You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The small hydrogen plant at the Port of Stockton illustrates a key challenge for the energy transition.

Officials at the Port of Stockton, an inland port in the Central Valley of California, were facing a problem. Under pressure from California regulators to convert all port vehicles to zero-emissions models over the next decade or so, they had made some progress, but had hit a wall.
“Right now we only have one tool, and that is to electrify everything,” Jeff Wingfield, the port’s deputy director, told me. The Port of Stockton has actually been something of a national leader in electrifying its vehicles, having converted about 40% of its cargo-handling equipment from diesel-powered to battery-electric machines to date. But there aren’t electric alternatives available for everything yet, and the electric machines they’ve purchased have come with challenges. Sensors have malfunctioned due to colder weather or moisture in the air. Maintenance can’t be done by just any mechanic; the equipment is computerized and requires knowledge of the underlying code. “We’ve had a lot of downtime with the equipment unnecessarily. And so when we’re trying to sell that culture change, you know, these things can set back the mindset and just the overall momentum,” said Wingfield.
The port also needs its tenant companies to make the switch, but according to Wingfield, they are hesitant to invest in the electric truck models available today. They’re more interested in hydrogen fuel-cell trucks, he said, which are also zero-emissions, and there’s even a vendor selling them right down the street. The problem was there was no source of hydrogen within an hour and a half of the port.
It was these conditions that got Wingfield and his colleagues excited about BayoTech, a company that wanted to build a new hydrogen plant there — even though BayoTech was going to make hydrogen from methane, the main component of natural gas, in a carbon emissions-intensive process. Hydrogen fuel-cell powered trucks don’t release any of the carbon or toxic pollutants that diesel trucks release, but the process of making the hydrogen fuel can still be dirty.
While the port was considering BayoTech’s proposal, California leadership was committing the state to building out a climate-friendly hydrogen industry. In July, the Biden administration awarded California $1.2 billion for a $12.6 billion plan to build new, zero-emissions hydrogen supply chains. “California is revolutionizing how a major world economy can clean up its biggest industries,” Governor Gavin Newsom said. “We’re going to use clean, renewable hydrogen to power our ports and public transportation – getting people and goods where they need to go, just without the local air pollution.”
Nonetheless, the port approved the fossil fuel-based hydrogen plant in August.
The case illustrates the complexities of this moment in the energy transition. At its center is a question: Should we gamble with higher emissions today on the premise that it could help lower emissions in the future? It’s a gamble that many climate advocates, guided by warnings from scientists about the consequences of continued fossil fuel use, fear will do more harm than good.
The port, which was the lead agency for the environmental review process, estimated that if all of the fuel BayoTech produced was used as a replacement for diesel, it would result in a net decrease in emissions of 4,317 metric tons of CO2 per year, which is like taking 1,000 cars off the road. Still, the plant will emit about 18 kilograms of carbon for every kilogram of hydrogen it produces — more than four times higher than the Department of Energy’s standard for “clean” hydrogen.
Climate and environmental groups in Stockton oppose the project. They’ve raised a number of concerns about it and the conditions under which it was approved, but one is the missed opportunity. “At a time when incentives are lining up for cleaner production methods,” Davis Harper, the carbon and energy program manager at the local group Restore the Delta, told me, “and at a time when the state in particular is really trying to transition away from methane, to approve a new steam methane reforming project in a community that’s already suffering from so many cumulative impacts of industrial pollution — it’s a major regression.”
Between operations at the port, highways, warehouses, and other industrial activity, Stockton ranks in the 96th percentile for pollution burden in California, and in the 100th percentile for cases of asthma. In addition to carbon dioxide, the BayoTech plant will release nitrogen oxides, carbon monoxide, and particulate matter. Harper and other local advocates want the community to have more of a say in shaping regional economic development and defining what its hydrogen future looks like. “I think it puts a stain on what the opportunity for hydrogen might be in the community,” he said.
But Wingfield told me it wasn’t an either/or scenario. “I mean, nobody was approaching us with a green hydrogen project,” he said. Even if someone was, Wingfield said green hydrogen was still too expensive and that no one would buy it. The port is supporting state-wide efforts to develop a more sustainable supply of hydrogen in the future, he said, “but it is slow, and for us, we need something now.”
There’s a chicken-and-egg challenge to getting a clean hydrogen economy going. In addition to a new supply of fuel, it will require investments in new vehicles, fueling stations, and modes of delivering the gas — and that’s just for trucking. Decarbonization experts also see potential to use hydrogen for cargo ships, steelmaking, and aviation. “I agree, you know, don’t wait around for the green projects that are being planned to come online,” Lew Fulton, the director of the energy futures research program at the U.C. Davis Institute of Transportation Studies, told me. “There’s a whole bunch of things we need to learn by doing. And so from that point of view, you could argue, well, in the first few years, it doesn’t matter that much what kind of hydrogen it is.”
When I asked Catharine Reid, BayoTech’s chief marketing officer, what brought the company to Stockton, she told me California is a key market and the San Joaquin Valley is currently a dead-zone for the fuel. The Regional Transit District recently purchased five new fuel-cell buses, but to fuel them, it will have to truck in hydrogen from other parts of the state. BayoTech’s business model is designed to address this kind of local need. The company builds small, modular plants and sites them as close to the point of consumption as possible to avoid the cost and emissions associated with transporting the fuel. The project in Stockton will produce just 2 tons of hydrogen per day, or enough to fill the tanks of about 50 trucks. By contrast, the average hydrogen plant in California, which mostly delivers the gas to oil refineries and fertilizer plants, produces closer to 200 tons per day. “We anticipate that that demand will be snapped up quickly,” said Reid.
The port approved the plant using an abbreviated environmental review process — another aspect that troubled the advocates I spoke to — which required BayoTech to mitigate some of its most significant impacts. To reduce pollution, the company will install equipment that cuts the plant’s nitrogen oxide emissions. It has also committed to using zero-emissions vehicles for at least 50% of deliveries. But the biggest pollutant that will come out of the plant is carbon dioxide — just over 12,000 metric tons of it per year. That’s not much compared to the average hydrogen plant. The smallest existing hydrogen plant in California, Air Products’ Sacramento facility, has the capacity to produce more than twice as much hydrogen as BayoTech will, but emitted nearly four times as much carbon in 2021, according to state data. One of BayoTech’s selling points is its technology’s efficiency.
The company has also committed to developing a community benefits plan, which is still in the works, though BayoTech has already signed an agreement to use local union labor and committed to donate $200,000 over the next four years to the community.
Part of BayoTech’s agreement with the port is that it will lower its emissions by purchasing carbon credits from producers of so-called “renewable natural gas,” or RNG, which can mean methane captured from landfills or from cow manure pits. It’s considered low-carbon because the methane would otherwise be released into the atmosphere, where it would warm the planet far more than carbon dioxide. In theory, credit sales help finance systems to capture the gas and use it for energy instead.
I asked Reid why, when there was so much focus on and funding available for clean hydrogen, like California’s $12.6 billion initiative and lucrative new federal tax credits, the company was investing in the fossil-fueled kind. She suggested that once the federal tax credit rules are finalized, the plant may in fact be eligible for the subsidies. That’s because the guidelines might allow hydrogen plants that buy RNG credits to qualify. “It’s a well established system that’s validated,” Reid said of the credits, “and the environmental benefits are there.”
It’s true that this system of RNG credits is well-established. It’s already written into California climate policy. The state has a low carbon fuel standard designed to drive down the average carbon intensity of transportation fuels over time. When it comes to calculating the carbon intensity of hydrogen for the regulations, there’s a workaround. If the hydrogen is made from natural gas, but the supplier purchases RNG credits, they can report their hydrogen as having a very low or even negative carbon intensity.
But the environmental benefits of these credits are the subject of much debate. Notably, fuel producers can buy credits from all over the country, and they don’t have to prove that their purchase had an additional effect on emissions beyond what might have happened otherwise. Though these credits may have some environmental benefit, they are certainly not causing carbon to be removed from the atmosphere, as implied by a negative carbon intensity. In an op-ed for Heatmap, scholars Emily Grubert and Danny Cullenward urged the Treasury Department not to adopt this same carbon accounting scheme for the federal tax credit, writing that it “would undermine the tax credit’s entire purpose.” They estimate that a fossil hydrogen project could qualify as zero-emissions by offsetting just 25% of its natural gas use. This could make it much harder for truly green hydrogen — like the kind made from electricity and water — to compete.
Interestingly, California’s new $12.6 billion clean hydrogen initiative appears to renounce RNG credits. A frequently asked questions page for the plan says that it “will not include the use of plastics, dairy biogas, or fossil methane paired with biomethane credits.”
Still, the California Governor’s Office of Business and Economic Development praised the BayoTech project in public comments, writing that it would “contribute to achieving California’s ambitious climate and pollution reduction goals.”
The letter seemed to be mistaken about what it was supporting, however, noting that the facility would “utilize woody biomass, helping to address two needs — utilization of a waste stream and production of renewable hydrogen.” When I reached out to the governor’s office, spokesperson Willie Rudman told me the reference to woody biomass was an accident, “resulting from a mix-up with another project.” Still, the office supports the project, he said, due to “commitments made by the developer to utilize renewable natural gas as the feedstock, which can be transported to the production facility via existing natural gas pipelines.”
When I noted that this, too, was a mix-up, and that BayoTech would be buying RNG credits, not using the fuel directly, Rudman responded that this was a cost-effective and perfectly acceptable practice under California’s low-carbon fuel standard.
If you view BayoTech’s plant as a bridge to get the hydrogen economy underway, Ethan Elkind, director of the climate program at the University of California, Berkeley’s Center for Law, Energy and the Environment, told me, it’s important to know how to get to the other side. “Is this just a lifeline for the oil and gas industry, to give them another product that they can sell, which those profits then go back into drilling more oil and gas?” He said he wasn’t categorically opposed to the idea of using natural gas to produce hydrogen for now, as long as there were built-in mechanisms to convert the facility to zero-emissions down the line.
Wingfield of the Port of Stockton asserted that BayoTech’s plant would become cleaner over time, but the port has no such commitment in writing, and it’s also not entirely clear how. BayoTech’s Reid was not sure whether the Stockton plant would find a local source of RNG. She said the company was looking, but that it was rare to find alignment between BayoTech’s business model — putting hydrogen production very close to demand — and RNG suppliers. The only other route to cleaner production, other than completely replacing the plant with one that runs on electricity, would be to install carbon capture equipment. But Reid said the amount of carbon the plant produces will be so small that it may not justify the expense. “We continue to talk to players in the industry and evaluate what they’re bringing out commercially to see if there’s a match with our production units,” she said.
Construction on the plant will begin in a few months, Reid told me, and won’t take long. BayoTech expects to be delivering hydrogen in 2025.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
All the workers who helped build Georgia’s new Vogtle plants are building data centers now.
The Trump administration wants to have 10 new large nuclear reactors under construction by 2030 — an ambitious goal under any circumstances. It looks downright zany, though, when you consider that the workforce that should be driving steel into the ground, pouring concrete, and laying down wires for nuclear plants is instead building and linking up data centers.
This isn’t how it was supposed to be. Thousands of people, from construction laborers to pipefitters to electricians, worked on the two new reactors at the Plant Vogtle in Georgia, which were intended to be the start of a sequence of projects, erecting new Westinghouse AP1000 reactors across Georgia and South Carolina. Instead, years of delays and cost overruns resulted in two long-delayed reactors 35 miles southeast of Augusta, Georgia — and nothing else.
“We had challenges as we were building a new supply chain for a new technology and then workforce,” John Williams, an executive at Southern Nuclear Operating Company, which owns over 45% of Plant Vogtle, said in a webinar hosted by the environmental group Resources for the Future in October.
“It had been 30 years since we had built a new nuclear plant from scratch in the United States. Our workforce didn’t have that muscle memory that they have in other parts of the world, where they have been building on a more regular frequency.”
That workforce “hasn’t been building nuclear plants” since heavy construction stopped at Vogtle in 2023, he noted — but they have been busy “building data centers and car manufacturing in Georgia.”
Williams said that it would take another “six to 10” AP1000 projects for costs to come down far enough to make nuclear construction routine. “If we were currently building the next AP1000s, we would be farther down that road,” he said. “But we’ve stopped again.”
J.R. Richardson, business manager and financial secretary of the International Brotherhood of Electric Workers Local 1579, based in Augusta, Georgia, told me his union “had 2,000 electricians on that job,” referring to Vogtle. “So now we have a skill set with electricians that did that project. If you wait 20 or 30 years, that skill set is not going to be there anymore.”
Richardson pointed to the potential revitalization of the failed V.C. Summer nuclear project in South Carolina, saying that his union had already been reached out to about it starting up again. Until then, he said, he had 350 electricians working on a Meta data center project between Augusta and Atlanta.
“They’re all basically the same,” he told me of the data center projects. “They’re like cookie cutter homes, but it’s on a bigger scale.”
To be clear, though the segue from nuclear construction to data center construction may hold back the nuclear industry, it has been great for workers, especially unionized electrical and construction workers.
“If an IBEW electrician says they're going hungry, something’s wrong with them,” Richardson said.
Meta’s Northwest Louisiana data center project will require 700 or 800 electricians sitewide, Richardson told me. He estimated that of the IBEW’s 875,000 members, about a tenth were working on data centers, and about 30% of his local were on a single data center job.
When I asked him whether that workforce could be reassembled for future nuclear plants, he said that the “majority” of the workforce likes working on nuclear projects, even if they’re currently doing data center work. “A lot of IBEW electricians look at the longevity of the job,” Richardson told me — and nuclear plants famously take a long, long time to build.
America isn’t building any new nuclear power plants right now (though it will soon if Rick Perry gets his way), but the question of how to balance a workforce between energy construction and data center projects is a pressing one across the country.
It’s not just nuclear developers that have to think about data centers when it comes to recruiting workers — it’s renewables developers, as well.
“We don’t see people leaving the workforce,” said Adam Sokolski, director of regulatory and economic affairs at EDF Renewables North America. “We do see some competition.”
He pointed specifically to Ohio, where he said, “You have a strong concentration of solar happening at the same time as a strong concentration of data center work and manufacturing expansion. There’s something in the water there.”
Sokolski told me that for EDF’s renewable projects, in order to secure workers, he and the company have to “communicate real early where we know we’re going to do a project and start talking to labor in those areas. We’re trying to give them a market signal as a way to say, We’re going to be here in two years.”
Solar and data center projects have lots of overlapping personnel needs, Sokolski said. There are operating engineers “working excavators and bulldozers and graders” or pounding posts into place. And then, of course, there are electricians, who Sokolski said were “a big, big piece of the puzzle — everything from picking up the solar panel off from the pallet to installing it on the racking system, wiring it together to the substations, the inverters to the communication systems, ultimately up to the high voltage step-up transformers and onto the grid.”
On the other hand, explained Kevin Pranis, marketing manager of the Great Lakes regional organizing committee of the Laborers’ International Union of North America, a data center is like a “fancy, very nice warehouse.” This means that when a data center project starts up, “you basically have pretty much all building trades” working on it. “You’ve got site and civil work, and you’re doing a big concrete foundation, and then you’re erecting iron and putting a building around it.”
Data centers also have more mechanical systems than the average building, “so you have more electricians and more plumbers and pipefitters” on site, as well.
Individual projects may face competition for workers, but Pranis framed the larger issue differently: Renewable energy projects are often built to support data centers. “If we get a data center, that means we probably also get a wind or solar project, and batteries,” he said.
While the data center boom is putting upward pressure on labor demand, Pranis told me that in some parts of the country, like the Upper Midwest, it’s helping to compensate for a slump in commercial real estate, which is one of the bread and butter industries for his construction union.
Data centers, Pranis said, aren’t the best projects for his members to work on. They really like doing manufacturing work. But, he added, it’s “a nice large load and it’s a nice big building, and there’s some number of good jobs.”
A conversation with Dustin Mulvaney of San Jose State University
This week’s conversation is a follow up with Dustin Mulvaney, a professor of environmental studies at San Jose State University. As you may recall we spoke with Mulvaney in the immediate aftermath of the Moss Landing battery fire disaster, which occurred near his university’s campus. Mulvaney told us the blaze created a true-blue PR crisis for the energy storage industry in California and predicted it would cause a wave of local moratoria on development. Eight months after our conversation, it’s clear as day how right he was. So I wanted to check back in with him to see how the state’s development landscape looks now and what the future may hold with the Moss Landing dust settled.
Help my readers get a state of play – where are we now in terms of the post-Moss Landing resistance landscape?
A couple things are going on. Monterey Bay is surrounded by Monterey County and Santa Cruz County and both are considering ordinances around battery storage. That’s different than a ban – important. You can have an ordinance that helps facilitate storage. Some people here are very focused on climate change issues and the grid, because here in Santa Cruz County we’re at a terminal point where there really is no renewable energy, so we have to have battery storage. And like, in Santa Cruz County the ordinance would be for unincorporated areas – I’m not sure how materially that would impact things. There’s one storage project in Watsonville near Moss Landing, and the ordinance wouldn’t even impact that. Even in Monterey County, the idea is to issue a moratorium and again, that’s in unincorporated areas, too.
It’s important to say how important battery storage is going to be for the coastal areas. That’s where you see the opposition, but all of our renewables are trapped in southern California and we have a bottleneck that moves power up and down the state. If California doesn’t get offshore wind or wind from Wyoming into the northern part of the state, we’re relying on batteries to get that part of the grid decarbonized.
In the areas of California where batteries are being opposed, who is supporting them and fighting against the protests? I mean, aside from the developers and an occasional climate activist.
The state has been strongly supporting the industry. Lawmakers in the state have been really behind energy storage and keeping things headed in that direction of more deployment. Other than that, I think you’re right to point out there’s not local advocates saying, “We need more battery storage.” It tends to come from Sacramento. I’m not sure you’d see local folks in energy siting usually, but I think it’s also because we are still actually deploying battery storage in some areas of the state. If we were having even more trouble, maybe we’d have more advocacy for development in response.
Has the Moss Landing incident impacted renewable energy development in California? I’ve seen some references to fears about that incident crop up in fights over solar in Imperial County, for example, which I know has been coveted for development.
Everywhere there’s batteries, people are pointing at Moss Landing and asking how people will deal with fires. I don’t know how powerful the arguments are in California, but I see it in almost every single renewable project that has a battery.
Okay, then what do you think the next phase of this is? Are we just going to be trapped in a battery fire fear cycle, or do you think this backlash will evolve?
We’re starting to see it play out here with the state opt-in process where developers can seek state approval to build without local approval. As this situation after Moss Landing has played out, more battery developers have wound up in the opt-in process. So what we’ll see is more battery developers try to get permission from the state as opposed to local officials.
There are some trade-offs with that. But there are benefits in having more resources to help make the decisions. The state will have more expertise in emergency response, for example, whereas every local jurisdiction has to educate themselves. But no matter what I think they’ll be pursuing the opt-in process – there’s nothing local governments can really do to stop them with that.
Part of what we’re seeing though is, you have to have a community benefit agreement in place for the project to advance under the California Environmental Quality Act. The state has been pretty strict about that, and that’s the one thing local folks could still do – influence whether a developer can get a community benefits agreement with representatives on the ground. That’s the one strategy local folks who want to push back on a battery could use, block those agreements. Other than that, I think some counties here in California may not have much resistance. They need the revenue and see these as economic opportunities.
I can’t help but hear optimism in your tone of voice here. It seems like in spite of the disaster, development is still moving forward. Do you think California is doing a better or worse job than other states at deploying battery storage and handling the trade offs?
Oh, better. I think the opt-in process looks like a nice balance between taking local authority away over things and the better decision-making that can be brought in. The state creating that program is one way to help encourage renewables and avoid a backlash, honestly, while staying on track with its decarbonization goals.
The week’s most important fights around renewable energy.
1. Nantucket, Massachusetts – A federal court for the first time has granted the Trump administration legal permission to rescind permits given to renewable energy projects.
2. Harvey County, Kansas – The sleeper election result of 2025 happened in the town of Halstead, Kansas, where voters backed a moratorium on battery storage.
3. Cheboygan County, Michigan – A group of landowners is waging a new legal challenge against Michigan’s permitting primacy law, which gives renewables developers a shot at circumventing local restrictions.
4. Klamath County, Oregon – It’s not all bad news today, as this rural Oregon county blessed a very large solar project with permits.
5. Muscatine County, Iowa – To quote DJ Khaled, another one: This county is also advancing a solar farm, eliding a handful of upset neighbors.