You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The small hydrogen plant at the Port of Stockton illustrates a key challenge for the energy transition.
Officials at the Port of Stockton, an inland port in the Central Valley of California, were facing a problem. Under pressure from California regulators to convert all port vehicles to zero-emissions models over the next decade or so, they had made some progress, but had hit a wall.
“Right now we only have one tool, and that is to electrify everything,” Jeff Wingfield, the port’s deputy director, told me. The Port of Stockton has actually been something of a national leader in electrifying its vehicles, having converted about 40% of its cargo-handling equipment from diesel-powered to battery-electric machines to date. But there aren’t electric alternatives available for everything yet, and the electric machines they’ve purchased have come with challenges. Sensors have malfunctioned due to colder weather or moisture in the air. Maintenance can’t be done by just any mechanic; the equipment is computerized and requires knowledge of the underlying code. “We’ve had a lot of downtime with the equipment unnecessarily. And so when we’re trying to sell that culture change, you know, these things can set back the mindset and just the overall momentum,” said Wingfield.
The port also needs its tenant companies to make the switch, but according to Wingfield, they are hesitant to invest in the electric truck models available today. They’re more interested in hydrogen fuel-cell trucks, he said, which are also zero-emissions, and there’s even a vendor selling them right down the street. The problem was there was no source of hydrogen within an hour and a half of the port.
It was these conditions that got Wingfield and his colleagues excited about BayoTech, a company that wanted to build a new hydrogen plant there — even though BayoTech was going to make hydrogen from methane, the main component of natural gas, in a carbon emissions-intensive process. Hydrogen fuel-cell powered trucks don’t release any of the carbon or toxic pollutants that diesel trucks release, but the process of making the hydrogen fuel can still be dirty.
While the port was considering BayoTech’s proposal, California leadership was committing the state to building out a climate-friendly hydrogen industry. In July, the Biden administration awarded California $1.2 billion for a $12.6 billion plan to build new, zero-emissions hydrogen supply chains. “California is revolutionizing how a major world economy can clean up its biggest industries,” Governor Gavin Newsom said. “We’re going to use clean, renewable hydrogen to power our ports and public transportation – getting people and goods where they need to go, just without the local air pollution.”
Nonetheless, the port approved the fossil fuel-based hydrogen plant in August.
The case illustrates the complexities of this moment in the energy transition. At its center is a question: Should we gamble with higher emissions today on the premise that it could help lower emissions in the future? It’s a gamble that many climate advocates, guided by warnings from scientists about the consequences of continued fossil fuel use, fear will do more harm than good.
The port, which was the lead agency for the environmental review process, estimated that if all of the fuel BayoTech produced was used as a replacement for diesel, it would result in a net decrease in emissions of 4,317 metric tons of CO2 per year, which is like taking 1,000 cars off the road. Still, the plant will emit about 18 kilograms of carbon for every kilogram of hydrogen it produces — more than four times higher than the Department of Energy’s standard for “clean” hydrogen.
Climate and environmental groups in Stockton oppose the project. They’ve raised a number of concerns about it and the conditions under which it was approved, but one is the missed opportunity. “At a time when incentives are lining up for cleaner production methods,” Davis Harper, the carbon and energy program manager at the local group Restore the Delta, told me, “and at a time when the state in particular is really trying to transition away from methane, to approve a new steam methane reforming project in a community that’s already suffering from so many cumulative impacts of industrial pollution — it’s a major regression.”
Between operations at the port, highways, warehouses, and other industrial activity, Stockton ranks in the 96th percentile for pollution burden in California, and in the 100th percentile for cases of asthma. In addition to carbon dioxide, the BayoTech plant will release nitrogen oxides, carbon monoxide, and particulate matter. Harper and other local advocates want the community to have more of a say in shaping regional economic development and defining what its hydrogen future looks like. “I think it puts a stain on what the opportunity for hydrogen might be in the community,” he said.
But Wingfield told me it wasn’t an either/or scenario. “I mean, nobody was approaching us with a green hydrogen project,” he said. Even if someone was, Wingfield said green hydrogen was still too expensive and that no one would buy it. The port is supporting state-wide efforts to develop a more sustainable supply of hydrogen in the future, he said, “but it is slow, and for us, we need something now.”
There’s a chicken-and-egg challenge to getting a clean hydrogen economy going. In addition to a new supply of fuel, it will require investments in new vehicles, fueling stations, and modes of delivering the gas — and that’s just for trucking. Decarbonization experts also see potential to use hydrogen for cargo ships, steelmaking, and aviation. “I agree, you know, don’t wait around for the green projects that are being planned to come online,” Lew Fulton, the director of the energy futures research program at the U.C. Davis Institute of Transportation Studies, told me. “There’s a whole bunch of things we need to learn by doing. And so from that point of view, you could argue, well, in the first few years, it doesn’t matter that much what kind of hydrogen it is.”
When I asked Catharine Reid, BayoTech’s chief marketing officer, what brought the company to Stockton, she told me California is a key market and the San Joaquin Valley is currently a dead-zone for the fuel. The Regional Transit District recently purchased five new fuel-cell buses, but to fuel them, it will have to truck in hydrogen from other parts of the state. BayoTech’s business model is designed to address this kind of local need. The company builds small, modular plants and sites them as close to the point of consumption as possible to avoid the cost and emissions associated with transporting the fuel. The project in Stockton will produce just 2 tons of hydrogen per day, or enough to fill the tanks of about 50 trucks. By contrast, the average hydrogen plant in California, which mostly delivers the gas to oil refineries and fertilizer plants, produces closer to 200 tons per day. “We anticipate that that demand will be snapped up quickly,” said Reid.
The port approved the plant using an abbreviated environmental review process — another aspect that troubled the advocates I spoke to — which required BayoTech to mitigate some of its most significant impacts. To reduce pollution, the company will install equipment that cuts the plant’s nitrogen oxide emissions. It has also committed to using zero-emissions vehicles for at least 50% of deliveries. But the biggest pollutant that will come out of the plant is carbon dioxide — just over 12,000 metric tons of it per year. That’s not much compared to the average hydrogen plant. The smallest existing hydrogen plant in California, Air Products’ Sacramento facility, has the capacity to produce more than twice as much hydrogen as BayoTech will, but emitted nearly four times as much carbon in 2021, according to state data. One of BayoTech’s selling points is its technology’s efficiency.
The company has also committed to developing a community benefits plan, which is still in the works, though BayoTech has already signed an agreement to use local union labor and committed to donate $200,000 over the next four years to the community.
Part of BayoTech’s agreement with the port is that it will lower its emissions by purchasing carbon credits from producers of so-called “renewable natural gas,” or RNG, which can mean methane captured from landfills or from cow manure pits. It’s considered low-carbon because the methane would otherwise be released into the atmosphere, where it would warm the planet far more than carbon dioxide. In theory, credit sales help finance systems to capture the gas and use it for energy instead.
I asked Reid why, when there was so much focus on and funding available for clean hydrogen, like California’s $12.6 billion initiative and lucrative new federal tax credits, the company was investing in the fossil-fueled kind. She suggested that once the federal tax credit rules are finalized, the plant may in fact be eligible for the subsidies. That’s because the guidelines might allow hydrogen plants that buy RNG credits to qualify. “It’s a well established system that’s validated,” Reid said of the credits, “and the environmental benefits are there.”
It’s true that this system of RNG credits is well-established. It’s already written into California climate policy. The state has a low carbon fuel standard designed to drive down the average carbon intensity of transportation fuels over time. When it comes to calculating the carbon intensity of hydrogen for the regulations, there’s a workaround. If the hydrogen is made from natural gas, but the supplier purchases RNG credits, they can report their hydrogen as having a very low or even negative carbon intensity.
But the environmental benefits of these credits are the subject of much debate. Notably, fuel producers can buy credits from all over the country, and they don’t have to prove that their purchase had an additional effect on emissions beyond what might have happened otherwise. Though these credits may have some environmental benefit, they are certainly not causing carbon to be removed from the atmosphere, as implied by a negative carbon intensity. In an op-ed for Heatmap, scholars Emily Grubert and Danny Cullenward urged the Treasury Department not to adopt this same carbon accounting scheme for the federal tax credit, writing that it “would undermine the tax credit’s entire purpose.” They estimate that a fossil hydrogen project could qualify as zero-emissions by offsetting just 25% of its natural gas use. This could make it much harder for truly green hydrogen — like the kind made from electricity and water — to compete.
Interestingly, California’s new $12.6 billion clean hydrogen initiative appears to renounce RNG credits. A frequently asked questions page for the plan says that it “will not include the use of plastics, dairy biogas, or fossil methane paired with biomethane credits.”
Still, the California Governor’s Office of Business and Economic Development praised the BayoTech project in public comments, writing that it would “contribute to achieving California’s ambitious climate and pollution reduction goals.”
The letter seemed to be mistaken about what it was supporting, however, noting that the facility would “utilize woody biomass, helping to address two needs — utilization of a waste stream and production of renewable hydrogen.” When I reached out to the governor’s office, spokesperson Willie Rudman told me the reference to woody biomass was an accident, “resulting from a mix-up with another project.” Still, the office supports the project, he said, due to “commitments made by the developer to utilize renewable natural gas as the feedstock, which can be transported to the production facility via existing natural gas pipelines.”
When I noted that this, too, was a mix-up, and that BayoTech would be buying RNG credits, not using the fuel directly, Rudman responded that this was a cost-effective and perfectly acceptable practice under California’s low-carbon fuel standard.
If you view BayoTech’s plant as a bridge to get the hydrogen economy underway, Ethan Elkind, director of the climate program at the University of California, Berkeley’s Center for Law, Energy and the Environment, told me, it’s important to know how to get to the other side. “Is this just a lifeline for the oil and gas industry, to give them another product that they can sell, which those profits then go back into drilling more oil and gas?” He said he wasn’t categorically opposed to the idea of using natural gas to produce hydrogen for now, as long as there were built-in mechanisms to convert the facility to zero-emissions down the line.
Wingfield of the Port of Stockton asserted that BayoTech’s plant would become cleaner over time, but the port has no such commitment in writing, and it’s also not entirely clear how. BayoTech’s Reid was not sure whether the Stockton plant would find a local source of RNG. She said the company was looking, but that it was rare to find alignment between BayoTech’s business model — putting hydrogen production very close to demand — and RNG suppliers. The only other route to cleaner production, other than completely replacing the plant with one that runs on electricity, would be to install carbon capture equipment. But Reid said the amount of carbon the plant produces will be so small that it may not justify the expense. “We continue to talk to players in the industry and evaluate what they’re bringing out commercially to see if there’s a match with our production units,” she said.
Construction on the plant will begin in a few months, Reid told me, and won’t take long. BayoTech expects to be delivering hydrogen in 2025.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The more Hurricanes Helene and Milton we get, the harder it is to ignore the need.
As the southeastern U.S. recovers from hurricanes Helene and Milton, the destruction the storms have left behind serves to underline the obvious: The need for technologies that support climate change adaptation and resilience is both real and urgent. And while nearly all the money in climate finance still flows into mitigation tech, which seeks to lower emissions to alleviate tomorrow’s harm, at long last, there are signs that interest and funding for the adaptation space is picking up.
The emergence and success of climate resilience advisory and investment firms such as Tailwind Climate and The Lightsmith Group are two signs of this shift. Founded just last year, Tailwind recently published a taxonomy of activities and financing across the various sectors of adaptation and resilience solutions to help clients understand opportunity areas in the space. Next year, the firm’s co-founder Katie MacDonald told me, Tailwind will likely begin raising its first fund. It’s already invested in one company, UK-based Cryogenx, which makes a portable cooling vest to rapidly reduce the temperature of patients experiencing heatstroke.
As for Lightsmith, the firm held the final close of its $186 million growth equity fund for climate adaptation solutions in 2022, which co-founder and managing director Jay Koh told me is one of the first, if not the first fund with a climate resilience focus. As Koh sees it, the evolution of climate adaptation and resilience technologies can be broken up into three stages, the first being “reactive and incremental.” That’s largely where we’re at right now, he said — think rebuilding a dam higher after it’s been breached in a flood, or making a firebreak broader after a destructive wildfire. Where he’s seeing interesting companies emerge, though, is in the more proactive second stage, which often involves anticipating and preparing for extreme weather events. “Let’s do a lot more data and analytics ahead of time. Let’s deploy more weather satellites. Let’s look at deploying artificial intelligence and other technologies to do better forecasting,” Koh explained to me.
The third and final stage, he said, could be categorized as “systemic or transcendent adaptation,” which involves systems-level changes as opposed to incremental improvements. Source Global, one of Lightsmith’s portfolio companies which makes solar-powered hydropanels that produce affordable drinking water, is an example of this. As Koh told me, “It’s not simply improving the efficiency of desalination filters by 5% or 10%. It’s saying, listen, we’re going to pull water out of the air in a way that we have never done before.”
But while the activity and interest around adaptation tech may be growing, the money just isn’t there yet. “We’re easily $50 [billion] to $60 billion below where we need to be today,” MacDonald told me. “And you know, we’re on the order of around $150 [billion] to $160 billion below where we need to be by 2030.” Everyone else I spoke with echoed the sentiment. “The latest statistics are that less than 5% of total climate finance tracked on planet Earth is attributable to adaptation and climate resilience,” Koh said. “Of that, less than 2% is private investment.”
There’s a few reasons why early-stage investors especially may be hesitant to throw their weight behind adaptation tech despite the clear need in the market. Amy Francetic, co-founder and managing general partner at Buoyant Ventures, which focuses on early-stage digital solutions for climate risk, told me that the main customer for adaptation solutions is often a government entity. “Municipalities and other government contracts, they’re hard to win, they’re slow to win, and they don’t pay that much, either, which is the problem.” Francetic told me. “So it’s not a great customer to have.”
One of Buoyant’s portfolio companies, the now defunct StormSensor, reinforced this lesson for Francetic. The company used sensors to track water flow within storm and sewage systems to prevent flooding and was able to arrange pilot projects with plenty of water agencies — but few of them converted into paying contracts. “The municipalities were willing to spend money on an experiment, but not so many of them had a larger budget.” Francetic told me. The same dynamic, she said, is also at play in the utility industry, where you often hear about new tech succumbing to “death by pilot.”
It’s not all doom and gloom, though, when it comes to working with larger, risk-averse agencies. AiDash, another of Lightsmith’s portfolio companies that uses artificial intelligence to help utilities assess and address wildfire risk, has five utility partnerships, and earlier this year raised $58.5 million in an oversubscribed Series C round. Francetic and MacDonald both told me they’re seeing the conversation around climate adaptation evolve to include more industry stakeholders. In the past, Francetic said, discussing resilience and adaptation was almost seen as a form of climate doomerism. “They said, oh, why are you doing that? It shows that you’re giving up.” But now, MacDonald told me that her experience at this year’s climate week in New York was defined by productive conversations with representatives from the insurance industry, banking sector, and venture capital arena about injecting more capital into the space.
Bill Clerico, the founder and managing partner of the venture firm Convective Capital, is also deeply familiar with the tricky dynamics of climate adaptation funding. Convective, founded in 2022, is solely dedicated to wildfire tech solutions. The firm’s portfolio companies span a range of technologies that address suppression, early identification, prevention, and insurance against damages, and are mainly looking to work with utilities, governments, and insurance companies. When I talked to Clerico back in August, he (understatedly) categorized these establishments as “not necessarily the most fast-moving or innovative.” But the bleak silver lining, he told me, is that extreme weather is forcing them to up their tempo. “There is so much destruction happening so frequently that it’s forcing a lot of these institutions to think about it totally differently and to embrace newer, more novel solutions — and to do it quickly.”
People, it seems, are starting to get real. But investors and startups alike are also just beginning to define exactly what adaptation tech encompasses and what metrics for success look like when they’re less measurable than, say, the tons of carbon sucked out of the atmosphere via direct air capture, or the amount of energy produced by a fusion reactor.
“Nobody wakes up in the morning and buys a loaf of adaptation. You don’t drive around in an adaptation or live in an adaptation,” Koh noted. “What you want is food, transport, shelter, water that is resilient and adapted to the effects of climate change.” What Koh and the team at Lightsmith have found is that many of the companies working on these solutions are hiding in plain sight. “They call themselves business continuity or water efficiency or agricultural precision technologies or supply chain management in the face of weather volatility,” Koh explained.
In this way, the scope of adaptation technology balloons far beyond what is traditionally climate-coded. Lightsmith recently invested in a Brazil-based digital health company called Beep Saude, which enables patients to get rapid, in-home diagnostics, vaccination services, and infusion therapies. It falls under the umbrella of climate adaptation tech, Koh told me, because rising temperatures, increased rainfall, and deforestation in the country have led to a rapid increase in mosquitoes spreading diseases such as dengue fever and the Zika virus.
Naturally, measuring the efficacy of solutions that span such a vast problem space means a lot of customization. “Your metric might be, how many people have asked for water in a drought-prone area?” MacDonald told me. “And with health, it might be, how many children are safe from wildfire smoke during fire season? And for ecosystems, it might be, how many hectares of ecosystem have been saved as a means to reduce storm surge?” Insurance also brings up a host of additional metrics. As Francetic told me, “we measure things like lives and livelihoods covered or addressed. We measure things like losses covered or underwriting dollars spent on this.”
No matter how you categorize it or measure it, the need for these technologies is not going away. “The drivers of adaptation and climate resilience demand are physics and time,” Koh told me. “Whoever develops climate resilience and adaptation technology will have a competitive advantage over any other company, any other society, and the faster that we can scale it up, and the smarter and more equitable we are about deploying it, the better off we will all be.”
On the Cybercab rollout, methane leaks, and Taylor Swift
Current conditions: England just had its one of its worst crop harvests ever due to extreme rainfall last winter • Nevada and Arizona could see record-breaking heat today, while freeze warnings are in effect in four northeastern states • The death toll from Hurricane Milton has climbed to 16.
Tesla unveiled a prototype of its “Cybercab” self-driving robotaxi last night at an investor event in California. The 2-seater vehicle has no steering wheel or pedals, and will feature wireless induction charging. CEO Elon Musk said the vehicle will cost less than $30,000, with the goal of starting production by 2027, depending on regulatory approvals. At the same event, Musk unveiled the autonomous “Robovan,” which can carry 20 people.
Tesla
A UN expert group agreed this week on some key rules around carbon markets and carbon crediting. This will be a major topic at COP29 next month, where negotiators will be tasked with deciding how countries can use international carbon markets. As the Financial Timesexplained, a carbon market “would allow governments to claim other countries’ emission cuts towards their own climate targets by trading instruments that represent one tonne of carbon dioxide removed or saved from the atmosphere.” The experts this week said projects seeking carbon credits will have to carry out an extensive risk assessment process aimed at flagging and preventing human rights abuses and environmental harm. The assessment will be reviewed by external auditors.
The first detections from Carbon Mapper’s Tanager-1 satellite are in, just two months after the satellite launched. It spotted a 2.5-mile-long methane plume spewing from a landfill in Pakistan, which Carbon Mapper estimates could be releasing 2,600 pounds of methane per hour. It also identified a methane plume in the oilfields of the Permian Basin in Texas, estimated to be releasing 900 pounds of methane hourly. And it found a carbon dioxide plume over a coal-fired power plant in South Africa releasing roughly 1.3 million pounds of CO2 per hour.
A Permian Basin methane plume.Carbon Mapper
In a press release, the company said the observations were “a preview of what’s to come as Carbon Mapper will leverage Tanager-1 to scale-up emissions observations at unprecedented sensitivity across large areas.”
As the cleanup efforts continue in the southeast after back-to-back hurricanes Helene and Milton devastated the region, pop star Taylor Swift announced she is donating $5 million to relief efforts. Specifically she has given money to a national food bank organization called Feeding America. The charity’s CEO said the funds “will help communities rebuild and recover, providing essential food, clean water, and supplies to people affected by these devastating storms.” Last week country music legend Dolly Parton said she personally donated $1 million to the Mountain Ways Foundation, and then another $1 million through her Dollywood foundation.
AccuWeather estimated that Milton caused up to $180 billion in economic losses, and Helene caused up to $250 billion in losses. Two rapid attribution studies out of Imperial College London found that human-caused climate change could be credited for roughly half the economic damages from the storms. “This analysis clearly shows that our failure to stop burning fossil fuels is already resulting in incredible economic losses,” said Dr. Friederike Otto, co-founder of World Weather Attribution.
In Rhode Island, the Providence City Council passed an amendment this week that bans the construction of new gas stations “while prioritizing the development and installation of electric vehicle charging stations.” That would make Providence the first city on the East Coast to enact such a ban. Mayor Brett Smiley could veto it, but the city council could override a veto with a two-thirds majority, The Boston Globereported. Several towns in California have already banned new gas pumps.
Chiquita has developed a new hybrid banana variety it says is resistant to some fungal diseases that have threatened the future of America’s most popular fruit. The variety is called Yelloway 1.
Chiquita Brands International
It’s known as the 50% rule, and Southwest Florida hates it.
After the storm, we rebuild. That’s the mantra repeated by residents, businesses and elected officials after any big storm. Hurricane Milton may have avoided the worst case scenario of a direct hit on the Tampa Bay area, but communities south of Tampa experienced heavy flooding just a couple weeks after being hit by Hurricane Helene.
While the damage is still being assessed in Sarasota County’s barrier islands, homes that require extensive renovations will almost certainly run up against what is known as the 50% rule — or, in Southwest Florida, the “dreaded 50% rule.”
In flood zone-situated communities eligible to receive insurance from the National Flood Insurance Program, any renovations to repair “substantial damage” — defined as repairs whose cost exceeds 50% of the value of the structure (not the land, which can often be quite valuable due to its proximity to the water) — must bring the entire structure “into compliance with current local floodplain management standards.” In practice, this typically means elevating the home above what FEMA defines as the area’s “base flood elevation,” which is the level that a “100-year-flood” would reach, plus some amount determined by the building code.
The rule almost invites conflict. Because just as much as local communities and homeowners want to restore things to the way they were, the federal government doesn’t want to insure structures that are simply going to get destroyed. On Siesta Key, where Milton made landfall, the base flood elevation ranges from 7 feet to 9 feet, meaning that elevating a home to comply with flood codes could be beyond the means — or at least the insurance payouts — of some homeowners.
“You got a 1952 house that’s 1,400 square feet, and you get 4 feet of water,” Jeff Brandes, a former state legislator and president of the Florida Policy Project, told me on Wednesday, explaining how the rule could have played out in Tampa. “That means new kitchens and new bathrooms, all new flooring and baseboards and drywall to 4 or 5 feet.” That kind of claim could easily run to $150,000, which might well surpass the FEMA threshold. “Now all of the sudden you get into the 50% rule that you have the entire house up to current code levels. But then you have to do another half-a-million above what [insurance] paid you.”
Simple probability calculations show that a 100-year flood (which is really a flood elevation that has a 1-in-100 chance of occurring every year) has a more than 25% chance of occurring during the lifetime of a mortgage. If you browse Siesta Key real estate on Zillow, much of it is given a 100% chance of flooding sometime over the course of a 30-year mortgage, according to data analysis by First Street.
Sarasota County as a whole has around 62,000 NFIP policies with some $16.6 billion in total coverage (although more than 80% percent of households have no flood insurance at all). Considering that flood insurance is required in high-risk areas for federally-backed mortgages and for new homeowners insurance policies written by Florida’s state backed property insurer of last resort, Citizens, FEMA is likely to take a close interest in whether communities affected by Milton and Helene are complying with its rules.
If 2022’s Hurricane Ian is any indication, squabbles over the 50% rule are almost certain to emerge — and soon.
Earlier this year, FEMA told Lee County, which includes Fort Myers and Cape Coral, that it was rescinding the discount its residents and a handful of towns within it receive on flood insurance because, the agency claimed, more than 600 homeowners had violated the 50% rule after Hurricane Ian. Following an outcry from local officials and congressional representatives, FEMA restored the discount.
In their efforts to avoid triggering the rule, homeowners are hardly rogue actors. Local governments often actively assist them.
FEMA had initiated a similar procedure in Lee County the year before, threatening to drop homeowners from the flood insurance program for using possibly inaccurate appraisals to avoid the 50% rule before eventually relenting. The Fort Myers News Press reported that the appraisals were provided by the county, which was deliberately “lowering the amount that residents could use to calculate their repairs or rebuilds” to avoid triggering the rule.
Less than a month after Ian swept through Southwest Florida, Cape Coral advised residents to delay and slow down repairs for the same reason, as the rule there applied to money spent on repairs over the course of a year. Some highly exposed coastal communities in Pinellas County have been adjusting their “lookback rules” — the period over which repairs are totaled to see if they hit the 50% rule — to make them shorter so homeowners are less likely to have to make the substantive repairs required.
This followed similar actions by local governments in Charlotte County. As the Punta Gordon Sun put it, “City Council members learned the federal regulation impacts its homeowners — and they decided to do something about it.” In the Sarasota County community of North Port, local officials scrapped a rule that added up repair costs over a five-year period to make it possible for homeowners to rebuild without triggering elevation requirements.
When the 50% rule “works,” it can lead to the communities most affected by big storms being fundamentally changed, both in terms of the structures that are built and who occupies them. The end result of the rebuilding following Helene and Milton — or the next big storm to hit Florida’s Gulf Coast — or the one after that, and so on — may be wealthier homeowners in more resilient homes essentially serving as a flood barrier for everyone else, and picking up more of the bill if the waters rise too high again.
Florida’s Gulf Coast has long been seen as a place where the middle class can afford beachfront property. Elected officials’ resistance to the FEMA rule only goes to show just how important keeping a lid on the cost of living — quite literally, the cost of legally inhabiting a structure — is to the voters and residents they represent.
Still, said Brandes, “There’s the right way to come out of this thing. The wrong way is to build exactly back what you built before.”