You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Instead of rocket fuel, they’re burning biomass.

Arbor Energy might have the flashiest origin story in cleantech.
After the company’s CEO, Brad Hartwig, left SpaceX in 2018, he attempted to craft the ideal resume for a future astronaut, his dream career. He joined the California Air National Guard, worked as a test pilot at the now-defunct electric aviation startup Kitty Hawk, and participated in volunteer search and rescue missions in the Bay Area, which gave him a front row seat to the devastating effects of wildfires in Northern California.
That experience changed everything. “I decided I actually really like planet Earth,” Hartwig told me, “and I wanted to focus my career instead on preserving it, rather than trying to leave it.” So he rallied a bunch of his former rocket engineer colleagues to repurpose technology they pioneered at SpaceX to build a biomass-fueled, carbon negative power source that’s supposedly about ten times smaller, twice as efficient, and eventually, one-third the cost of the industry standard for this type of plant.
Take that, all you founders humble-bragging about starting in a dingy garage.
“It’s not new science, per se,” Hartwig told me. The goal of this type of tech, called bioenergy with carbon capture and storage, is to combine biomass-based energy generation with carbon dioxide removal to achieve net negative emissions. Sounds like a dream, but actually producing power or heat from this process has so far proven too expensive to really make sense. There are only a few so-called BECCS facilities operating in the U.S. today, and they’re all just ethanol fuel refineries with carbon capture and storage technology tacked on.
But the advances in 3D printing and computer modeling that allowed the SpaceX team to build an increasingly simple and cheap rocket engine have allowed Arbor to move quickly into this new market, Hartwig explained. “A lot of the technology that we had really pioneered over the last decade — in reactor design, combustion devices, turbo machinery, all for rocket propulsion — all that technology has really quite immediate application in this space of biomass conversion and power generation.”
Arbor’s method is poised to be a whole lot sleeker and cheaper than the BECCS plants of today, enabling both more carbon sequestration and actual electricity production, all by utilizing what Hartwig fondly refers to as a “vegetarian rocket engine.” Because there’s no air in space, astronauts have to bring pure oxygen onboard, which the rocket engines use to burn fuel and propel themselves into the stratosphere and beyond. Arbor simply subs out the rocket fuel for biomass. When that biomass is combusted with pure oxygen, the resulting exhaust consists of just CO2 and water. As the exhaust cools, the water condenses out, and what’s left is a stream of pure carbon dioxide that’s ready to be injected deep underground for permanent storage. All of the energy required to operate Arbor’s system is generated by the biomass combustion itself.
“Arbor is the first to bring forward a technology that can provide clean baseload energy in a very compact form,” Clea Kolster, a partner and Head of Science at Lowercarbon Capital told me. Lowercarbon is an investor in Arbor, alongside other climate tech-focused venture capital firms including Gigascale Capital and Voyager Ventures, but the company has not yet disclosed how much it’s raised.
Last month, Arbor signed a deal with Microsoft to deliver 25,000 tons of permanent carbon dioxide removal to the tech giant starting in 2027, when the startup’s first commercial project is expected to come online. As a part of the deal, Arbor will also generate 5 megawatts of clean electricity per year, enough to power about 4,000 U.S. homes. And just a few days ago, the Department of Energy announced that Arbor is one of 11 projects to receive a combined total of $58.5 million to help develop the domestic carbon removal industry.
Arbor’s current plan is to source biomass from forestry waste, much of which is generated by forest thinning operations intended to prevent destructive wildfires. Hartwig told me that for every ton of organic waste, Arbor can produce about one megawatt hour of electricity, which is in line with current efficiency standards, plus about 1.8 tons of carbon removal. “We look at being as efficient, if not a little more efficient than a traditional bioenergy power plant that does not have carbon capture on it,” he explained.
The company’s carbon removal price targets are also extremely competitive — in the $50 to $100 per ton range, Hartwig said. Compare that to something like direct air capture, which today exceeds $600 per ton, or enhanced rock weathering, which is usually upwards of $300 per ton. “The power and carbon removal they can offer comes at prices that meet nearly unlimited demand,” Mike Schroepfer, the founder of Gigascale Capital and former CTO of Meta, told me via email. Arbor benefits from the fact that the electricity it produces and sells can help offset the cost of the carbon removal, and vice versa. So if the company succeeds in hitting its cost and efficiency targets, Hartwig said, this “quickly becomes a case for, why wouldn’t you just deploy these everywhere?”
Initial customers will likely be (no surprise here) the Microsofts, Googles and Metas of the world — hyperscalers with growing data center needs and ambitious emissions targets. “What Arbor unlocks is basically the ability for hyperscalers to stop needing to sacrifice their net zero goals for AI,” Kolster told me. And instead of languishing in the interminable grid interconnection queue, Hartwig said that providing power directly to customers could ensure rapid, early deployment. “We see it as being quicker to power behind-the-meter applications, because you don’t have to go through the process of connecting to the grid,” he told me. Long-term though, he said grid connection will be vital, since Arbor can provide baseload power whereas intermittent renewables cannot.
All of this could serve as a much cheaper alternative, to say, re-opening shuttered nuclear facilities, as Microsoft also recently committed to doing at Three Mile Island. “It’s great, we should be doing that,” Kolster said of this nuclear deal, “but there’s actually a limited pool of options to do that, and unfortunately, there is still community pushback.”
Currently, Arbor is working to build out its pilot plant in San Bernardino, California, which Hartwig told me will turn on this December. And by 2030, the company plans to have its first commercial plant operating at scale, generating 100 megawatts of electricity while removing nearly 2 megatons of CO2 every year. “To put it in perspective: In 2023, the U.S. added roughly 9 gigawatts of gas power to the grid, which generates 18 to 23 megatons of CO2 a year,” Schroepfer wrote to me. So having just one Arbor facility removing 2 megatons would make a real dent. The first plant will be located in Louisiana, where Arbor will also be working with an as-yet-unnamed partner to do the carbon storage.
The company’s carbon credits will be verified with the credit certification platform Isometric, which is also backed by Lowercarbon and thought to have the most stringent standards in the industry. Hartwig told me that Arbor worked hand-in-hand with Isometric to develop the protocol for “biogenic carbon capture and storage,” as the company is the first Isometric-approved supplier to use this standard.
But Hartwig also said that government support hasn’t yet caught up to the tech’s potential. While the Inflation Reduction Act provides direct air capture companies with $180 per ton of carbon dioxide removed, technology such as Arbor’s only qualifies for $85 per ton. It’s not nothing — more than the zero dollars enhanced rock weathering companies such as Lithos or bio-oil sequestration companies such as Charm are getting. “But at the same time, we’re treated the same as if we’re sequestering CO2 emissions from a natural gas plant or a coal plant,” Hartwig told me, as opposed to getting paid for actual CO2 removal.
“I think we are definitely going to need government procurement or involvement to actually hit one, five, 10 gigatons per year of carbon removal,” Hartwig said. Globally, scientists estimate that we’ll need up to 10 gigatons of annual CO2 removal by 2050 in order to limit global warming to 1.5 degrees Celsius. “Even at $100 per ton, 10 gigatons of carbon removal is still a pretty hefty price tag,” Hartwig told me. A $1 trillion price tag, to be exact. “We definitely need more players than just Microsoft.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
There has been no new nuclear construction in the U.S. since Vogtle, but the workers are still plenty busy.
The Trump administration wants to have 10 new large nuclear reactors under construction by 2030 — an ambitious goal under any circumstances. It looks downright zany, though, when you consider that the workforce that should be driving steel into the ground, pouring concrete, and laying down wires for nuclear plants is instead building and linking up data centers.
This isn’t how it was supposed to be. Thousands of people, from construction laborers to pipefitters to electricians, worked on the two new reactors at the Plant Vogtle in Georgia, which were intended to be the start of a sequence of projects, erecting new Westinghouse AP1000 reactors across Georgia and South Carolina. Instead, years of delays and cost overruns resulted in two long-delayed reactors 35 miles southeast of Augusta, Georgia — and nothing else.
“We had challenges as we were building a new supply chain for a new technology and then workforce,” John Williams, an executive at Southern Nuclear Operating Company, which owns over 45% of Plant Vogtle, said in a webinar hosted by the environmental group Resources for the Future in October.
“It had been 30 years since we had built a new nuclear plant from scratch in the United States. Our workforce didn’t have that muscle memory that they have in other parts of the world, where they have been building on a more regular frequency.”
That workforce “hasn’t been building nuclear plants” since heavy construction stopped at Vogtle in 2023, he noted — but they have been busy “building data centers and car manufacturing in Georgia.”
Williams said that it would take another “six to 10” AP1000 projects for costs to come down far enough to make nuclear construction routine. “If we were currently building the next AP1000s, we would be farther down that road,” he said. “But we’ve stopped again.”
J.R. Richardson, business manager and financial secretary of the International Brotherhood of Electric Workers Local 1579, based in Augusta, Georgia, told me his union “had 2,000 electricians on that job,” referring to Vogtle. “So now we have a skill set with electricians that did that project. If you wait 20 or 30 years, that skill set is not going to be there anymore.”
Richardson pointed to the potential revitalization of the failed V.C. Summer nuclear project in South Carolina, saying that his union had already been reached out to about it starting up again. Until then, he said, he had 350 electricians working on a Meta data center project between Augusta and Atlanta.
“They’re all basically the same,” he told me of the data center projects. “They’re like cookie cutter homes, but it’s on a bigger scale.”
To be clear, though the segue from nuclear construction to data center construction may hold back the nuclear industry, it has been great for workers, especially unionized electrical and construction workers.
“If an IBEW electrician says they're going hungry, something’s wrong with them,” Richardson said.
Meta’s Northwest Louisiana data center project will require 700 or 800 electricians sitewide, Richardson told me. He estimated that of the IBEW’s 875,000 members, about a tenth were working on data centers, and about 30% of his local were on a single data center job.
When I asked him whether that workforce could be reassembled for future nuclear plants, he said that the “majority” of the workforce likes working on nuclear projects, even if they’re currently doing data center work. “A lot of IBEW electricians look at the longevity of the job,” Richardson told me — and nuclear plants famously take a long, long time to build.
America isn’t building any new nuclear power plants right now (though it will soon if Rick Perry gets his way), but the question of how to balance a workforce between energy construction and data center projects is a pressing one across the country.
It’s not just nuclear developers that have to think about data centers when it comes to recruiting workers — it’s renewables developers, as well.
“We don’t see people leaving the workforce,” said Adam Sokolski, director of regulatory and economic affairs at EDF Renewables North America. “We do see some competition.”
He pointed specifically to Ohio, where he said, “You have a strong concentration of solar happening at the same time as a strong concentration of data center work and manufacturing expansion. There’s something in the water there.”
Sokolski told me that for EDF’s renewable projects, in order to secure workers, he and the company have to “communicate real early where we know we’re going to do a project and start talking to labor in those areas. We’re trying to give them a market signal as a way to say, We’re going to be here in two years.”
Solar and data center projects have lots of overlapping personnel needs, Sokolski said. There are operating engineers “working excavators and bulldozers and graders” or pounding posts into place. And then, of course, there are electricians, who Sokolski said were “a big, big piece of the puzzle — everything from picking up the solar panel off from the pallet to installing it on the racking system, wiring it together to the substations, the inverters to the communication systems, ultimately up to the high voltage step-up transformers and onto the grid.”
On the other hand, explained Kevin Pranis, marketing manager of the Great Lakes regional organizing committee of the Laborers’ International Union of North America, a data center is like a “fancy, very nice warehouse.” This means that when a data center project starts up, “you basically have pretty much all building trades” working on it. “You’ve got site and civil work, and you’re doing a big concrete foundation, and then you’re erecting iron and putting a building around it.”
Data centers also have more mechanical systems than the average building, “so you have more electricians and more plumbers and pipefitters” on site, as well.
Individual projects may face competition for workers, but Pranis framed the larger issue differently: Renewable energy projects are often built to support data centers. “If we get a data center, that means we probably also get a wind or solar project, and batteries,” he said.
While the data center boom is putting upward pressure on labor demand, Pranis told me that in some parts of the country, like the Upper Midwest, it’s helping to compensate for a slump in commercial real estate, which is one of the bread and butter industries for his construction union.
Data centers, Pranis said, aren’t the best projects for his members to work on. They really like doing manufacturing work. But, he added, it’s “a nice large load and it’s a nice big building, and there’s some number of good jobs.”
A conversation with Dustin Mulvaney of San Jose State University
This week’s conversation is a follow up with Dustin Mulvaney, a professor of environmental studies at San Jose State University. As you may recall we spoke with Mulvaney in the immediate aftermath of the Moss Landing battery fire disaster, which occurred near his university’s campus. Mulvaney told us the blaze created a true-blue PR crisis for the energy storage industry in California and predicted it would cause a wave of local moratoria on development. Eight months after our conversation, it’s clear as day how right he was. So I wanted to check back in with him to see how the state’s development landscape looks now and what the future may hold with the Moss Landing dust settled.
Help my readers get a state of play – where are we now in terms of the post-Moss Landing resistance landscape?
A couple things are going on. Monterey Bay is surrounded by Monterey County and Santa Cruz County and both are considering ordinances around battery storage. That’s different than a ban – important. You can have an ordinance that helps facilitate storage. Some people here are very focused on climate change issues and the grid, because here in Santa Cruz County we’re at a terminal point where there really is no renewable energy, so we have to have battery storage. And like, in Santa Cruz County the ordinance would be for unincorporated areas – I’m not sure how materially that would impact things. There’s one storage project in Watsonville near Moss Landing, and the ordinance wouldn’t even impact that. Even in Monterey County, the idea is to issue a moratorium and again, that’s in unincorporated areas, too.
It’s important to say how important battery storage is going to be for the coastal areas. That’s where you see the opposition, but all of our renewables are trapped in southern California and we have a bottleneck that moves power up and down the state. If California doesn’t get offshore wind or wind from Wyoming into the northern part of the state, we’re relying on batteries to get that part of the grid decarbonized.
In the areas of California where batteries are being opposed, who is supporting them and fighting against the protests? I mean, aside from the developers and an occasional climate activist.
The state has been strongly supporting the industry. Lawmakers in the state have been really behind energy storage and keeping things headed in that direction of more deployment. Other than that, I think you’re right to point out there’s not local advocates saying, “We need more battery storage.” It tends to come from Sacramento. I’m not sure you’d see local folks in energy siting usually, but I think it’s also because we are still actually deploying battery storage in some areas of the state. If we were having even more trouble, maybe we’d have more advocacy for development in response.
Has the Moss Landing incident impacted renewable energy development in California? I’ve seen some references to fears about that incident crop up in fights over solar in Imperial County, for example, which I know has been coveted for development.
Everywhere there’s batteries, people are pointing at Moss Landing and asking how people will deal with fires. I don’t know how powerful the arguments are in California, but I see it in almost every single renewable project that has a battery.
Okay, then what do you think the next phase of this is? Are we just going to be trapped in a battery fire fear cycle, or do you think this backlash will evolve?
We’re starting to see it play out here with the state opt-in process where developers can seek state approval to build without local approval. As this situation after Moss Landing has played out, more battery developers have wound up in the opt-in process. So what we’ll see is more battery developers try to get permission from the state as opposed to local officials.
There are some trade-offs with that. But there are benefits in having more resources to help make the decisions. The state will have more expertise in emergency response, for example, whereas every local jurisdiction has to educate themselves. But no matter what I think they’ll be pursuing the opt-in process – there’s nothing local governments can really do to stop them with that.
Part of what we’re seeing though is, you have to have a community benefit agreement in place for the project to advance under the California Environmental Quality Act. The state has been pretty strict about that, and that’s the one thing local folks could still do – influence whether a developer can get a community benefits agreement with representatives on the ground. That’s the one strategy local folks who want to push back on a battery could use, block those agreements. Other than that, I think some counties here in California may not have much resistance. They need the revenue and see these as economic opportunities.
I can’t help but hear optimism in your tone of voice here. It seems like in spite of the disaster, development is still moving forward. Do you think California is doing a better or worse job than other states at deploying battery storage and handling the trade offs?
Oh, better. I think the opt-in process looks like a nice balance between taking local authority away over things and the better decision-making that can be brought in. The state creating that program is one way to help encourage renewables and avoid a backlash, honestly, while staying on track with its decarbonization goals.
The week’s most important fights around renewable energy.
1. Nantucket, Massachusetts – A federal court for the first time has granted the Trump administration legal permission to rescind permits given to renewable energy projects.
2. Harvey County, Kansas – The sleeper election result of 2025 happened in the town of Halstead, Kansas, where voters backed a moratorium on battery storage.
3. Cheboygan County, Michigan – A group of landowners is waging a new legal challenge against Michigan’s permitting primacy law, which gives renewables developers a shot at circumventing local restrictions.
4. Klamath County, Oregon – It’s not all bad news today, as this rural Oregon county blessed a very large solar project with permits.
5. Muscatine County, Iowa – To quote DJ Khaled, another one: This county is also advancing a solar farm, eliding a handful of upset neighbors.