You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The small hydrogen plant at the Port of Stockton illustrates a key challenge for the energy transition.
Officials at the Port of Stockton, an inland port in the Central Valley of California, were facing a problem. Under pressure from California regulators to convert all port vehicles to zero-emissions models over the next decade or so, they had made some progress, but had hit a wall.
“Right now we only have one tool, and that is to electrify everything,” Jeff Wingfield, the port’s deputy director, told me. The Port of Stockton has actually been something of a national leader in electrifying its vehicles, having converted about 40% of its cargo-handling equipment from diesel-powered to battery-electric machines to date. But there aren’t electric alternatives available for everything yet, and the electric machines they’ve purchased have come with challenges. Sensors have malfunctioned due to colder weather or moisture in the air. Maintenance can’t be done by just any mechanic; the equipment is computerized and requires knowledge of the underlying code. “We’ve had a lot of downtime with the equipment unnecessarily. And so when we’re trying to sell that culture change, you know, these things can set back the mindset and just the overall momentum,” said Wingfield.
The port also needs its tenant companies to make the switch, but according to Wingfield, they are hesitant to invest in the electric truck models available today. They’re more interested in hydrogen fuel-cell trucks, he said, which are also zero-emissions, and there’s even a vendor selling them right down the street. The problem was there was no source of hydrogen within an hour and a half of the port.
It was these conditions that got Wingfield and his colleagues excited about BayoTech, a company that wanted to build a new hydrogen plant there — even though BayoTech was going to make hydrogen from methane, the main component of natural gas, in a carbon emissions-intensive process. Hydrogen fuel-cell powered trucks don’t release any of the carbon or toxic pollutants that diesel trucks release, but the process of making the hydrogen fuel can still be dirty.
While the port was considering BayoTech’s proposal, California leadership was committing the state to building out a climate-friendly hydrogen industry. In July, the Biden administration awarded California $1.2 billion for a $12.6 billion plan to build new, zero-emissions hydrogen supply chains. “California is revolutionizing how a major world economy can clean up its biggest industries,” Governor Gavin Newsom said. “We’re going to use clean, renewable hydrogen to power our ports and public transportation – getting people and goods where they need to go, just without the local air pollution.”
Nonetheless, the port approved the fossil fuel-based hydrogen plant in August.
The case illustrates the complexities of this moment in the energy transition. At its center is a question: Should we gamble with higher emissions today on the premise that it could help lower emissions in the future? It’s a gamble that many climate advocates, guided by warnings from scientists about the consequences of continued fossil fuel use, fear will do more harm than good.
The port, which was the lead agency for the environmental review process, estimated that if all of the fuel BayoTech produced was used as a replacement for diesel, it would result in a net decrease in emissions of 4,317 metric tons of CO2 per year, which is like taking 1,000 cars off the road. Still, the plant will emit about 18 kilograms of carbon for every kilogram of hydrogen it produces — more than four times higher than the Department of Energy’s standard for “clean” hydrogen.
Climate and environmental groups in Stockton oppose the project. They’ve raised a number of concerns about it and the conditions under which it was approved, but one is the missed opportunity. “At a time when incentives are lining up for cleaner production methods,” Davis Harper, the carbon and energy program manager at the local group Restore the Delta, told me, “and at a time when the state in particular is really trying to transition away from methane, to approve a new steam methane reforming project in a community that’s already suffering from so many cumulative impacts of industrial pollution — it’s a major regression.”
Between operations at the port, highways, warehouses, and other industrial activity, Stockton ranks in the 96th percentile for pollution burden in California, and in the 100th percentile for cases of asthma. In addition to carbon dioxide, the BayoTech plant will release nitrogen oxides, carbon monoxide, and particulate matter. Harper and other local advocates want the community to have more of a say in shaping regional economic development and defining what its hydrogen future looks like. “I think it puts a stain on what the opportunity for hydrogen might be in the community,” he said.
But Wingfield told me it wasn’t an either/or scenario. “I mean, nobody was approaching us with a green hydrogen project,” he said. Even if someone was, Wingfield said green hydrogen was still too expensive and that no one would buy it. The port is supporting state-wide efforts to develop a more sustainable supply of hydrogen in the future, he said, “but it is slow, and for us, we need something now.”
There’s a chicken-and-egg challenge to getting a clean hydrogen economy going. In addition to a new supply of fuel, it will require investments in new vehicles, fueling stations, and modes of delivering the gas — and that’s just for trucking. Decarbonization experts also see potential to use hydrogen for cargo ships, steelmaking, and aviation. “I agree, you know, don’t wait around for the green projects that are being planned to come online,” Lew Fulton, the director of the energy futures research program at the U.C. Davis Institute of Transportation Studies, told me. “There’s a whole bunch of things we need to learn by doing. And so from that point of view, you could argue, well, in the first few years, it doesn’t matter that much what kind of hydrogen it is.”
When I asked Catharine Reid, BayoTech’s chief marketing officer, what brought the company to Stockton, she told me California is a key market and the San Joaquin Valley is currently a dead-zone for the fuel. The Regional Transit District recently purchased five new fuel-cell buses, but to fuel them, it will have to truck in hydrogen from other parts of the state. BayoTech’s business model is designed to address this kind of local need. The company builds small, modular plants and sites them as close to the point of consumption as possible to avoid the cost and emissions associated with transporting the fuel. The project in Stockton will produce just 2 tons of hydrogen per day, or enough to fill the tanks of about 50 trucks. By contrast, the average hydrogen plant in California, which mostly delivers the gas to oil refineries and fertilizer plants, produces closer to 200 tons per day. “We anticipate that that demand will be snapped up quickly,” said Reid.
The port approved the plant using an abbreviated environmental review process — another aspect that troubled the advocates I spoke to — which required BayoTech to mitigate some of its most significant impacts. To reduce pollution, the company will install equipment that cuts the plant’s nitrogen oxide emissions. It has also committed to using zero-emissions vehicles for at least 50% of deliveries. But the biggest pollutant that will come out of the plant is carbon dioxide — just over 12,000 metric tons of it per year. That’s not much compared to the average hydrogen plant. The smallest existing hydrogen plant in California, Air Products’ Sacramento facility, has the capacity to produce more than twice as much hydrogen as BayoTech will, but emitted nearly four times as much carbon in 2021, according to state data. One of BayoTech’s selling points is its technology’s efficiency.
The company has also committed to developing a community benefits plan, which is still in the works, though BayoTech has already signed an agreement to use local union labor and committed to donate $200,000 over the next four years to the community.
Part of BayoTech’s agreement with the port is that it will lower its emissions by purchasing carbon credits from producers of so-called “renewable natural gas,” or RNG, which can mean methane captured from landfills or from cow manure pits. It’s considered low-carbon because the methane would otherwise be released into the atmosphere, where it would warm the planet far more than carbon dioxide. In theory, credit sales help finance systems to capture the gas and use it for energy instead.
I asked Reid why, when there was so much focus on and funding available for clean hydrogen, like California’s $12.6 billion initiative and lucrative new federal tax credits, the company was investing in the fossil-fueled kind. She suggested that once the federal tax credit rules are finalized, the plant may in fact be eligible for the subsidies. That’s because the guidelines might allow hydrogen plants that buy RNG credits to qualify. “It’s a well established system that’s validated,” Reid said of the credits, “and the environmental benefits are there.”
It’s true that this system of RNG credits is well-established. It’s already written into California climate policy. The state has a low carbon fuel standard designed to drive down the average carbon intensity of transportation fuels over time. When it comes to calculating the carbon intensity of hydrogen for the regulations, there’s a workaround. If the hydrogen is made from natural gas, but the supplier purchases RNG credits, they can report their hydrogen as having a very low or even negative carbon intensity.
But the environmental benefits of these credits are the subject of much debate. Notably, fuel producers can buy credits from all over the country, and they don’t have to prove that their purchase had an additional effect on emissions beyond what might have happened otherwise. Though these credits may have some environmental benefit, they are certainly not causing carbon to be removed from the atmosphere, as implied by a negative carbon intensity. In an op-ed for Heatmap, scholars Emily Grubert and Danny Cullenward urged the Treasury Department not to adopt this same carbon accounting scheme for the federal tax credit, writing that it “would undermine the tax credit’s entire purpose.” They estimate that a fossil hydrogen project could qualify as zero-emissions by offsetting just 25% of its natural gas use. This could make it much harder for truly green hydrogen — like the kind made from electricity and water — to compete.
Interestingly, California’s new $12.6 billion clean hydrogen initiative appears to renounce RNG credits. A frequently asked questions page for the plan says that it “will not include the use of plastics, dairy biogas, or fossil methane paired with biomethane credits.”
Still, the California Governor’s Office of Business and Economic Development praised the BayoTech project in public comments, writing that it would “contribute to achieving California’s ambitious climate and pollution reduction goals.”
The letter seemed to be mistaken about what it was supporting, however, noting that the facility would “utilize woody biomass, helping to address two needs — utilization of a waste stream and production of renewable hydrogen.” When I reached out to the governor’s office, spokesperson Willie Rudman told me the reference to woody biomass was an accident, “resulting from a mix-up with another project.” Still, the office supports the project, he said, due to “commitments made by the developer to utilize renewable natural gas as the feedstock, which can be transported to the production facility via existing natural gas pipelines.”
When I noted that this, too, was a mix-up, and that BayoTech would be buying RNG credits, not using the fuel directly, Rudman responded that this was a cost-effective and perfectly acceptable practice under California’s low-carbon fuel standard.
If you view BayoTech’s plant as a bridge to get the hydrogen economy underway, Ethan Elkind, director of the climate program at the University of California, Berkeley’s Center for Law, Energy and the Environment, told me, it’s important to know how to get to the other side. “Is this just a lifeline for the oil and gas industry, to give them another product that they can sell, which those profits then go back into drilling more oil and gas?” He said he wasn’t categorically opposed to the idea of using natural gas to produce hydrogen for now, as long as there were built-in mechanisms to convert the facility to zero-emissions down the line.
Wingfield of the Port of Stockton asserted that BayoTech’s plant would become cleaner over time, but the port has no such commitment in writing, and it’s also not entirely clear how. BayoTech’s Reid was not sure whether the Stockton plant would find a local source of RNG. She said the company was looking, but that it was rare to find alignment between BayoTech’s business model — putting hydrogen production very close to demand — and RNG suppliers. The only other route to cleaner production, other than completely replacing the plant with one that runs on electricity, would be to install carbon capture equipment. But Reid said the amount of carbon the plant produces will be so small that it may not justify the expense. “We continue to talk to players in the industry and evaluate what they’re bringing out commercially to see if there’s a match with our production units,” she said.
Construction on the plant will begin in a few months, Reid told me, and won’t take long. BayoTech expects to be delivering hydrogen in 2025.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Give the people what they want — big, family-friendly EVs.
The star of this year’s Los Angeles Auto Show was the Hyundai Ioniq 9, a rounded-off colossus of an EV that puts Hyundai’s signature EV styling on a three-row SUV cavernous enough to carry seven.
I was reminded of two years ago, when Hyundai stole the L.A. show with a different EV: The reveal of Ioniq 6, its “streamliner” aerodynamic sedan that looked like nothing else on the market. By comparison, Ioniq 9 is a little more banal. It’s a crucial vehicle that will occupy the large end of Hyundai's excellent and growing lineup of electric cars, and one that may sell in impressive numbers to large families that want to go electric. Even with all the sleek touches, though, it’s not quite interesting. But it is big, and at this moment in electric vehicles, big is what’s in.
The L.A. show is one the major events on the yearly circuit of car shows, where the car companies traditionally reveal new models for the media and show off their whole lineups of vehicles for the public. Given that California is the EV capital of America, carmakers like to talk up their electric models here.
Hyundai’s brand partner, Kia, debuted a GT performance version of its EV9, adding more horsepower and flashy racing touches to a giant family SUV. Jeep reminded everyone of its upcoming forays into full-size and premium electric SUVs in the form of the Recon and the Wagoneer S. VW trumpeted the ID.Buzz, the long-promised electrified take on the classic VW Microbus that has finally gone on sale in America. The VW is the quirkiest of the lot, but it’s a design we’ve known about since 2017, when the concept version was revealed.
Boring isn’t the worst thing in the world. It can be a sign of a maturing industry. At auto shows of old, long before this current EV revolution, car companies would bring exotic, sci-fi concept cars to dial up the intrigue compared to the bread-and-butter, conservatively styled vehicles that actually made them gobs of money. During the early EV years, electrics were the shiny thing to show off at the car show. Now, something of the old dynamic has come to the electric sector.
Acura and Chrysler brought wild concepts to Los Angeles that were meant to signify the direction of their EVs to come. But most of the EVs in production looked far more familiar. Beyond the new hulking models from Hyundai and Kia, much of what’s on offer includes long-standing models, but in EV (Chevy Equinox and Blazer) or plug-in hybrid (Jeep Grand Cherokee and Wrangler) configurations. One of the most “interesting” EVs on the show floor was the Cybertruck, which sat quietly in a barely-staffed display of Tesla vehicles. (Elon Musk reveals his projects at separate Tesla events, a strategy more carmakers have begun to steal as a way to avoid sharing the spotlight at a car show.)
The other reason boring isn’t bad: It’s what the people want. The majority of drivers don’t buy an exotic, fun vehicle. They buy a handsome, spacious car they can afford. That last part, of course, is where the problem kicks in.
We don’t yet know the price of the Ioniq 9, but it’s likely to be in the neighborhood of Kia’s three-row electric, the EV9, which starts in the mid-$50,000s and can rise steeply from there. Stellantis’ forthcoming push into the EV market will start with not only pricey premium Jeep SUVs, but also some fun, though relatively expensive, vehicles like the heralded Ramcharger extended-range EV truck and the Dodge Charger Daytona, an attempt to apply machismo-oozing, alpha-male muscle-car marketing to an electric vehicle.
You can see the rationale. It costs a lot to build a battery big enough to power a big EV, so they’re going to be priced higher. Helpfully for the car brands, Americans have proven they will pay a premium for size and power. That’s not to say we’re entering an era of nothing but bloated EV battleships. Models such as the overpowered electric Dodge Charger and Kia EV9 GT will reveal the appetite for performance EVs. Smaller models like the revived Chevy Bolt and Kia’s EV3, already on sale overseas, are coming to America, tax credit or not.
The question for the legacy car companies is where to go from here. It takes years to bring a vehicle from idea to production, so the models on offer today were conceived in a time when big federal support for EVs was in place to buoy the industry through its transition. Now, though, the automakers have some clear uncertainty about what to say.
Chevy, having revealed new electrics like the Equinox EV elsewhere, did not hold a media conference at the L.A. show. Ford, which is having a hellacious time losing money on its EVs, used its time to talk up combustion vehicles including a new version of the palatial Expedition, one of the oversized gas-guzzlers that defined the first SUV craze of the 1990s.
If it’s true that the death of federal subsidies will send EV sales into a slump, we may see messaging from Detroit and elsewhere that feels decidedly retro, with very profitable combustion front-and-center and the all-electric future suddenly less of a talking point. Whatever happens at the federal level, EVs aren’t going away. But as they become a core part of the car business, they are going to get less exciting.
Current conditions: Parts of southwest France that were freezing last week are now experiencing record high temperatures • Forecasters are monitoring a storm system that could become Australia’s first named tropical cyclone of this season • The Colorado Rockies could get several feet of snow today and tomorrow.
This year’s Atlantic hurricane season caused an estimated $500 billion in damage and economic losses, according to AccuWeather. “For perspective, this would equate to nearly 2% of the nation’s gross domestic product,” said AccuWeather Chief Meteorologist Jon Porter. The figure accounts for long-term economic impacts including job losses, medical costs, drops in tourism, and recovery expenses. “The combination of extremely warm water temperatures, a shift toward a La Niña pattern and favorable conditions for development created the perfect storm for what AccuWeather experts called ‘a supercharged hurricane season,’” said AccuWeather lead hurricane expert Alex DaSilva. “This was an exceptionally powerful and destructive year for hurricanes in America, despite an unusual and historic lull during the climatological peak of the season.”
AccuWeather
This year’s hurricane season produced 18 named storms and 11 hurricanes. Five hurricanes made landfall, two of which were major storms. According to NOAA, an “average” season produces 14 named storms, seven hurricanes, and three major hurricanes. The season comes to an end on November 30.
California Gov. Gavin Newsom announced yesterday that if President-elect Donald Trump scraps the $7,500 EV tax credit, California will consider reviving its Clean Vehicle Rebate Program. The CVRP ran from 2010 to 2023 and helped fund nearly 600,000 EV purchases by offering rebates that started at $5,000 and increased to $7,500. But the program as it is now would exclude Tesla’s vehicles, because it is aimed at encouraging market competition, and Tesla already has a large share of the California market. Tesla CEO Elon Musk, who has cozied up to Trump, called California’s potential exclusion of Tesla “insane,” though he has said he’s okay with Trump nixing the federal subsidies. Newsom would need to go through the State Legislature to revive the program.
President-elect Donald Trump said yesterday he would impose steep new tariffs on all goods imported from China, Canada, and Mexico on day one of his presidency in a bid to stop “drugs” and “illegal aliens” from entering the United States. Specifically, Trump threatened Canada and Mexico each with a 25% tariff, and China with a 10% hike on existing levies. Such moves against three key U.S. trade partners would have major ramifications across many sectors, including the auto industry. Many car companies import vehicles and parts from plants in Mexico. The Canadian government responded with a statement reminding everyone that “Canada is essential to U.S. domestic energy supply, and last year 60% of U.S. crude oil imports originated in Canada.” Tariffs would be paid by U.S. companies buying the imported goods, and those costs would likely trickle down to consumers.
Amazon workers across the world plan to begin striking and protesting on Black Friday “to demand justice, fairness, and accountability” from the online retail giant. The protests are organized by the UNI Global Union’s Make Amazon Pay Campaign, which calls for better working conditions for employees and a commitment to “real environmental sustainability.” Workers in more than 20 countries including the U.S. are expected to join the protests, which will continue through Cyber Monday. Amazon’s carbon emissions last year totalled 68.8 million metric tons. That’s about 3% below 2022 levels, but more than 30% above 2019 levels.
Researchers from MIT have developed an AI tool called the “Earth Intelligence Engine” that can simulate realistic satellite images to show people what an area would look like if flooded by extreme weather. “Visualizing the potential impacts of a hurricane on people’s homes before it hits can help residents prepare and decide whether to evacuate,” wrote Jennifer Chu at MIT News. The team found that AI alone tended to “hallucinate,” generating images of flooding in areas that aren’t actually susceptible to a deluge. But when combined with a science-backed flood model, the tool became more accurate. “One of the biggest challenges is encouraging people to evacuate when they are at risk,” said MIT’s Björn Lütjens, who led the research. “Maybe this could be another visualization to help increase that readiness.” The tool is still in development and is available online. Here is an image it generated of flooding in Texas:
Maxar Open Data Program via Gupta et al., CVPR Workshop Proceedings. Lütjens et al., IEEE TGRS
A new installation at the Centre Pompidou in Paris lets visitors listen to the sounds of endangered and extinct animals – along with the voice of the artist behind the piece, the one and only Björk.
How Hurricane Helene is still putting the Southeast at risk.
Less than two months after Hurricane Helene cut a historically devastating course up into the southeastern U.S. from Florida’s Big Bend, drenching a wide swath of states with 20 trillion gallons of rainfall in just five days, experts are warning of another potential threat. The National Interagency Fire Center’s forecast of fire-risk conditions for the coming months has the footprint of Helene highlighted in red, with the heightened concern stretching into the new year.
While the flip from intense precipitation to wildfire warnings might seem strange, experts say it speaks to the weather whiplash we’re now seeing regularly. “What we expect from climate change is this layering of weather extremes creating really dangerous situations,” Robert Scheller, a professor of forestry and environmental resources at North Carolina State University, explained to me.
Scheuller said North Carolina had been experiencing drought conditions early in the year, followed by intense rain leading up to Helene’s landfall. Then it went dry again — according to the U.S. Drought Monitor, much of the state was back to some level of drought condition as of mid-November. The NIFC forecast report says the same is true for much of the region, including Florida, despite its having been hit by Hurricane Milton soon after Helene.
That dryness is a particular concern due to the amount of debris left in Helene’s wake — another major risk factor for fire. The storm’s winds, which reached more than 100 miles per hour in some areas, wreaked havoc on millions of acres of forested land. In North Carolina alone, the state’s Forest Service estimates over 820,000 acres of timberland were damaged.
“When you have a catastrophic storm like [Helene], all of the stuff that was standing upright — your trees — they might be snapped off or blown over,” fire ecologist David Godwin told me. “All of a sudden, that material is now on the forest floor, and so you have a really tremendous rearrangement of the fuels and the vegetation within ecosystems that can change the dynamics of how fire behaves in those sites.”
Godwin is the director of the Southern Fire Exchange for the University of Florida, a program that connects wildland firefighters, prescribed burners, and natural resources managers across the Southeast with fire science and tools. He says the Southeast sees frequent, unplanned fires, but that active ecosystem management helps keep the fires that do spark from becoming conflagrations. But an increase like this in fallen or dead vegetation — what Godwin refers to as fire “fuel” — can take this risk to the next level, particularly as it dries out.
Godwin offered an example from another storm, 2018’s Hurricane Michael, which rapidly intensified before making landfall in Northern Florida and continuing inland, similar to Hurricane Helene. In its aftermath, there was a 10-fold increase in the amount of fuel on the ground, with 72 million tons of timber damaged in Florida. Three years later, the Bertha Swamp Road Fire filled the storm’s Florida footprint with flames, which consumed more than 30,000 acres filled with dried out forest fuel. One Florida official called the wildfire the “ghost” of Michael, nodding to the overlap of the impacted areas and speaking to the environmental threat the storm posed even years later.
Not only does this fuel increase the risk of fire, it changes the character of the fires that do ignite, Godwin said. Given ample ground fuel, flame lengths can grow longer, allowing them to burn higher into the canopy. That’s why people setting prescribed fires will take steps like raking leaf piles, which helps keep the fire intensity low.
These fires can also produce more smoke, Godwin said, which can mix with the mountainous fog in the region to deadly effect. According to the NIFC, mountainous areas incurred the most damage from Helene, not only due to downed vegetation, but also because of “washed out roads and trails” and “slope destabilization” from the winds and rain. If there is a fire in these areas, all these factors will also make it more challenging for firefighters to address it, the report adds.
In addition to the natural debris fire experts worry about, Helene caused extensive damage to the built environment, wrecking homes, businesses, and other infrastructure. Try imagining four-and-a-half football fields stacked 10 feet tall with debris — that’s what officials have removed so far just in Asheville, North Carolina. In Florida’s Treasure Island, there were piles 50 feet high of assorted scrap materials. Officials have warned that some common household items, such as the lithium-ion batteries used in e-bikes and electric vehicles, can be particularly flammable after exposure to floodwaters. They are also advising against burning debris as a means of managing it due to all the compounding risks.
Larry Pierson, deputy chief of the Swannanoa Fire Department in North Carolina, told Blueridge Public Radio that his department’s work has “grown exponentially since the storm.” While cooler, wetter winter weather could offer some relief, Scheuller said the area will likely see heightened fire behavior for years after the storm, particularly if the swings between particularly wet and particularly dry periods continue.
Part of the challenge moving forward, then, is to find ways to mitigate risk on this now-hazardous terrain. For homeowners, that might mean exercising caution when dealing with debris and considering wildfire risk as part of rebuilding plans, particularly in more wooded areas. On a larger forest management scale, this means prioritizing safe debris collection and finding ways to continue the practice of prescribed burns, which are utilized more in the Southeast than in any other U.S. region. Without focused mitigation efforts, Godwin told me the area’s overall fire outlook would be much different.
“We would have a really big wildfire issue,” he said, “perhaps even bigger than what we might see in parts of the West.”