arbor is working to build out its pilot plant in San Bernardino, California, which Hartwig told me will turn on this December. And by 2030, the company plans to have its first commercial plant operating at scale, generating 100 megawatts of electricity while removing nearly 2 megatons of CO2 every year. “To put it in perspective: In 2023, the U.S. added roughly 9 gigawatts of gas power to the grid, which generates 18 to 23 megatons of CO2 a year,” Schroepfer wrote to me. So having just one Arbor facility removing 2 megatons would make a real dent. The first plant will be located in Louisiana, where Arbor will also be working with an as-yet-unnamed partner to do the carbon storage.

The company’s carbon credits will be verified with the credit certification platform Isometric, which is also backed by Lowercarbon and thought to have the most stringent standards in the industry. Hartwig told me that Arbor worked hand-in-hand with Isometric to develop the protocol for “biogenic carbon capture and storage,” as the company is the first Isometric-approved supplier to use this standard.

But Hartwig also said that government support hasn’t yet caught up to the tech’s potential. While the Inflation Reduction Act provides direct air capture companies with $180 per ton of carbon dioxide removed, technology such as Arbor’s only qualifies for $85 per ton. It’s not nothing — more than the zero dollars enhanced rock weathering companies such as Lithos or bio-oil sequestration companies such as Charm are getting. “But at the same time, we’re treated the same as if we’re sequestering CO2 emissions from a natural gas plant or a coal plant,” Hartwig told me, as opposed to getting paid for actual CO2 removal.

“I think we are definitely going to need government procurement or involvement to actually hit one, five, 10 gigatons per year of carbon removal,” Hartwig said. Globally, scientists estimate that we’ll need up to 10 gigatons of annual CO2 removal by 2050 in order to limit global warming to 1.5 degrees Celsius. “Even at $100 per ton, 10 gigatons of carbon removal is still a pretty hefty price tag,” Hartwig told me. A $1 trillion price tag, to be exact. “We definitely need more players than just Microsoft.”

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Politics

Carbon Capture May Not Have Been Spared After All

The House budget bill may have kept the 45Q tax credit, but nixing transferability makes it decidedly less useful.

The Capitol.
Heatmap Illustration/Getty Images, Climeworks

Very few of the Inflation Reduction Act’s tax credits made it through the House’s recently passed budget bill unscathed. One of the apparently lucky ones, however, was the 45Q credit for carbon capture projects. This provides up to $180 per metric ton for direct air capture and $85 for carbon captured from industrial or power facilities, depending on how the CO2 is subsequently sequestered or put to use in products such as low-carbon aviation fuels or building materials. The latest version of the bill doesn’t change that at all.

But while the preservation of 45Q is undoubtedly good news for the increasing number of projects in this space, carbon capture didn’t escape fully intact. One of the main ways the IRA supercharged tax credits was by making them transferable, turning them into an important financing tool for small or early-stage projects that might not make enough money to owe much — or even anything — in taxes. Being able to sell tax credits on the open market has often been the only way for smaller developers to take advantage of the credits. Now, the House bill will eliminate transferability for all projects that begin construction two years after the bill becomes law.

Keep reading...Show less
Green
Politics

The GOP Tax Bill Is a Dangerous Gamble at a Precarious Moment

House Republicans have bet that nothing bad will happen to America’s economic position or energy supply. The evidence suggests that’s a big risk.

The Capitol.
Heatmap Illustration/Getty Images

When President Barack Obama signed the Budget Control Act in August of 2011, he did not do so happily. The bill averted the debt ceiling crisis that had threatened to derail his presidency, but it did so at a high cost: It forced Congress either to agree to big near-term deficit cuts, or to accept strict spending limits over the years to come.

It was, as Bloomberg commentator Conor Sen put it this week, the wrong bill for the wrong moment. It suppressed federal spending as America climbed out of the Great Recession, making the early 2010s economic recovery longer than it would have been otherwise. When Trump came into office, he ended the automatic spending limits — and helped to usher in the best labor market that America has seen since the 1990s.

Keep reading...Show less
Yellow
Hotspots

Renewables at War in the Worcesters

And more of the week’s top conflicts around renewable energy

The United States.
Heatmap Illustration/Getty Images

1. Worcester County, Massachusetts – The town of Oakham is piping mad about battery energy storage.

  • A Rhynland Energy BESS facility filed a request with Massachusetts regulators in April to override longstanding local reservations against battery storage, dating back to a previous project fight from 2022. Local conservative organizations have been amplifying opposition to the project.
  • Rhyland may be able to sidestep Oakham’s opposition thanks to a new permitting law providing for exemptions from local restrictions, a la Michigan and other “primacy” states.

2. Worcester County, Maryland – A different drama is going down in a different Worcester County on Maryland’s eastern shore, where fishing communities are rejecting financial compensation from U.S. Wind tied to MarWin, its offshore project.

Keep reading...Show less
Yellow